General Disclaimer

One or more of the Following Statements may affect this Document

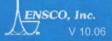
- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

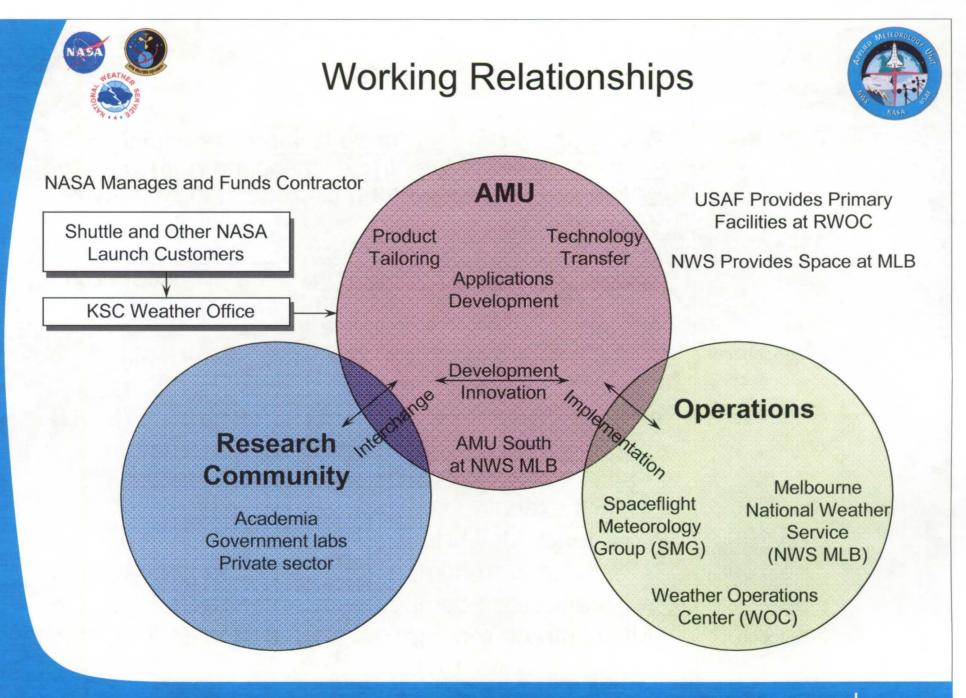
Produced by the NASA Center for Aerospace Information (CASI)

An Overview of the Applied Meteorology Unit (AMU)

Overview

- AMU History
- Working Relationships
- Functional Purpose
- Tasking Process
- Project Examples
 - Formal Prioritized Tasks
 - Mission Immediate Tasks
 - Option Hours Tasks
- Summary
- Acronyms
- Complete Project List





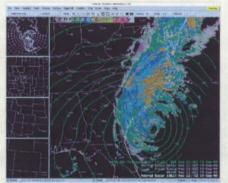
AMU History

- Oct 1986: <u>Report of the Space Shuttle Weather Forecasting</u> <u>Advisory Panel to the NASA Associate Administrator</u> <u>for Space Flight</u> recommends creation of AMU-type organization
- Jul 1988: <u>Meteorological Support for Space Operations:</u> <u>Review and Recommendations</u>, National Research Council strongly supports Shuttle panel recommendation
- Oct 1989: Concept approved by Director, National Space Transportation System
- Sep 1991: Inter-agency Memorandum of Understanding (MOU)
 - » Signed by NASA, Air Force, National Weather Service
 - » NASA executed contract with ENSCO, Inc.
- Sep 1995: Interagency MOU Revised and Renewed
- Sep 1996: AMU contract re-competed, awarded to ENSCO, Inc.
- Sep 2001: AMU contract re-competed, awarded to ENSCO, Inc.
- Sep 2006: AMU contract re-competed, awarded to ENSCO, Inc.

Applied Meteorology Unit

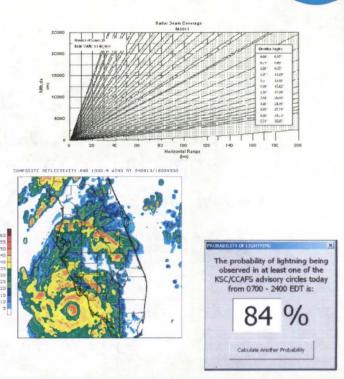
4

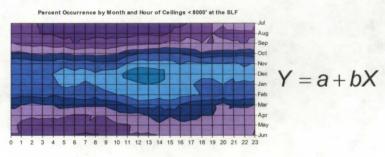
ENSCO, Inc. V 10.06


Functional Purpose

Goals

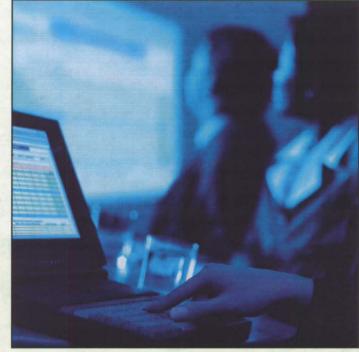
- Enhance total system safety
- Increase launch/landing opportunities
- Reduce unnecessary down-time and schedule impacts due to weather
- Minimize costs
- Methodology
 - Test, evaluate and develop new technology, techniques and processes
 - Transition improved capability to operational customers
 - Facilitate technical exchange between research and operations
 - Provide technical expertise to assist in effective operation, maintenance and modernization of existing resources





Functional Purpose

- Examples
 - Revised WSR-74C scan strategy for the 45 WS to improve vertical resolution over KSC/CCAFS
 - Evaluated and transitioned the Local Data Integration System (LDIS) to operations at SMG and NWS MLB
 - Developed statistical forecast equations that calculate the probability of lightning occurrence for the day and incorporated them into a GUI for the 45 WS
 - Developed cloud ceiling forecast equations for SMG

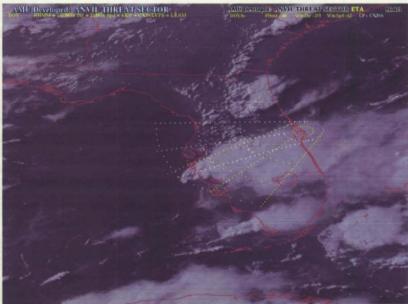


Tasking Process

- Formal Prioritized Tasks Annual Cycle
 - Survey spaceflight operations weather community
 - Input from USAF, NWS and NASA
 - Technical interchange meetings
 - Local weather support workshops (e.g., Unit Radar Committee)
 - NASA, USAF and NWS meet annually to select tasks and set priorities by consensus
 - Selected tasks approved by NASA
 - Formal tasking issued by AMU Chief
 - Semi-annual review with additional reviews as required

Tasking Process

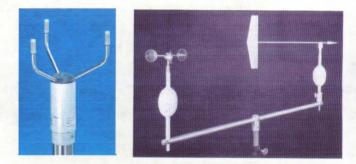
- Mission Immediate Tasks Time Critical
 - Customer initiated after a significant event
 - Verbal tasking issued by AMU Chief
 - Must meet these criteria:
 - Results needed as soon as possible
 - Unique AMU expertise and capabilities are required
 - Minimal interference with formal prioritized tasks
- **Option Hours Tasks**
 - Case-by-case basis
 - Formal tasking issued by AMU Chief
 - Must meet these criteria:
 - Externally funded
 - No interference with formal prioritized tasks
 - Must be approved by NASA


Chaf

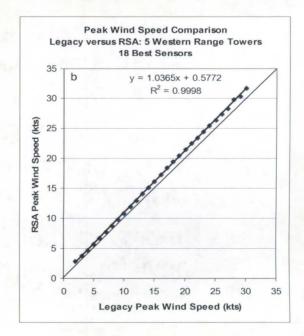
Formal Prioritized Task Examples Anvil Forecasting

- Improve predictions of triggered lightning threat to space launch/landing vehicles using "Anvil Threat Sector" tool
 - Derives average winds between 300 & 150 mb from latest sounding and most current NAM, GFS and RUC model point data
 - Can display every hour from
 3-60 hr using NAM and every
 12 hr from 72-168 hr using GFS
 - Runs on 45 WS & SMG
 Meteorological Interactive Data
 Display System (MIDDS)
 - Improved short- and long-range anvil forecasts for triggered lightning LCC evaluations

ENSCO, Inc.


/ 10.06

Formal Prioritized Project Examples RSA/Legacy Wind Sensor Comparison



- Compare wind speed/direction from RSA ultrasonic and legacy mechanical sensors at the Eastern and Western Ranges
 - Address concern over technology change from mechanical to ultrasonic
 - Acquired one-minute data from 5 towers on each range
 - Determined bias and variance of average and peak speeds for RSA sensors with respect to legacy
 - Determined a small, systematic, positive bias in RSA wind speed

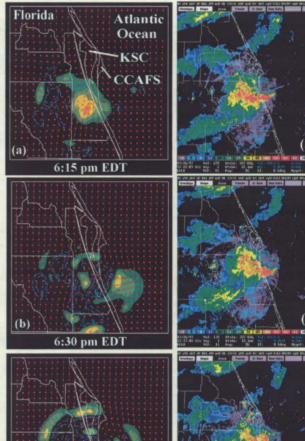
RSA Ultrasonic

Legacy Mechanical

Instrumentation

ENSCO, Inc.

V 10.06



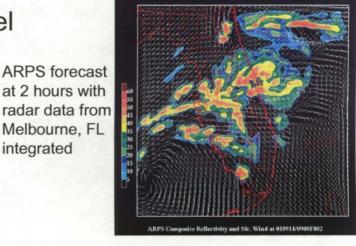
Formal Prioritized Project Examples Data Integration into Computer Models

- Configure and Implement a real-time Local Data Integration System (LDIS)
 - Ingests and assimilates all operationally available data onto a high-resolution analysis grid
 - Visible & infrared satellite imagery
 - Data from all Florida WSR-88D radars
 - Rapid Update Cycle model grids
 - Textual data from MIDDS
 - Depicts mesoscale aspects of clouds and winds over KSC & CCAFS
 - Forecasters have access to timely highresolution products that enhance weather nowcasts and short-range (< 6 hr) forecasts for operational requirements

6:45 pm

Computer Models

Formal Prioritized Project Examples Local Prediction with Computer Models


- Implement Advanced Regional Prediction System (ARPS) model
 - Local high-resolution prediction not available with national models
 - Numerical prediction 4 times per day
 - Run at SMG and NWS MLB
 - Forecasts out to 9 hours
 - Visual output every half hour
 - Uses LDIS to integrate data into model
 - High quality initial conditions
 - Improved forecast accuracy
 - Tropical Storm Gabrielle example:
 - Tornadic storms over east-central FL
 - Convection correctly predicted with LDIS+ARPS (bottom panel)

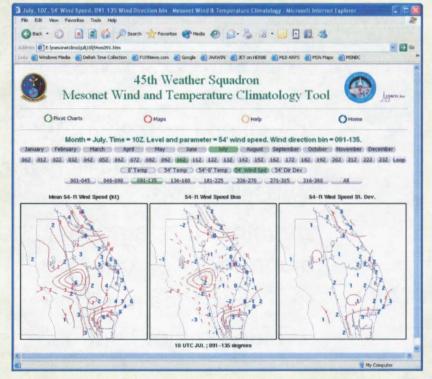
Tropical Storm Gabrielle case:

ARPS forecast at 2 hours without radar data

Melbourne, FL integrated

ARPS Composite Reflectivity and Sfc. Wind at 010914/09

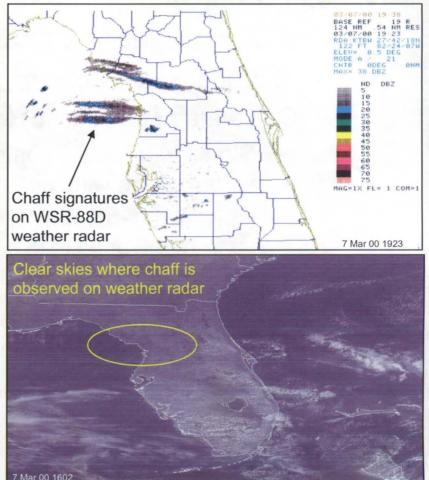
Computer Models


Applied Meteorology Unit

Formal Prioritized Project Examples KSC/CCAFS Tower Climatology

- Nine-year tower climatology to depict diurnal and seasonal variations across KSC/CCAFS
 - Thorough quality control of all tower data at 6 ft and 54 ft
 - Calculated statistics for temperatures, winds, and stability
 - Stratified by hour, month, variable, and wind direction
 - Revealed geographical, instrument, and siting biases
 - Graphical User Interface
 - HTML/Java-based
 - Geographical contour plots and pivot charts
 - All results available to user through click of a button

Statistical Analysis


ENSCO, Inc.

Mission Immediate Project Examples Weather Radar Interference: STS-56

- Determine cause of weather radar signatures during STS-56 launch
 - Analyzed weather radar crosssections
 - WSR-88D and WSR-74C radars
 - Identified chaff as cause
 - Dropped from military aircraft in Gulf of Mexico
 - Developed operational chaff diagnosis methodology
 - Transferred to 45 WS
 - Avoided major expensive study

Shuttle Launch

ENSCO, Inc.

Option Hours Project Example Weather Evaluation for Shuttle Imaging

- Columbia Accident Investigation Board stated that imaging system must provide at least 3 useful views of Shuttle from launch to SRB separation
- Mixed Option Hours/AMU support:
 - Determined technologies that can provide high resolution cloud fields to LWOs
 - Developed statistical model that calculates the probability of obtaining 3 simultaneous views, based on upgraded camera network embedded within simulated cloud fields
 - Developed a satellite-image overlay that helps LWO provide day-of-launch guidance to the Shuttle Launch Director about effects of clouds on views

STS-107 ET208 Video Average of 17 fields. After debris. GMT 016:15:40:22.000 to 22.265

Out-of-Cycle Support

ENSCO, Inc.

Summary

- NASA and NRC report conclusions led to establishment of the AMU in 1991
 - Governed by inter-agency MOU
 - Staffed by ENSCO, Inc.
- AMU bridges gap between research and operations by developing applications and tailoring products for technology transfer
- AMU provides products to customers that help them:
 - Enhance total system safety and minimize costs
 - Increase launch and landing opportunities
 - Reduce down-time and schedule impacts due to weather
- AMU tasks assigned by customers through NASA:
 - Formal Prioritized, Mission Immediate, and Option Hours

Common Acronyms

45 WS	45th Weather Squadron
AMU	Applied Meteorology Unit
CCAFS	Cape Canaveral Air Force Station
KSC	Kennedy Space Center
LCC	Launch Commit Criteria
LDIS	Local Data Integration System
LWO	Launch Weather Officer
MIDDS	Meteorological Interactive Data Display System
MOU	Memorandum Of Understanding
MRF	Medium Range Forecast
MSFC	Marshall Space Flight Center
NASA	National Aeronautics and Space Administration

NLDN	National Lightning Detection Network
NWS MLB	National Weather Service Melbourne
SLF	Shuttle Landing Facility
SMG	Spaceflight Meteorology Group
SRB	Solid Rocket Booster
STS	Space Transportation System
USAF	United States Air Force
WOC	Weather Operations Center
WSR-74C	Weather Surveillance Radar, model 74C
WSR-88D	Weather Surveillance Radar 1988 Doppler

Project List

Formal Prioritized and Sustained

AMU Task	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
0.2 Cloud Cover Flight Rule Evaluation	 Rule based on limited ability to accurately forecast at SLF Rule may be unduly restrictive 	 Flight Rule modification recommendations Weather databases for decision assistance 	Flight Rule change increased availability of SLF for Shuttle landings	Jun 93
50 MHz Radar Wind Profiler Algorithm	Data quality and reliability not proved adequate for wind persistence as required by ascent community	 Operational MSFC algorithm software User's Manual Maintenance Manual Software Requirements Specification 	 System acceptable for day of launch use Titan and Atlas using DRWP for loads Shuttle uses for persistence Data refresh interval decreased from 30 to 5 minutes Result: increased vehicle safety 	Feb 94
ASOS Evaluation	Cost of 24-hour weather observations at SLF using a Non-COTS system	ASOS deployment options	Detailed quantitative information to aid in decision-making process	Mar 94
SLF Wind Tower Siting Assessment	Potentially unrepresentative wind observations for Shuttle landing due to sheltering effect and distance from runway	 Assessment Methodology for evaluation Recommendations for fix 	 Trees removed adjacent to runway resulting in more useful observations Improved use of wind data in engineering analysis of vehicle response to winds on landing 	May 94 (Spacing) Apr 95 (Sheltering)

AMU Task	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
SLF Fog Development Evaluation	 Limited ability to accurately forecast fog development at SLF reduces availability of KSC for landing Each landing diverted to EAFB incurs \$1M in ferry flight costs 	 Fog forecast decision trees MIDDS display programs Weather databases for decision assistance 	 More confidence in forecast Increased likelihood of landing Shuttle at SLF Increased landing safety 	Jun 94
NEXRAD/McGill Scan Strategy Comparison	 Cost of continuing to operate and maintain PAFB WSR 74C/McGill radar Inadequate understanding of radars' beam coverage impacted FR and LCC evaluations 	Determined and compared effective beam coverage of MLB WSR 88D and PAFB WSR 74C/McGill radars over KSC/CCAFS vicinity	 More accurate evaluation of FR & LCC Increased vehicle safety Improved weather warnings Potentially reduced costs for Shuttle FR & LCC evaluation 	Jul 94
MASS Model Evaluation	Insufficient ability to forecast local weather hazards affecting launch, landing, and ground operations	 Determined accuracy and reliability of MASS model Recommended model not be implemented for operations 	Saved implementation, certification, and operations costs	Dec 95

AMU Task	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
MIDDS Exploitation	 MIDDS greatly under-used MIDDS not user-friendly Not designed for operations Designed for research 	 F-key menu system documentation Operational macro programs Maintain menus 	 MIDDS used more effectively - significant increase in access to data Reduced number of keystrokes for typical command by factor of 83 Reduced training costs Reduced system maintenance costs 	Feb 96
915 MHz Wind Profiler Evaluation	 Limited ability to access boundary layer winds Data quality and reliability not proved adequate for wind persistence as required by ascent community 	 Collaborated on site selection Assist in development of system requirements Review of vendor designs and products Documentation sufficient for certification 	 Improved thunderstorm and toxic diffusion forecasts resulting in Increased vehicle safety Safer / more efficient ground operations Less ground operations downtime Collaborative efforts resulted in elimination of need for additional profilers 	Apr 96
MDPI and WINDEX Evaluation	 Limited ability to forecast microbursts High false alarm rate 	Operational macro program and forecast index	More accurate and timely microburst warnings and advisories	May 96 Nov 97 (update)

AMU Task	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
LDAR Evaluation and Transition	 Lack of ability to detect cloud- to-cloud and in-cloud lightning Unacceptable ability to observe and forecast lightning hazard LDAR not fully utilized by forecasters 	Computer-based training course	 Increased forecaster accuracy resulting in Avoidance of lightning hazard (natural and triggered) Safer, more efficient day-to- day ground operations Less ground operations downtime 	Jul 96
Mid-Tropospheric Wind Change Climatology	 Unable to quantify risk avoidance benefit of Doppler radar wind profiler Quantified benefit required for 50 MHz DRWP cost benefit analysis by Shuttle/Titan 	 0.25-, 1-, 2-, and 4-hour wind change climatology Probability of exceedance curves for wind change magnitudes 	 Understanding of risks of unacceptable wind change as a function of time Operational risks can be assessed for design of launch constraints 	Jul 96
I&M and RSA Support	New and upgraded weather data collection and display systems must meet customer needs	 Review vendor briefings, documents, and products Review system interoperability and data communications Test vendor products and prototypes Provide technical advice, comments, and suggestions 	 Ensure proposed systems are operationally useful and satisfy customer requirements MIDDS upgrade support Proposed move of False Cape profiler Requirement for additional weather radar Collaborated on removing requirement for 449 MHz profiler and additional 915 MHz profiler – saved \$1.3M 	Ongoing since Aug 96

AMU Task	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
NEXRAD Exploitation	 NEXRAD under-exploited High false alarm ratio in NEXRAD severe weather algorithms NEXRAD algorithms tuned to mid-western environment Limited ability to recognize convection initiation and severe storm signatures in NEXRAD products Limited understanding of capability of VAD wind profile 	Determination of severe weather and convection initiation signatures	 Enhanced user understanding of NEXRAD products which best display signatures important to convection initiation and severe storm detection Reduced false alarms Reduced failure to detect severe weather Safer and more efficient daily ground operations Less ground operations downtime VAD wind profile evaluation transferred to NWS saving evaluation costs 	Jan 97
LDAR Data Compression and Filtering	LDAR's high data rates make it difficult to ingest and process LDAR data in MIDDS	 Investigated data compression and filtering techniques Identified options for less data-intensive display 	 Information necessary for making a technical decision 	Mar 97

AMU Task	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
Radar/PIREP	 Unable to resolve cloud top difference between radar and pilot reports Number one operational LCC issue at start of task 	 Determined cause of inconsistency Alerted users to potential problems with radar- estimated cloud tops 	Improved LCC evaluations	Mar 97
National Mesoscale Model Evaluation (29 km Eta)	Insufficient ability to forecast local Wx hazards affecting launch, landing, and ground operations	• Determined most effective ways to visualize, interpret, and use 29 km Eta model for short range forecasting	Improved short-range forecasts for ground, launch, and landing operations	Jun 97 Apr 98 (Update)
Warning Decision Support System (WDSS) Evaluation	 Ineffective assimilation of radar data High false alarm ratio in severe weather detection 	 NSSL's algorithms tuned to central Florida weather environment Evaluation was a joint effort of the AMU and NWS MLB 	 Improved public safety and increased accuracy System for convection analysis and nowcasting (SCAN, which includes WDSS) included in 45 SW I&M budget 	Jun 97
Cell Trend Comparison of WATADS Vs. WSR- 88D	 Limited understanding of capabilities of new WSR-88D products Forecaster data overload 	Recommendations for use of the new products	 Improve lead time in issuance of weather warnings and advisories Improve forecasters' understanding of thunderstorm structure 	May 98

AMU Task	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
915 MHz Wind Profiler Data Quality Control (QC)	No QC performed on data; contaminated data displayed with accurate data	 Acquire, develop, and test QC routines for real-time and post-analysis use Quality and reliability of wind data sufficient for operations 	 Forecaster ability to distinguish between good and bad data Forecaster knowledge of data contaminants, including certain meteorological conditions 	Jun 98
MIDDS-X Transition	Limited understanding of capabilities and functionality of MIDDS-X	 Technical expertise Recommendations for use and display of satellite and graphic products 	 Improved forecasters' and LWOs' understanding of the system 	Nov 98
AMU MIDDS-X Conversion	Weather system functionality moved to new platform	Conversion programsNew displays and products	Improved speed and display characteristics	Dec 98
Data Integration Model/ Data Deficiency (LDIS Phase I)	 No automated tools to assimilate mesoscale data in central Florida Limited availability of nowcasting tools Forecaster data overload 	 Prototype analysis system Evaluation report identifying mesoscale data sources and describing proof-of-concept analysis system 	 Proof-of-concept system demonstrating Improved short-term forecasts for ground, launch, and landing operations Improved weather warnings and advisories 	Jan 99

AMU Task	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
Operations Research Support	Organizations doing weather research lacked convenient access to AMU databases	 Provide data and software developed internally by the AMU. Provide copies of previously published AMU reports. Review documents, write memoranda, and provide technical consultations as requested. 	AMU databases available to all weather organizations doing research	Ongoing Since Jul 99
Local Data Integration System Extension (Phase 2)	 Need for real-time assimilation of mesoscale data in central Florida Limited availability of nowcasting tools Forecaster data overload 	 Configuration and simulation of prototype analysis system with real-time data for a 2- week period Evaluation report discussing system performance, data influence, and forecaster tools 	 Improved nowcasting capabilities Knowledge of hardware necessary for a real-time analysis system Understanding utility of all operationally-available data 	Aug 99
ERDAS RAMS Evaluation	 Insufficient ability to forecast fine scale weather affecting launch, landing, and ground operations Upgraded RAMS configuration in ERDAS required formal evaluation 	Interim and final evaluation reports of RAMS model errors and benchmark of results against the national Eta model	 Improve specific short-term forecasts for ground, launch, and landing operations Determine added value of ERDAS RAMS 	Jun 00 (Interim) Jun 01 (Final)

AMU Task	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
Improve Anvil Forecasting (Phase 1)	 Anvil forecasting is a difficult task – necessary to predict triggered Lightning LCC and FR violations No Techniques exist that forecast anvil formation or determine anvil length 	 Report on technical feasibility of forecasting anvils Consultation on Decision to Proceed with Phase 2 	Determination whether or not development of an anvil forecasting technique is feasible	Mar 00
WSR-74C Integrated Radar Information System (IRIS) Exploitation (Phase 1)	Need to evaluate capabilities of the IRIS Radar Product Generator	 Final report recommending prioritized list of IRIS products Recommendation for a revised radar scan strategy 	 Fully exploit IRIS capabilities Reduce vertical gaps in radar coverage by 37% over KSC/CCAFS 	Apr 00
Detecting Chaff Source Regions	 Limited understanding of weather radar interference during launch support Chaff echoes could mask LCC-related weather echoes 	Report documenting source regions of chaff affecting radars around KSC during the winter months	Documentation provides operational resource showing known chaff source regions	Jun 00
WSR-74C IRIS Exploitation (Phase 2)	Need to customize products and tools for operational forecasting	 Memorandum describing seasonally varying radar scan strategies Information on special purpose radar products 	 Capability to optimize radar scan for seasonally varying conditions Information to be used for a quote request to a software vendor 	Apr 01

AMU Task	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
Local Data Integration System (Phase 3)	 Need for real-time mesoscale data assimilation in central Florida Limited availability of nowcasting tools Forecaster data overload 	 Assistance in installing and configuring LDIS at customer offices Memorandum detailing the procedures for implementing the mesoscale data analysis system 	Customers have access to timely high resolution meteorological analyses for launch and landing support and routine forecasting operations	Apr 01
Neumann-Pfeffer Replacement	 Inaccurate performance of the current Neumann-Pfeffer Thunderstorm Probability Index (NPTPI) prompted the Air Force Institute of Technology (AFIT) to develop a more reliable algorithm 45 WS requested new AFIT software be implemented for forecaster use before the 2001 warm season 	 Converted and commented AFIT code that operates on a PC in the RWO Memorandum explaining how to use the code 	 Improved thunderstorm probability forecast tool that will calculate and display the current day's probability and time of thunderstorm occurrence 	Jun 01

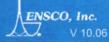
AMU Task	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
Extend ERDAS RAMS Evaluation	 Need for improved forecasting of fine-scale weather affecting launch, landing, and ground operations Need to evaluate RAMS forecasts in real-time 	 Tools to evaluate RAMS quality in real-time Training on use of tools Evaluation of performance for various weather elements Recommendations on improving RAMS Final report documenting all of the above 	 Knowledge of the quality of RAMS forecasts for range safety Tools to evaluate RAMS in real- time 	Aug 01
Statistical Short-range Forecast Tools	• Need for short-range (0-6 hr) guidance in forecasting winds and cloud cover for launch, landing, and ground operations	 Statistical forecast guidance equations and charts Database of all data used in task Final report describing development and use of tools 	 Improved short-range forecasts of cloud ceilings and peak winds 	Aug 01 (Ceiling) Jun 02 (Winds) Jun 03 (SLF Winds)
Local Data Integration System (Phase 4)	 Incorporate additional data sets into the real-time LDIS Fine-tune and improve the continuity of analyzed weather features 	 On-site and remote assistance to ingest new observational data sets Memorandum summarizing the improvements and fine- tuning of LDIS 	 Improved real-time analysis products for launch and landing support and routine forecasting operations 	Oct 01

AMU Task	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
Improve Anvil Forecasting (Phase 2)	Need to develop observations-based operational tool for anvil forecasting	 Objective anvil forecast tool for 0-3 hours in advance Training on use of the forecast tool Final report documenting tool and training 	 Improved short-range forecasts of anvil clouds for prediction of triggered lightning LCC and FR 	Apr 02
Advanced Meteorological Profiling System (AMPS) Moisture Profiles	 AMPS is scheduled to replace the Meteorological Sounding System (MSS) as the operational system Differences in RH profiles between AMPS and the MSS may cause change in values of stability indices 	 Analysis of cool-season dual- sensor RH profiles from AMPS and MSS Report on impact of RH differences on thunderstorm forecasting indices used by 45 WS Interim operational recommendations based on projection of cool-season results to warm-season 	 Interim operational procedures for correcting AMPS-derived thunderstorm forecasting indices Prevent potential degradation of thunderstorm forecasting skill due to impact of systematic difference in AMPS RH profiles on thunderstorm forecasting indices 	Jul 02
Land Breeze Forecasting	 Impact of nocturnal land breezes on low-level wind direction, low temperatures, and fog development Challenge in predicting occurrence, onset time, duration, speed, and direction 	 Comprehensive climatology of land breezes and their characteristics in the wind- tower network. Final report with subjective forecast tools to help determine the land breeze occurrence, onset time, and movement 	Better understanding of land breeze occurrence, timing, and direction with the help of report and subjective tools developed by the AMU	Sep 02

AMU Task	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
Improve Anvil Forecasting (Phase 3)	 Need to develop model- based operational tool for anvil forecasting 	 Objective anvil forecast tool for 0-72 hours in advance Training on use of the forecast tool Final report documenting tool and training 	 Improved long-range forecasts of anvil clouds for prediction of triggered lightning LCC and FR 	Dec 02
LDIS Optimization and Training	 Incorporate additional data sets into the real-time LDIS Need for training and maintenance of the LDIS Explore advanced features and techniques not currently implemented or available 	 On-site and remote assistance to ingest new observational data sets Training manual to help customers maintain real-time LDIS 	 Improved real-time analysis products for launch and landing support and routine forecasting operations 	Mar 03
Extend AMPS Moisture Analysis	 AMPS moisture profiles in previous task may not represent warm season profiles Warm season profiles created by extrapolating cool- season results 	Analysis of warm-season dual-sensor RH profiles from AMPS and MSS	Operational procedures for correcting AMPS-derived thunderstorm forecasting indices	Jun 03

AMU Task	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
Updating ADAS/ARPS Software	Documentation of AMU modifications to ADAS/ARPS source code needed for future software upgrades	Reference manual documenting in detail AMU modifications to the baseline ADAS/ARPS software	• Ability to take advantage of ADAS/ARPS software upgrades and incorporate AMU-unique modifications into the new releases.	Aug 03
Mini-SODAR Evaluation	 Quality of new Mini-SODAR wind speed and direction data at SLC 37 unknown. The Mini-SODAR will be used to evaluate launch pad winds for operations 	 Comparison of Mini-SODAR wind speed and direction with nearest tall tower. Final report on performance characteristics of Mini- SODAR as a replacement for a tall tower 	Ability to assess Mini-SODAR wind speed and direction data quality used for critical Go/No Go launch decisions by 45 WS forecasters and launch weather officers	Sep 03
ARPS Optimization and Training	 Assistance needed for testing and optimizing the operational ARPS forecast cycle Documentation required to transfer ARPS maintenance to local offices 	 Recommended improvements to the ARPS operational configuration Reference guide for the operational ARPS/ADAS 	 Improved reliability and accuracy of ARPS model predictions Better understanding of the forecast cycle procedures and software file structure 	Feb 04
Anvil Transparency Relationship to Radar Reflectivity	 Anvil opaqueness is a critical element in evaluating FR and LCC Surface, pilot, and satellite observations currently used, but all have limitations 	 Threshold dBZ value that corresponds to the anvil transparency threshold Final report describing analysis and results 	Objective method that uses current radar data to analyze anvil transparency	Jun 04

AMU Task	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
Mesonet Temperature and Wind Climatology	 Anecdotal evidence suggests certain mesonet towers show biases in temperature and wind speed and direction – no objective study done to confirm Forecasters need to be aware of biases when issuing warnings and advisories, and evaluating LCC and FR 	 Collective and individual tower temperature and wind climatologies in charts and geographical form Individual tower biases in charts and geographical form An HTML interface to access biases and climatologies Final report describing analysis and results 	 Climatologies and biases for mission planning decisions, forecaster training, and as an aid in evaluating FR and LCC An HTML/Java based GUI that provides an intuitive and easy-to- use method of accessing the charts and geographical data 	Jul 04
Balloon Data Format	 New system produces data in different format than previous system. New format can be read in real-time, but difficult to use archive for diagnostics and research 	 New software that converts data to standard ASCII format Software delivered to CSR, the range technical services contractor 	 Balloon data in easy-to-read ASCII format Allows for intuitive visual inspection of data and use as input to analysis software 	Oct 04
Expanded Tower Statistics Task for Edwards AFB and Northrup Strip	 The likelihood of using Edwards AFB or Northrup Strip has increased since the loss of STS-107 Average and peak wind climatologies of both sites unknown 	Consultation to MSFC personnel who will conduct work on this task	 Climatological values at Edwards AFB and Northrup Strip will be displayed in a GUI similar to that developed by the AMU for the KSC/CCAFS wind tower network These values assist forecasters in developing the wind forecasts 	Oct 04


AMU Task	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
Objective Lightning Probability Forecast	 Current lightning probability forecast made using subjective techniques Forecasters desire an objective technique based on statistical analysis of historical data 	 Objective, PC-based tool that calculates the probability of lightning occurrence for the day Final report describing analysis and results Training on use of tool 	 Increased objectivity in daily lightning probability forecasts 	Feb 05
Severe Weather Forecast Decision Aid	Process for making forecasts of severe weather potential has not been updated to reflect current knowledge	 A forecast decision aid (e.g. flow chart, nomogram, decision tree) Final report describing analysis and results Training on product use 	A more objective method for assessing severe weather potential based on current knowledge and practices	Mar 05
Mesoscale Model Phenomenological Verification Evaluation	 Forecasters use model data to assist in predicting weather phenomena There is uncertainty in the ability of these models to forecast the phenomena of interest Traditional point verification statistics do not provide accurate measure of model performance on specific phenomena 	 Documentation of existing or potential model verification techniques of weather phenomena If found, determine feasibility of integrating the verification software into AWIPS for real-time operational use 	 Knowledge of the existence of phenomenological verification techniques, and/or if any are under development Knowledge of whether the techniques found could be integrated into operations 	Mar 05

AMU Task	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
User Control Interface for ADAS Data Ingest	Need for a user-friendly graphical interface to manage and tune ADAS by duty forecasters	GUI that directly interacts with operational ADAS cycle	 Management and quality-control of observational data stream will improve ADAS output ADAS tuning can be handled by duty forecasters without any prior expertise of ADAS software 	Feb 06
Meteorological Techniques and State of the Science Research	Demands of daily operations limit forecasters' ability to search the literature and attend conferences to find new technologies that can help improve weather support to the space program	 Seminars or teleconferences to present findings that have potential for improving weather support to the space program Summaries in AMU Monthly and Quarterly Reports Limited case studies to demonstrate applicability of new products and technique 	Access to new scientific developments of techniques and tools through AMU expertise	Ongoing
Hail Index	 45 WS does not have confidence in the performance of current hail forecasting tools Evaluation of current tools needed to determine their strengths and weaknesses 45 WS also desires a tool that can forecast reliable probability of hail occurrence 	 Phase I: Quantitative evaluation of the performance of current tools Phase II: If desired by 45 WS, develop a new tool that could potentially improve hail forecasts 	The Phase I quantitative evaluation provided insight to strengths and weaknesses of current hail forecasting tools	May 05

AMU Task	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
ARPS/ADAS Optimization and Training Extension	 Need for incorporating additional data sets into the real-time ARPS/ADAS Assistance needed for upgrading software and hardware Need for improved numerical predictions of summer convection 	 Assistance for upgrades and programs to process new data sources Limited sensitivity study of warm-season convection forecasts in ARPS 	 Improved ADAS analyses and up-to-date software version with latest capabilities Increased confidence in ARPS numerical weather prediction guidance 	Oct 05
Updated Anvil Threat Corridor Forecast Tool	 Anvil tool code not set up to ingest new AMPS data for soundings and new model data formats from NCEP Current anvil tool graphic display created by commands entered manually on a MIDDS terminal 	 Anvil tool code that ingests current sounding and model data formats A GUI on the MIDDS system to access the anvil tool 	 The anvil tool now uses current data sources The GUI interface provides easier and more intuitive access to the anvil tool 	Nov 05
RSA/Legacy Sensor Comparison	• Users concerned about the quality of the data from the new RSA ultrasonic wind sensors, and possible differences between the Legacy and RSA sensors	 Comparison of Legacy and RSA sensor data from 5 Western Range (WR) and 5 Eastern Range (ER) towers Final reports on performance characteristics of RSA wind speed and direction sensors 	• An in-depth understanding of changes in peak wind speed statistics due to changes from Legacy mechanical to RSA ultrasonic anemometers having no moving parts	WR: Feb 06 ER: Mar 06

Project List Formal Prioritized and Sustained

AMU Task	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
Stable Low Cloud Development	Limited ability to forecast low cloud development near the SLF, causing reduced availability for landing opportunities	 Climatology of stable low cloud onset time Identification of weather regimes, patterns, and atmospheric profiles under which stable low clouds form 	 Knowledge of when and how rapid stable low cloud development tends to occur, and conditions under which it occurs Forecasters may provide better 30-90 minute predictions of low cloud development based on new understanding 	Jan 06
Situational Climatology of Cloud-to-Ground Lightning	 The lightning threat index map issued by NWS MLB forecasters is created from scratch using a blank map, taking considerable time and effort The resulting map is based on a subjective analysis of current and forecast parameters that relate to thunderstorm formation and spatial distribution 	 Warm season gridded climatologies of lightning probability and frequency of occurrence Climatologies are based on flow regime and specified time intervals 2.5 x 2.5 km grid covers entire state of Florida and adjacent waters 	 The probability and frequency of lightning occurrence are used to create a first-guess field that forecasters will use to create the lightning threat index map The climatologies provide an objective background from which to develop the map The background map will increase consistency between forecasters and decrease their workload 	Jan 06

Project List Formal Prioritized and Sustained

AMU Task	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
Forecasting Low-Level Convergent Bands Under Southeast Flow	 Difficulty forecasting convergent bands under synoptic southeast flow Convergent bands can produce clouds, rain and thunderstorms that impact operations 	Comparison of days with southeasterly flow to identify under what conditions convergent bands are produced and how they can be forecast	A capability to forecast convergent band formation and whether or not they will produce weather phenomena that will negatively impact operations	May 06
Objective Lightning Probability Forecast: Phase II	 The GUI developed in Phase I requires that users find the appropriate data and input the parameter values manually before a probability of lightning occurrence is calculated This takes valuable time and effort in a time-critical situation 	• A tool on MIDDS that will retrieve the required parameter values for the equations automatically	 The automated capability will save time when calculating the probability of lightning occurrence Lowered probability of operator error in entering an incorrect value Customers still have GUI to conduct sensitivity studies on changes in parameter values 	May 06

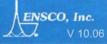
Project List

Formal Prioritized and Sustained

AMU Task	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
Anvil Forecast Tool in AWIPS	 The anvil tool is available on MIDDS, but MIDDS will be decommissioned by the 45 WS when the new RSA AWIPS is approved for operational use SMG forecasters rely more on AWIPS than MIDDS for weather information in making Flight Rule forecasts 	The anvil tool available in AWIPS through the GUI drop- down menus and dialog boxes	 Continued access to the anvil tool on AWIPS after MIDDS is decommissioned Current access to the anvil tool for forecasters who rely more on AWIPS than MIDDS 	To be determined, dependent on training schedule
Operational Weather Research and Forecasting (WRF) Model Implementation	 Improve local numerical weather prediction by transitioning to the most advanced community model Initialize the WRF model with ADAS to benefit from the maturity of the local ADAS configuration 	 Hardware/software performance comparison Prototype WRF configuration using ADAS for initial data Modified ADAS User Control Interface to control WRF initialization and run-time 	 Access to local forecast output from the most advanced numerical weather prediction model available Capability to maintain, control, and modify WRF model configuration and input parameters 	Jun 06
ADAS/ARPS Modifications for Improvement of Forecast Operations	 Advances to the operational ADAS configuration required for both diagnostic and prognostic improvements Need for additional visualization products for assessing lightning and severe weather threats 	 Programs/utilities to assimilate additional observational data sets Utilities to calculate and display new visualization products depicting lightning and severe weather threats 	 Continued improvements to the quality of high-resolution analysis and forecast products New graphical products to help forecasters assess the short-term threats for lightning and severe weather 	Jun 06

Project List Mission Immediate

Mission Requirement	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
Improve detection of low level clouds for launch and landing operations and range optics	Limited ability to detect low level clouds in low light conditions as required to evaluate LCC and FR	Developed satellite enhancement to resolve low level clouds	Improved RTLS, AOA, EOM and range optics forecasts	Oct 91
After Hurricane Andrew, 45 WS tasked to provide warnings, advisories, and aviation forecasts to federal emergency personnel in south Florida	Within 24 Hours, reconfigure AF equipment to provide totally new support to large area with diverse requirements	 Set up National Lightning Detection Network in RWO Configured MIDDS workstation in RWO Trained RWO forecasters on equipment use Provided guidance on south Florida forecast techniques 	 During Andrew recovery – Increased forecast lead time and accuracy for south Florida Improved response time Enhanced safety of people in perilous situation 	Aug 92
Determine frequency of low visibilities at SLF near sunrise	 Sudden fog development at SLF could endanger Shuttle landings 	Developed graphs depicting frequency of low visibilities at SLF	Improved understanding of how often low visibilities occur at the SLF	Oct 92
Understand effect of various wind averaging techniques on displayed SLF winds	 Lack of confidence in wind measurements resulting from different averaging techniques used by different meteorological systems 	 Analytical and observational analysis of averaging effects resolving the major issues 	Enhanced confidence in measured SLF winds	May 93

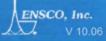


Project List

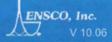
Mission Immediate

Mission Requirement	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
Determine cause of weather radar interference during launch of STS-56	Cause of weather radar interference during launch unknown - could mask LCC- related weather echoes	 Radar cross-section analysis indicated interference caused by chaff Operational technique for chaff diagnosis 	 Reduced frequency of occurrence of weather radar interference by chaff during operations Saved over \$250K in cost avoidance for chaff study Minimize uncertainty of cause of weather radar interference 	Jun 93
Understand electrostatic discharge detected by LDAR during launch of STS-55	 Cause of electrostatic discharge detected by LDAR unknown Concern about potential for damage to orbiter 	 Determined moisture content of atmosphere near vicinity of discharge Helped understand STS-55 LDAR event 	Confidence that current LCC adequate	Jun 93
13 August 1996 case of severe storms at Patrick Air Force Base (PAFB)	Severe thunderstorm that caused extensive damage at PAFB was not forecast	Memorandum describing the AMU analysis of the radar data and recommendations on how to interpret the radar data to determine difference between severe and non- severe storms	Techniques for radar data analyses to improve thunderstorm forecasts	Mar 97
February 2000 anvil rain during an Atlas launch countdown	Determine the nature of unusual radar echoes approaching the KSC/CCAFS area from the west	• Determined that the radar echoes did not exhibit signature typical of chaff, but appeared to be anvil rain	 Additional information for launch weather team decision-making process Permitted on-time launch despite a complex weather situation 	Feb 00

Mission Requirement	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
PROWESS Model Evaluation	Insufficient ability to forecast local weather hazards affecting launch, landing, and ground operations	 System checkout and acceptance test Identified weather infrastructure deficiencies Recommended no further action until deficiencies removed 	Saved implementation, certification, and operations costs	Apr 96
50 MHz Radar Wind Profiler QC Display Upgrade	 Difficult to interpret and view profiler data display Display not adequate for operational QC 	 Test plan and report Operator training Upgraded display software 	 Easier comparison of profiler and Jimsphere data Profiler used operationally to detect dangerous changes in winds 	May 96
Cost Benefit Study of Options to Modify or Replace the SLF Weather Equipment	 Weather instrumentation, data collection and processing equipment at SLF becoming obsolete and un- maintainable Need recommendations on how to replace the system 	 Report describing weather system replacement options and associated costs Briefing to SLF data users 	 SLF data users have knowledge on which to base decision for replacing the obsolete system 	Sep 96
Emergency Response Dose Assessment System (ERDAS) Evaluation	 Current toxic system is 2-D and is only a diagnostic model Current Toxic System is Grossly Deficient 	 Evaluation report Transition ERDAS to operations Implement prognostic 3-D eispersion analysis system for Range Safety 	 Improved toxic diffusion corridor and dosage forecasts Safer ground operations 	Oct 96


Mission Requirement	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
Model Validation Program	 Toxic diffusion models' capabilities and limitations poorly understood Mesoscale and diffusion models need verification for varying meteorological conditions 	 Mesoscale model (RAMS) output data Diffusion model (HYPACT) output data Data produced for 3 field sessions (~ 60 Releases) Evaluation of toxic model performance 	 Enhanced understanding of toxic models' capabilities and limitations resulting in Greater safety for ground and launch operations Increased launch availability 	Jan 99
HyperSODAR Evaluation	• Lack of sufficient spatial and temporal resolution in wind profile measurements at the SLF to support engineering analysis of Shuttle response to wind gusts during landing	 Report documenting the accuracy and availability of HyperSODAR data 	Gave decision-makers an accurate assessment of HyperSODAR data accuracy and availability based on data collected at KSC and comparison with data collected at White Sands Missile Range	Nov 99
50 MHz DRWP Quality Control Training	 Personnel responsible for QC of DRWP Data have no formal training or written guidelines on proper QC techniques Proper QC critical for day-of-launch decisions 	 One-day formal training session at Weather Station A Electronic and hard copies of MS PowerPoint presentation Documents containing QC checklist and explanation of DRWP variables and algorithms necessary for proper QC of the data 	 Proper training helps personnel make appropriate decisions when conducting manual QC Documents are available to personnel as a guideline during the QC More reliable DRWP output for end users of the data 	Feb 00

Mission Requirement	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
Delta II Rocket Explosion (Provided opportunity to evaluate the models used to predict toxic plume dispersion at CCAFS and determine utility of WSR-88D to track plumes)	 No knowledge on how well the WSR-88D detected and tracked explosion plumes No knowledge of the accuracy of RAMS, HYPACT, and REEDM predictions of toxic plume characteristics and dispersion 	 Report documenting results from the Delta II case study: Analysis of performance of WSR-88D, RAMS, HYPACT, and REEDM Recommendations for future products and use of WSR-88D and models 	• Guidelines now available for guidance in using the WSR-88D for tracking plumes, and on model performance in predicting the plume trajectory, thickness, and concentration	Jul 00
HyperSODAR Software Specification	• Need to obtain high spatial and temporal resolution wind profiles over the Shuttle Landing Facility	 A set of software specifications for the HyperSODAR that were used to develop a request for proposal (RFP) 	 Received a valid set of specifications that allowed the Shuttle Program to develop an RFP 	Mar 01
Extension/Enhancement of the ERDAS/RAMS Evaluation	 AMU customers outside of CCAFS expressed interest in viewing RAMS in real-time Systematic low-level cold bias discovered in RAMS forecasts Tests needed to determine impact of large-scale model boundary conditions on RAMS prediction accuracy 	 Memorandum outlining the technical steps needed to send RAMS data to AMU customers in real-time Isolated cause of low-level cold bias to be excessive fog in model Re-ran select RAMS forecasts with different boundary conditions; found little impact on RAMS accuracy 	 Customers understood technical requirements for transmitting RAMS data in real-time Better understanding of strengths and weaknesses in real-time RAMS configuration; information helpful for RSA modeling solution decision-making Better understanding of large- scale model impact on regional numerical forecasts 	Jun 01


Mission Requirement	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
Airborne Field Mill Experiment (ABFM) Aircraft Track Overlay on Radar Data	 ABFM program designed to collect data in thunderstorm anvils to determine if lightning LCC should be relaxed Graphics software needed to overlay research aircraft track on WSR-74C displays 	 Software that ingested aircraft location data and overlaid the aircraft track on the radar display Real-time technical and forecasting support to NASA ABFM Project scientists 	 Ability for ABFM scientists to determine location of the aircraft relative to existing storms such that the pilot could be vectored to safely collect data Enabled the ABFM program to collect data needed to improve lightning launch commit criteria 	Jul 01
Low Temperature Recovery Forecast	 No tool exists to help forecasters determine when or if a recovery from a Shuttle low temperature LCC violation would occur Could result in possible costly delays to Shuttle launches New tool should be in graphical, easy-to-use form 	 Shuttle low temperature recovery forecast tool as a GUI in an MS Excel file User's Guide describing how to use the tool Maintenance manual describing how to interpret, check out, troubleshoot, or modify the software 	• Operational forecasters have an automated tool that converts wind, humidity, and temperature forecasts into a forecast of the LCC violation	Sep 01

Mission Requirement	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
Support to ABFM Field Program Scientists	 Visiting scientists not familiar with location or operation of equipment in AMU lab Help needed for training on equipment, software maintenance, and retrieving local data sets 	 Operation and maintenance, training, and software support for the AMU-developed aircraft track overlay software (Jul 01) Training and consulting on use of WSR-74C, LDAR, WSR-88D, MIDDS, and other equipment and software in the AMU Local data sets on requested media Data analysis support for technical interchange meetings 	 Minimized spin-up time for ABFM scientists in learning location and how to use equipment Access to local expertise in thunderstorm forecasting and data analysis AMU team member always available in person or on call during field program to troubleshoot equipment or software, archive dData, and advise on local forecasting or data analysis issues 	Nov 01
Support for KSC Boundary Layer Winds Analyses	Classification of daily meteorological regimes needed for 915-MHz radar wind profiler study	 Identified meteorological regimes and significant precipitation events during period of record of study 	Confirmed accuracy of automated rainfall detection and integrated quality-control algorithms for the 915-MHz profilers	Aug 02

Mission Requirement	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
Analysis of Rain Measurements in Support of STS-107 Accident Investigation	 No rain climatology existed for Shuttle exposure No knowledge of whether the amount of rain experienced by STS 107 while on the pad was out-of-family 	 Charts of rain climatologies for every Shuttle mission Total rainfall during exposure Maximum daily rainfall during exposure Average daily rainfall during exposure Memorandum describing the charts and how to interpret them 	 Information on rainfall during all Shuttle exposures to help determine if STS-107 rainfall exposure was out-of-family New database and climatologies of rainfall during each Shuttle exposure period allows for analysis of future Shuttle rainfall exposures 	Apr 03
Objective Verification of Numerical Weather Prediction (NWP) Models	 Traditional objective point validation not adequate for high-resolution NWP models; subjective techniques too costly Need for objective technique to validate weather phenomena 	 Joint project with Dynacs / ASRC Aerospace personnel Technique for objective identification and verification of sea breezes in observed and forecast grid fields 	Automated model verification technique that can be transitioned into customer operations as required	May 03

Mission Requirement	Weather Support Problem	AMU Product	Customer/Operational Benefit	Delivery Date
Prior to Launch, Shuttle LWO Must Determine Probability that Forecast Cloud Cover will Allow the Optical Imaging System (OIS) to Obtain 3 Useful Views of the Shuttle from Launch to Solid Rocket Booster Separation (SRBS)	 Clouds can obscure optical imaging of the Shuttle during launch No tool or methodology exists to determine the effect of clouds on the OIS 	 Concept study to determine if technologies are available to produce a valid forecast cloud field Statistical model of cloud field to simulate viewing conditions and compute probabilities of 3 useful views by the OIS Look-up tables and graphic displays of probabilities for LWO 	Ability for the LWO to provide objective guidance to the Shuttle Launch Director concerning effects of clouds on viewing conditions from launch to SRBS	Oct 03 (Study) Mar 04 (Model)
Evaluate Meteorological Precursors to the Severe High Wind Event on 4 March 2003	 Cause of strong wind event over KSC not understood Forecasters needed post- analysis to determine the type of event and cause 	Memorandum describing sequence of events and contributing factors in the development of the strong winds	 Detailed analysis of weather data leading up to the event Forecasters understand what caused the strong wind and how to predict such a wind in the future 	Dec 03
Implement the Volume- Averaged Height Integrated Radar Reflectivity (VAHIRR) algorithm on the WSR- 88D to evaluate the new LLCC	 A new LLCC, VAHIRR, was developed to address the issue of missed launch opportunities due to overly conservative LLCC Current procedure to evaluate VAHIRR requires manual and somewhat subjective evaluation of current WSR-88D products 	The VAHIRR algorithm implemented within the WSR- 88D architecture	 A color-filled geographic 2- dimensional display of VAHIRR output values Colors indicate locations where the VAHIRR LLCC is and is not violated Full implementation of VAHIRR reduces unnecessary launch scrubs due to violation of LLCC 	Feb 06

.

r

REPORT DOCUMENTATION PAGE						Form Approved OMB No. 0704-0188	
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.							
	TE (DD-MM-YYY		RT TYPE	.		3. DATES COVERED (From - To)	
01-03-2007 Presentation						October 1991 - Present	
4. TITLE AND SUBTITLE					5a. CONTRACT NUMBER		
					. NNK06MA70C		
An Overview of the Applied Meteorology Unit (AMU)					5b. GRANT NUMBER		
					SU. GRANT NUMBER		
					5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)					5d. PROJECT NUMBER		
Francis Merceret William Bauman							
Winifred Lambert David Short Joe Barrett Leela Watson					5e. TASK NUMBER		
					5f. WORI	VORK UNIT NUMBER	
7 DEDEODMI	NG ORGANIZATI	ION NAME (S) AN	ND ADDRESS(ES)			8. PERFORMING ORGANIZATION	
			ID ADDRE35(E3)			REPORT NUMBER	
ENSCO, Inc.						1	
	ntic Ave Suite 2	230					
Cocoa Beach	Cocoa Beach, FL 32931						
						· · · · ·	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITOR'S ACRONY							
NASA							
John F. Kennedy Space Center							
Code YA-D						11. SPONSORING/MONITORING REPORT NUMBER	
Kennedy Space Center, FL 32899							
12. DISTRIBUTION/AVAILABILITY STATEMENT							
Unclassified, Unlimited							
13. SUPPLEMENTARY NOTES							
14. ABSTRACT							
The Applied Meteorology Unit (AMU) acts as a bridge between research and operations by transitioning technology to improve							
weather support to the Shuttle and American space program. It is a NASA entity operated under a tri-agency aggreement by							
NASA, the US Air Force, and the National Weather Service (NWS). The AMU contract is managed by NASA, operated by							
ENSCO, Inc. personnel, and is collocated with Range Weather Operations at Cape Canaveral Air Force Station. The AMU is							
tasked by its customers in the 45th Weather Squadron, Spaceflight Meteorology Group, and the NWS in Melbourne, FL with							
projects whose results help improve the weather forecast for launch, landing, and ground operations. This presentation describes							
the history behind the formation of the AMU, its working relationships and goals, how it is tasked by its customers, and examples of completed tasks.							
15. SUBJECT TERMS							
Applied Meteorology Unit, AMU, weather, meteorology, technology transition							
16. SECURITY OLASSIEICATION OF 17. LIMITATION OF 18. NUMBER 192. NAME OF RESPONSIBLE PERSON							
ABSTRACT OF					D. Francis I. Manuart		
a. REPORT	b. ABSTRACT	c. THIS PAGE		PAGES		EPHONE NUMBER (Include area code)	
U	U.	U	UU	47	1	67-0818	
			l	L	1 (321) 8	01-0010	

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18