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Abstract

We present formal models and results of formal analysis of two different asynchronous systems. We first
examine a mid-value select module that merges the signals coming from three different sensors that are each
asynchronously sampling the same input signal. We then consider the phase locking protocol proposed by
Daly, Hopkins, and McKenna. This protocol is designed to keep a set of non-faulty (asynchronous) clocks
phase locked even in the presence of Byzantine-faulty clocks on the network. All models and verifications
have been developed using the SAL model checking tools and the Hybrid SAL abstractor.
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1 Introduction

Flight-critical control systems rely on redundant channels to tolerate failures in hardware and software com-
ponents. Properly coordinating and managing redundancy in the presence of faults is critical to achieving
high reliability. Two general classes of fault-tolerant architectures are commonly used for this purpose:

• Synchronous architectures rely on a common time base that enables the redundant channels to work
synchronously. Once such a synchronous time base is established, different processors can work as
exact deterministic replicas of each other. Fault-tolerant consensus algorithms ensure that all non-
faulty replicas perform the same computation on the same input, and thus agree on the control output.

• Asynchronous architectures do not attempt to synchronize the different channels. Each processing
component is driven by its own local clock. Clocks can be out of phase and drift from each other.
As a consequence, the control processors sample sensors and other input at slightly different points
in time, which prevents them from reaching exact agreement. The control signals produced by dif-
ferent channels cannot be guaranteed to be equal. Voting and equalization logic is then employed to
compensate for the difference between these control signals.

We examine two example systems that belong to each of these two classes of architectures. Both systems
are asynchronous and are modeled formally using the SAL and Hybrid SAL tools [2, 5, 6]. The resulting
SAL models are available at http://www.csl.sri.com/users/bruno/vvfcs.html.

• Our first example is a mid-value select module that merges the signals coming from three different
sensors that are each asynchronously sampling the same input signal. This module is part of a larger
control system with an asynchronous architecture, It combines signals from three asynchronous com-
ponents into a single output.

• Our second example is the clock phase locking protocol proposed by Daly, Hopkins, and McKenna [1].
This protocol keeps a set of hardware clocks in phase lock, even if some of the clocks in the system
fail. This protocol is one of the first published protocol designed to tolerate components that fail in an
arbitrary, possibly asymmetric manner, that is, what we now call Byzantine failures.

The goal of the work presented here is to evaluate the possible mechanisms for modeling and analyzing
different kinds of asynchronous systems. For the two case studies listed above, we present two different
approaches for modeling asynchronous systems:

• In the first approach, asynchronous sampling is modeled as nondeterministic selection from a set of
possible sample values; that is, different asynchronously executing components will each nondeter-
ministically select (possibly different) values from a set of values.

• In the second approach, asynchronous effects are captured as synchronous events by performing a
time abstraction; that is, events that occur at different, but very close, time instants are fired at the
same abstract time, and the abstract time is advanced when no asynchronous event happens.

We provide more details below in the two sections dedicated to each of the two case studies.

2 Robust Asynchronous Control

The asynchronous case study consists of a control system that contains redundant controllers and redundant
actuator interface units for tolerating faults. The system is asynchronous. All components, including con-
trollers and actuator interface units, have distinct clocks, which may be out of phase and drift from each
other. The system does not include any clock synchronization mechanism.
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mvs(x1, x2, x3, b1, b2, b3, x) :
// x1,x2,x3 are the three sensor values,
// b1,b2,b3 are the corresponding valid bits,
// x is the previous output value
if b1 is False then x1 = x endif
if b2 is False then x2 = x endif
if b3 is False then x3 = x endif

if (not b1 and not b2) then
newx = x3

else if (not b1 and not b3) then
newx = x2

else if (not b2 and not b3) then
nexx = v1

else
newx = (x1 + x2 + x3) - max(x1,x2,x3) - min(x1,x2,x3)

return newx

Figure 1. Pseudocode for the Mid-Value Select Component

The key challenge in analyzing such systems arises from the asynchronous sampling and selection em-
ployed by the redundant controllers and actuators. One of the main components of the asynchronous control
case study is the mid-value select module that is used to collect and merge values coming from identical,
but asynchronously executing, components. In this section, we present the mid-value select algorithm, its
formalization in SAL, and then the results of formally analyzing it against a collection of requirements. We
note here that we only formalize a small subsystem of the whole asynchronous case study.

2.1 Mid-Value Select

The pseudocode for the mid-value select (MVS) algorithm is given in Figure 1. The algorithm takes three
input values, x1, x2, x3 with corresponding validity bits b1, b2, b3, and produces an output newx. If bit bi

is true then input xi is assumed valid. Otherwise, xi is assumed faulty and it is not taken into account in
the computation. The inputs x1, x2, x3 to the mid-value select algorithm are obtained by asynchronously
sampling values of some continuous signal. If all three validity bits are true, the mid-value select algorithm
returns the middle value of the three inputs. If one bi is false, then the corresponding xi is ignored; it is
replaced by the mid-value x computed in the previous iteration. If two inputs are invalid, then the remaining
good value is forwarded as the output.

We now describe the process of formal modeling the above system. The continuous signal can be the
output of some plant model described using ordinary differential equations. The mid-value select component
is modeled using a regular (discrete) SAL module. The interesting question that we answer below is how
to link the continuous plant and the discrete mid-value select module that takes as input three different
asynchronous samples of some output signal produced by the plant.

Figure 2 presents a Hybrid SAL model of the complete system. The final system model is a synchronous
composition of three modules called plant, mvs, and asynchronousBus. We assume that the plant
module outputs a continuous sinusoidal signal y defined by the system of ordinary differential equations

dx

dt
= y

dy

dt
= −x.
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MVS: CONTEXT =
BEGIN
faulty: BOOLEAN = FALSE ;
reallyfaulty: BOOLEAN = FALSE ;
dt: REAL = 0.2 ;
e: REAL = 0.05 ;

midval(y1: REAL, y2: REAL, y3: REAL): REAL = as in Figure 3

plant: MODULE =
BEGIN
OUTPUT x, y, ylb, yub: REAL
INITIALIZATION x = 1; y = 0;
TRANSITION [ TRUE --> xdot’ = y; ydot’ = -x ]

END;

mvs: MODULE = as in Figure 3

asynchronousBus: MODULE =
BEGIN
INPUT ylb, yub: REAL
OUTPUT x1, x2, x3: REAL
OUTPUT b1, b2, b3: BOOLEAN

INITIALIZATION
x1 = yub; x2 = yub; x3 = yub;
b1 = TRUE;
b2 = NOT(reallyfaulty);
b3 = NOT(faulty)

TRANSITION
[ TRUE --> % faulty or not choose x1,x2,x3 correctly

x1’ IN {z:REAL| (ylb’ <= z AND z <= yub’) OR
(ylb’ >= z AND z >= yub’)};

x2’ IN {z:REAL| (ylb’ <= z AND z <= yub’) OR
(ylb’ >= z AND z >= yub’)};

x3’ IN {z:REAL| (ylb’ <= z AND z <= yub’) OR
(ylb’ >= z AND z >= yub’)};

]
END;

system: MODULE = asynchronousBus || plant || mvs ;
END

Figure 2. Hybrid SAL Model of the Mid-Value Select Component
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midval(y1: REAL, y2: REAL, y3: REAL): REAL =
IF y1 <= y2 THEN

(IF y2 <= y3 THEN y2 ELSIF y1 <= y3 THEN y3 ELSE y1 ENDIF)
ELSE

(IF y1 <= y3 THEN y1 ELSIF y2 <= y3 THEN y3 ELSE y2 ENDIF)
ENDIF;

mvs: MODULE =
BEGIN
INPUT x1, x2, x3: REAL
INPUT b1, b2, b3: BOOLEAN
OUTPUT x: REAL
INITIALIZATION x = 0
TRANSITION
[ TRUE -->

x’ = midval(
IF b1’ THEN x1’ ELSIF NOT(b2’) THEN x3’
ELSIF NOT(b3’) THEN x2’ ELSE x ENDIF,
IF b2’ THEN x2’ ELSIF NOT(b1’) THEN x3’
ELSIF NOT(b3’) THEN x1’ ELSE x ENDIF,
IF b3’ THEN x3’ ELSIF NOT(b1’) THEN x2’
ELSIF NOT(b2’) THEN x1’ ELSE x ENDIF)

]
END;

Figure 3. The Mid-Value Select Algorithm in SAL

This is enough for illustrating the analysis approach, but a more complex model could be substituted for the
plant module of Figure 2.

The Hybrid SAL model uses Boolean constants faulty and reallyfaulty that can be set to true
or false to explore different fault scenarios. If both constants are false, then there are no faults in the system.
If faulty is true, then one sensor value (namely, x3) is faulty. And if both faulty and reallyfaulty
are true, then the two sensor values x2 and x3 are assumed faulty.

The mvs module takes three input values x1 to x3, and three valid bits b1 to b3, and it outputs one value
computed according to the algorithm described in Figure 1. The corresponding SAL module is shown in Fig-
ure 3 and it uses the midval function that is shown in the same figure. Finally, the asynchronousBus
module takes in the values produced by the plant and uses them to compute the inputs for the mvs. To
model the asynchronous sampling, we model the output from the plant not as a single real-valued signal, but
as an interval [ylb, yub]. This interval is defined as the set of values that the output y can take in the time
interval [dt− e, dt], where dt and e are fixed parameters defined in the SAL context.

Thus, the idea for modeling asynchronous systems consists of modeling the plant so that it generates a
set of states (such as an interval) as its output. The asynchronousBus then takes the set and nondeter-
ministically selects multiple values from this set. This is our model for asynchronous sampling.

2.2 Discrete Abstraction

In the plant module of Figure 2, we have not shown how the plant computes ylb and yub. This is be-
cause the expression for ylb and yub will be derived by the Hybrid SAL relational abstractor automatically
from the given (ordinary differential equation) dynamics of the variables x and y, and the time constants dt
and e. Our current version of the Hybrid SAL relational abstractor does not yet support this feature. We
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plan to add this feature to the Hybrid SAL relational abstractor in the next few months.
On this specific example, we intend the abstractor to produce an abstract discrete model similar to the one

shown in Figure 4. This discrete model was constructed by hand, using the relational-abstraction technique
described in [6], adjusted to compute constraints on the variables ylb and yub rather than on a single value
y. The constraints on ylb and yub are derived by letting variables x and y evolve for a time interval of
length dt (from their current values) according to the differential equations, and recording the value of y at
both the end of this interval (i.e., at time dt) and at the intermediate point dt− e. The abstraction introduces
an auxiliary Boolean variable inc that indicates whether y is increasing or decreasing at the beginning of
the interval [0, dt].

In addition to the abstracted plant, Figure 4 contains an observer module called deadzoneMonitor.
This module detects deadzones, that is, situations during which the input changes, but the output does
not. If this behavior is observed, then the deadzoneMonitor module sets the flag variable to true.
Composing this observer with the system module lets us check for deadzone behavior in the model.

Every state transition of the full system monitor of Figure 4 consists of the following three steps:

• First, the plant module updates its outputs. The plant module computes the lower and upper-
bound for the variable y reached in the time interval [dt− e, dt].

• The asynchronousBus module then reads in the new lower- and upper-bounds for y and non-
deterministically chooses three values from that range. This models asynchronous sampling. The
three values are output by the asynchronousBus module. Note the asynchronousBus module
reacts to the primed forms of the inputs, indicating that it uses the updated values for ylb and yub
(generated in the first step).

• Finally, the mvs module applies the mid-value select computation to the three values it gets the
asynchronousBus. The result is the output variable x.

This shows how we model asynchronous sampling using SAL synchronous composition of base modules.

2.3 Properties and Analysis

The SAL model of the asynchronous system is an infinite-state model and it is not possible to verify it
using exhaustive state space exploration. It can only be analyzed using the SAL bounded model checker for
infinite systems (sal-inf-bmc). All proofs use sal-inf-bmc as a k-induction prover (i.e.. by giving
option -i) to sal-inf-bmc).

In Figure 5, we have briefly enumerated some properties that can be formally checked against the models
system and system monitor. Property p0 states that the output of the mid-value select is not too far
off from the actual value of the signal. This property can be verified for all fault scenarios. It is proved by
invoking sal-inf-bmc as follows

sal-inf-bmc -i -d 1 MVS.sal p0

This calls sal-inf-bmc to check property p0 of a SAL context contained in file MVS.sal using k-
induction. For this property, induction depth of 1 is sufficient (i.e., k=1). This is specified by giving option
-d 1 on the command line.

Properties l1, l2, l3 are listed just because they are sometimes useful as auxiliary lemmas for
proving other properties by k-induction. Lemma l3 is provable in all fault scenarios in the same way as
property p0 (i.e., by induction at depth 1). Lemma l1 is provable by the same method if there are no faults.
Lemma l2 is provable if there is a single fault. Property p2 is false and is included just to debug the model.
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MVS: CONTEXT =
BEGIN
global parameter declarations as in Figure 2
midval(y1: REAL, y2: REAL, y3: REAL): REAL = as in Figure 2

plant: MODULE =
BEGIN
OUTPUT yub, ylb: REAL
LOCAL inc: BOOLEAN

INITIALIZATION
yub = 0; ylb = 0; inc = TRUE;

TRANSITION
[ yub>= -0.8 AND yub <= 0.8 AND inc -->

yub’ = yub + dt * 1 ; ylb’ = yub + (dt - e) * 1;
[]

yub >= -0.8 AND yub <= 0.8 AND NOT(inc) -->
yub’ = yub + dt * (-1) ; ylb’ = yub + (dt - e) * (-1);

[]
((yub <= -0.8 AND yub >= -1) OR yub >= 0.8) AND NOT(inc) -->

yub’ = yub + dt * (-0.1) ; ylb’ = yub + (dt - e) * (-0.1);
inc’ = IF yub’ <= -1 THEN TRUE ELSE FALSE ENDIF ;

[]
((yub >= 0.8 AND yub <= 1) OR yub <= -0.8) AND inc -->

yub’ = yub + dt * (0.1) ; ylb’ = yub + (dt - e) * (0.1) ;
inc’ = IF yub’ >= 1 THEN FALSE ELSE TRUE ENDIF ;

]
END;

mvs: MODULE = as in Figure 2
asynchronousBus: MODULE = as in Figure 2
system: MODULE = asynchronousBus || plant || mvs ;

deadzoneMonitor: MODULE =
BEGIN
INPUT x, yub: REAL
OUTPUT flag: BOOLEAN

INITIALIZATION flag = FALSE
TRANSITION
[ NOT (yub = yub’) --> flag’ = (x = x’)
[] ELSE -->
]

END;

system monitor: MODULE = system || deadzoneMonitor ;

Figure 4. Abstracted SAL Model of the Mid-Value Select Component with Observer
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p0: THEOREM
system monitor |- G((x >= yub AND x - yub <= 0.05) OR

(x <= yub AND yub - x <= 0.05));

l1: THEOREM system monitor |- G ( b1 AND b2 AND b3 );

l2: THEOREM system monitor |- G ( b1 AND b2 AND NOT(b3) );

l3: THEOREM system monitor |- G (-1.02 <= yub AND yub <= 1.02);

p1: THEOREM system monitor |- G ( flag = FALSE ) ;

p2: THEOREM system monitor |- G ( inc ) ;

Figure 5. Correctness Properties for the Mid-Value Select Component

Property p1 says that flag is never true, which means that there is no instance of deadzone behavior.
Changing the value of parameters dt and e influences the validity of this property. When e is small,
then there is no deadzone behavior since a small value of e indicates more “synchronization” between the
three elements. When e is large, then deadzones can be observed even in the absence of faults. Perhaps
surprisingly, the behavior of this model is not affected much by the presence or absence of faults. For
example, if e is set to 0.05 and dt is 0.2 then no deadzone is observed even if one or two sensors are
faulty. In all fault scenarios, property p1 is provable by induction at depth k = 2. On the other hand, for the
same value of d, if e is increased to 0.1, then deadzone can be observed even in the fault-free case.
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3 Draper Phase Locking Protocol

We now discuss our SAL model of the fault-tolerant clock system proposed by William M. Daly, Albert L.
Hopkins, Jr., and John F. McKenna from MIT Draper Labs [1]. This system consists of an array of identical
clock elements that communicate with each other to produce a number of phase-locked signals. If less than
a third of these clock elements are faulty, then all non-faulty outputs are in phase lock. This property holds
even if the faulty components are asymmetric, that is, even in the presence of Byzantine faults.

We have developed several SAL models of this system using the same modeling approach. A previous
model (available at http://www.csl.sri.com/users/bruno/vvfcs.html) encoded the rules
of the protocol at an abstract level. Using this model, we concluded that the protocol can maintain clocks in
phase locks even in the presence of Byzantine faults. In other words, if the clocks are initially in phase lock,
they will remain phase locked, even in the presence of Byzantine fault. However, in this model, the algorithm
did not ensure that phase lock is reached from arbitrary initial configurations. There were scenarios in which
a Byzantine clock caused the good clocks to form two disjoint cliques running in opposite phase.

We have refined this initial SAL model by modeling more precisely the hardware circuit of the clock
elements presented in the paper by Daly et al. [1]. Using this refined model, we can prove that good clocks
do eventually synchronize, from any initial configuration, under the assumption that the faulty clock does
not change more than once at a given time instant. i.e., it is not allowed to change too fast. In other words,
we need to add a test in each clock element that checks to make sure that other clock elements do not send
it different values too frequently.

We now describe the modeling and analysis results in more detail.

3.1 Draper Clock Phase Locking

The Draper clocking system consists of n identical clock elements that communicate with each other to
produce a number of phase-locked clock signals. If n ≥ 3f + 1, then the clocking system can tolerate f
Byzantine faults and maintain the 2f + 1 good clocks in phase-locked state.

Since the clock elements execute asynchronously, the phase-locked condition is defined as follows: two
clocks are phase-locked to within ts time units if state changes in the two clocks occur within ts time units
of each other. The parameter ts is a function of the communication delay between the clock elements and is
assumed to be significantly smaller than the time period of the clocks.

Each individual clock element receives the state of the other clocks. It uses this information to compute
various quorum functions on the clock states. Based on the values of the computed quorum functions, the
clock element possibly triggers one-shot monostable multivibrators, which then set the value of the output
clock via two flip flops.

In this asynchronous system, state changes happen at two different time scales:

• A fast time scale where multiple state changes happen in a relatively short time span (microsteps).

• A slow time scale where no state change occurs until some timer expires (macrostep), which then
initiates a cascade of microsteps.

3.2 Formalization in SAL

We formalize the Draper clocking system by first abstracting time. Each clock element in the original system
has two one-shot multivibrators, called z10 and z11, with time period of 860 ns and 200 ns respectively. It
also has two flip-flops, z12a and z12b, where the value stored in flip-flop z12a is the current state of the
clock. Thus, the state of a clock element consists of

(a) the Boolean values stored in the two flip-flops and

10



N: NATURAL = 3; % number of NON-FAULTY nodes
f: NATURAL = 1; % number of faulty nodes
Node: TYPE = [1 .. N];
tMax: NATURAL = 11; % time period of z10
tMin: NATURAL = 3; % time period of z11
Time: TYPE = [-1 .. tMax];

min(x,y: ARRAY [1..N] OF Time, i:[0..N], a:Time): Time =
IF i = N AND a = tMax THEN 0
ELSIF i = N THEN a
ELSIF (x[i+1] < y[i+1] OR y[i+1] = -1) AND x[i+1] < a AND x[i+1] > 0
THEN min(x, y, i+1, x[i+1])

ELSIF (x[i+1] >= y[i+1] OR x[i+1] = -1) AND y[i+1] < a AND y[i+1] > 0
THEN min(x, y, i+1, y[i+1])

ELSE min(x, y, i+1, a) ENDIF;

sum(x: ARRAY [1..N] OF BOOLEAN, i: [0..N], a: [0..N]): [0..N] =
IF i = N THEN a ELSIF x[i+1] THEN sum(x, i+1, a+1)
ELSE sum(x, i+1, a) ENDIF;

Figure 6. Constants and functions used in the Draper Clock Phase Locking SAL Model

(b) the time remaining before each one-shot will return to its stable state (i.e. before it will output a falling
edge).

If z10 or z11 are in their stable state (i.e., they have not been triggered recently), then we set the time
remaining to -1. Since the time periods are 860 ns and 200 ns, hence, at any instant, the time remaining
before z10 and z11 fire will either be a value between 0 and 860 ns, or it will be −1.

In the formal model of a clock element, we replace the continuous time range by the integer interval
[−1 . . . tMax]. In our experiments, tMax was fixed to 11 time units and the time periods of the two one-
shots was fixed to 11 and 3 respectively. As seen in Figure 7, the state of each clock element in our model
consists of:

• the state of the clock, c0, which is a Boolean-valued variable (stored in flip-flop z12a)

• the Boolean value stored in the flip-flop z12b

• the time remaining in the two one-shots, z10 and z11, which are values in the integer interval
[−1 . . . tMax]

The SAL model is parameterized by N , the number of good clocks, and f , the number of faulty clocks.
Each clock element receives as input the values of two quorum functions qni and qfi, which are computed
based on the values of all the clock elements. We denote by Q(b, a) the quorum function that has value 1 if a
or more of its b inputs are 1, and has value 0 otherwise. Then, qfi is the quorum function Q(N + f, f + 1)
applied to the N +f clocks in the system, and qni is the quorum function Q(N +f, N) of the same N +f
clocks. In other words, qfi is 1 if at least f + 1 of the clocks are 1 and qni is 1 if at least N clocks are 1.

Each clock element also receives another input, namely timeAdvance, which is a value in the range
[0 . . . tMax], that indicates how much time has elapsed since the last state transition.

The Draper clocking system model is obtained by composing the clock element models. There is one
other module, called calculator, that computes the quorum functions and the value of the timeAdvance
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element[i: Node]: MODULE =
BEGIN
OUTPUT z10i, z11i: Time
LOCAL z12b: BOOLEAN
OUTPUT c0: BOOLEAN
INPUT qni, qfi: BOOLEAN
INPUT timeAdvance: Time
INITIALIZATION
z10i = tMax - i;
z11i = -1;
z12b = TRUE

TRANSITION
[
(NOT(qni) AND qni’ AND NOT(qfi) AND qfi’) OR
(qfi AND NOT(qfi’) AND qni AND NOT(qni’)) -->
z10i’ = tMax-1 ;
z11i’ = IF z11i = -1 THEN tMin ELSE z11i ENDIF ;
c0’ = IF z11i = -1 THEN z12b ELSE c0 ENDIF

[]
((NOT(qni) AND qni’) OR (qfi AND NOT(qfi’))) AND
NOT( (qni AND NOT(qni’)) OR (NOT(qfi) AND qfi’)) -->
z10i’ = tMax-1

[]
NOT((NOT(qni) AND qni’) OR (qfi AND NOT(qfi’))) AND
( (qni AND NOT(qni’)) OR (NOT(qfi) AND qfi’)) -->
z11i’ = IF z11i = -1 THEN tMin ELSE z11i ENDIF;
z11i’ = IF z11i = -1 THEN tMin ELSE z11i ENDIF;
c0’ = IF z11i = -1 THEN z12b ELSE c0 ENDIF

[]
See remaining transitions in Figure 8

Figure 7. Model of an Individual Clock Element in SAL (Part 1)
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element[i: Node]: MODULE =
BEGIN
...
TRANSITION
continuing from Figure 7
[]
qni = qni’ AND qfi = qfi’ AND timeAdvance’ > 0 AND
z10i = timeAdvance’ AND NOT(z11i = timeAdvance’) -->
z10i’ = tMax-1;
z11i’ = IF z11i = -1 THEN tMin ELSE z11i - timeAdvance’ ENDIF;
c0’ = IF z11i = -1 THEN z12b ELSE c0 ENDIF

[]
qni = qni’ AND qfi = qfi’ AND timeAdvance’ > 0 AND
z10i = timeAdvance’ AND z11i = timeAdvance’ -->
z10i’ = tMax-1 ;
z11i’ = -1 ;
z12b’ = NOT(qni) ;

[]
qni = qni’ AND qfi = qfi’ AND timeAdvance’ > 0 AND
z11i = timeAdvance’ AND NOT(z10i = timeAdvance’) -->
z10i’ = IF z10i = -1 THEN -1 ELSE z10i - timeAdvance’ ENDIF;
z11i’ = -1 ;
z12b’ = NOT(qni) ;

[]
qni = qni’ AND qfi = qfi’ AND timeAdvance’ > 0 AND
NOT(z11i = timeAdvance’) AND NOT(z10i = timeAdvance’) -->
z10i’ = IF z10i > 0 THEN z10i - timeAdvance’ ELSE -1 ENDIF;
z11i’ = IF z11i > 0 THEN z11i - timeAdvance’ ELSE -1 ENDIF;

[]
qni = qni’ AND qfi = qfi’ AND timeAdvance’ = 0 -->
]

END;

Figure 8. Model of an Individual Clock Element in SAL (Part 2)
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draperClockv8: CONTEXT =
BEGIN
constant and function declarations from Figure 6
calculator: MODULE =
BEGIN
INPUT c: ARRAY [1 .. N] OF BOOLEAN
INPUT z10, z11: ARRAY [1 .. N] OF Time
OUTPUT qnmf, qfp1: ARRAY [1 .. N] of BOOLEAN
OUTPUT timeAdvance: Time
LOCAL smin: [1 .. N]
LOCAL faultc: ARRAY Node OF [0 .. 1]
INITIALIZATION

faultc = [ [i:Node] 0];
qnmf = [ [i:[1..N]] FALSE ];
qfp1 = [ [i:[1..N]] FALSE ];
timeAdvance = 0

DEFINITION smin = sum(c, 0, 0) ;
TRANSITION
[
timeAdvance <= 0 -->

qnmf’ = [ [i:[1..N]] smin+faultc[i] >= N ] ;
qfp1’ = [ [i:[1..N]] smin+faultc[i] >= f+1 ] ;
timeAdvance’ = IF FORALL (i:[1..N]): (qnmf[i] = qnmf’[i] AND

qfp1[i] = qfp1’[i])
THEN min(z10, z11, 0, tMax) ELSE 0 ENDIF

[]
timeAdvance > 0 -->

faultc’ IN {a: ARRAY Node OF [0..1] | TRUE };
qnmf’ = [ [i:[1..N]] smin+faultc’[i] >= N ] ;
qfp1’ = [ [i:[1..N]] smin+faultc’[i] >= f+1 ] ;
timeAdvance’ = IF FORALL (i:[1..N]): (qnmf[i] = qnmf’[i] AND

qfp1[i] = qfp1’[i])
THEN min(z10, z11, 0, tMax) ELSE 0 ENDIF

]
END;

element[i: Node]: MODULE = from Figure 7

continued in Figure 10

Figure 9. Draper Clock Phase Locking in SAL (Part 1)
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draperClockv8: CONTEXT =
BEGIN
first part of model in Figure 9
system: MODULE = calculator ||
( WITH OUTPUT c: ARRAY Node OF BOOLEAN

WITH INPUT qnmf: ARRAY Node OF BOOLEAN
WITH INPUT qfp1: ARRAY Node OF BOOLEAN
WITH OUTPUT z10: ARRAY Node OF Time
WITH OUTPUT z11: ARRAY Node OF Time
(|| (i: Node): RENAME c0 TO c[i], qni TO qnmf[i],

qfi TO qfp1[i], z10i TO z10[i],
z11i TO z11[i]
IN element[i] ) ) ;

monitor: MODULE =
BEGIN
INPUT c: ARRAY Node OF BOOLEAN
INPUT timeAdvance: Time
OUTPUT flag: BOOLEAN
INITIALIZATION flag = FALSE
TRANSITION
[
timeAdvance’ > 0 AND FORALL (i:Node): (c[i] = c[1]) -->

flag’ = TRUE
[]
timeAdvance’ > 0 AND EXISTS (i:Node): NOT(c[i] = c[1]) -->

flag’ = FALSE
[]
ELSE -->
]

END;

system monitor: MODULE = system || monitor ;

See properties in Figure 11
END

Figure 10. Draper Clock Phase Locking in SAL (Part 2)
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variable. Thus, the calculator produces the inputs needed by each clock element. The calculator
module receives the values of all (non-faulty) clock elements as input and the time remaining in the one-
shots of all the clock elements. A key feature of this model is that we do not have a module instance for the
faulty clock. We assume exactly one faulty clock in the SAL model, but the model can be easily extended
so that it has f faulty clocks.

The calculator models the Byzantine nature of the faulty clock — each of the good clock elements
can see a different value for the faulty clock. The calculator module works as follows:

• It first computes the values of the quorum function for each of the non-faulty clock elements.

• If there is leading or falling edge on any of the quorum values, calculator sets timeAdvance to
zero. Otherwise, it sets timeAdvance to the minimum time remaining on any of the one-shots. The
min function in Figure 6 is used for this purpose. Thus, the calculator ensures that all microsteps
are “completed” before the next “macrostep” is initiated.

• The Byzantine-faulty clock is allowed to non-deterministically pick the N clock values it wishes to
show to the N non-faulty clocks, but only when timeAdvance is positive. This essentially disallows
the Byzantine faulty clock from changing its value indiscriminately – and an arbitrary number of times
– in the same abstract time instant.

This last point is crucial for proving correctness of the Draper clocking system.

3.3 Modeling Decisions

In the actual Draper clocking system, when one clock changes state, all the other clocks will asynchronously
observe this event. They may not all see the change at the same time instant, but they will definitely see
it within a bounded amount of time. Modeling this behavior exactly in SAL is possible, but leads to very
complex formal models — one clock changes state and some clock does not “observe” the change in the
same SAL transition. In order to guarantee that every clock does observe all such clock change events, one
would have to maintain a stack of pending events.

In our formalization, we model events that occur within some bounded time of each other (microsteps)
occurring in the same state transition. Thus, in our model, when a clock changes state, all the clocks observe
this change and respond to it. This way we do not have to store a stack of pending events. As a result, we
are potentially not capturing all possible behaviors of the concrete system. However, we believe that the we
are not missing too many behaviors of the concrete system, since the order in which events are processed by
different clock elements (order of the microsteps) does not seem to matter for determining the final state of
the system.

Finally, the paper by Daly et al. [1] does not provide complete details of the clocking circuit and some
aspects are ambiguous. For example, it does not fully specify the behavior of the one-shot multivibrators and
the flip-flops. In such cases of ambiguity, we made certain assumptions while building the formal model.

3.4 Verification results

Figure 11 lists some properties of the clocking system. Of particular interest is property p9 which states
that eventually the clocks are synchronized. For the above SAL model, the SAL symbolic model checker,
sal-smc, was able to analyze all the properties. All the properties listed are true, except p3 and p4 (which
were used to debug the model).

An important observation coming from our verification effort was that it is important to limit the Byzan-
tine faulty clock so that it can not send different clock values to the same clock very frequently. Without this
assumption, it is not possible to prove that the system will always eventually reach a state of phase locking.
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p1: LEMMA
system |- F( G ( (FORALL (i:[1..N]): c[i] = c[1])) );

p2: LEMMA
system |- F ( ((FORALL (i:[1..N]): c[i] = c[1])) );

p3: LEMMA
system |- G ( timeAdvance = 0 );

p4: LEMMA
system |- G( EXISTS (i:[1..N]): z11[i] < tMin );

p5: LEMMA
system |- G( EXISTS (i:[1..N]): z10[i] > tMin );

p6: LEMMA
system |- G( EXISTS (i:[1..N]):

NOT(z10[i] = -1) OR NOT(z11[i] = -1));

p7: LEMMA
system |- F ( ((FORALL (i:[1..N]): c[i] = c[1])) );

p8: LEMMA
system monitor |- F(G ( flag ));

p9: LEMMA
system |- F ( G ( ((FORALL (i:[1..N]): c[i] = c[1])) ) );

p10: LEMMA
system |- G(F(timeAdvance > 0));

p11: LEMMA
system |- G(F(EXISTS (i:[1..N]):

(NOT(z10[i] = -1) OR NOT(z11[i] = -1))));

p12: LEMMA
system |- G ((FORALL (i:[1..N]): c[i] = c[1]) =>

G ( (FORALL (i:[1..N]): c[i] = c[1])) );

Figure 11. Correctness Properties for the SAL model of the Draper Clock Phase Locking System
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Another option would be to not limit the Byzantine faulty clock, but include an extra check in each clock
element that ignores inputs from a clock if they arrive too frequently. Thus, each clock element is required
to perform some form of faulty clock detection. We believe it is not possible to achieve clock synchro-
nization using purely quorum sensing and without any form of fault detection/isolation. Such monitoring
mechanisms are employed in the self-stabilizing Byzantine-fault-tolerant clock synchronization protocols
proposed by Malekpour [3, 4]. Note that the clocking system described by Daly et al. [1] does not include
any provision for such fault isolation.

4 Conclusion

We have presented two possible methods for modeling and verifying asynchronous fault-tolerant systems
using the SAL tool chains.

Our first case study is an asynchronous mid-value select module, which is part of a larger fault-tolerant,
asynchronous system. In such systems, different functional modules are driven by local clocks that are not
synchronized. They sample input at slightly different points in time, thus possibly producing different out-
put, which have to be combined and reconciled in some way to drive actuators. The mid-value select module
we have described is a common approach for combining three asynchronously produced input into a single
output, while providing support for fault tolerance. For analyzing such a module in a larger context (that
may involve continuous dynamics), we aim to represent the mid-value select mechanism in Hybrid SAL. We
have proposed an abstraction approach that approximates asynchronous sampling by the non-deterministic
selection of state values in an interval. This approach can be automated by modifying the timed-relational
abstraction algorithm implemented by Hybrid SAL, so that it considers time intervals rather than time points.

Our second case study is the Byzantine fault-tolerant clock system presented in [1]. We modeled this
system by using a discrete-time approximation. The resulting model is a standard SAL model (with no
continuous dynamics), that has a finite state space. As a result, the system can be automatically verified
using a classical BDD-based model checker. One key property discovered in this case study was the need to
restrict the fault model so that the value of Byzantine clocks do not change too fast. Under this assumption,
we have proved all key properties of the protocol: phase-locked synchronization is eventually reached from
an arbitrary initial configuration of the clocks, and the non-faulty clocks remain in phase lock from then on.
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