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MARS SCIENCE LABORATORY ENTRY, DESCENT, AND
LANDING TRAJECTORY AND ATMOSPHERE RECONSTRUCTION

Christopher D. Karlgaard∗, Prasad Kutty†,
Mark Schoenenberger‡, Jeremy Shidner§

On August 5th 2012, The Mars Science Laboratory entry vehicle successfully entered Mars’
atmosphere and landed the Curiosity rover on its surface. A Kalman filter approach has
been implemented to reconstruct the entry, descent, and landing trajectory based on all avail-
able data. The data sources considered in the Kalman filtering approach include the inertial
measurement unit accelerations and angular rates, the terrain descent sensor, the measured
landing site, orbit determination solutions for the initial conditions, and a new set of instru-
mentation for planetary entry reconstruction consisting of forebody pressure sensors, known
as the Mars Entry Atmospheric Data System. These pressure measurements are unique for
planetary entry, descent, and landing reconstruction as they enable a reconstruction of the
freestream atmospheric conditions without any prior assumptions being made on the vehicle
aerodynamics. Moreover, the processing of these pressure measurements in the Kalman filter
approach enables the identification of atmospheric winds, which has not been accomplished
in past planetary entry reconstructions. This separation of atmosphere and aerodynamics
allows for aerodynamic model reconciliation and uncertainty quantification, which directly
impacts future missions. This paper describes the mathematical formulation of the Kalman
filtering approach, a summary of data sources and preprocessing activities, and results of the
reconstruction.

INTRODUCTION
On August 5th 2012, the Mars Science Laboratory (MSL) entry vehicle (EV) successfully entered the Mars

atmosphere and landed the Curiosity rover safely on the surface of the planet in Gale crater. MSL carried
with it a unique instrumentation package designed to measure the aerodynamic and aerothermal environments
during atmospheric entry. This instrumentation package is known as the MSL Entry, Descent, and Landing
Instrumentation (MEDLI),1 which consists of two major subsystems, the Mars Entry Atmospheric Data Sys-
tem (MEADS) and the MEDLI Integrated Sensor Plugs (MISP). The MEADS consists of seven pressure
transducers connected to flush orifices in the heat shield forebody to measure the pressure distribution. The
MISP devices are a system of thermocouple and recession sensors that provide aerothermal measurements of
the heat shield performance. The MEDLI sensors provide key measurements that can be used for trajectory
reconstruction and engineering validation of aerodynamic, atmospheric, and thermal protection system mod-
els in addition to Earth-based systems testing procedures. Such validation directly benefits future planetary
entry, descent, and landing (EDL) by reducing uncertainties associated with these models and procedures.

The basic MEADS science objectives are to reconstruct atmospheric data variables from pressure mea-
surements alone when the free stream dynamic pressure is above 850 Pa. In particular, the objectives are
to estimate the angles of attack and sideslip to within 0.5 deg and the dynamic pressure to within 2%, in a
3σ sense. Secondary objectives are to estimate the Mach number, freestream density and atmospheric winds
from the MEADS pressure measurements, when combined with the on-board Inertial Measurement Unit
(IMU) data. These measurements serve to enhance the MSL trajectory reconstruction and performance anal-
ysis, and enable a separation of the aerodynamics from the atmosphere, which prior to MEADS has not been
achievable for Mars EDL reconstruction. The concept is an implementation of the Flush Air Data System
(FADS). The FADS concept was conceived and developed specifically to provide research quality air data
during the hypersonic flight regime where the classical Pitot static probe could not survive.

The MEDLI/MEADS project installed seven pressure ports through the MSL PICA heat shield at strate-
gic locations to acquire heat shield surface pressure data during the atmospheric entry phase at Mars. The
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(a) MEDLI/MEADS Pressure Port Locations (b) MEDLI/MEADS Tube Configuration

Figure 1. MEDLI/MEADS Geometry

MEADS pressure ports are located on the MSL heat shield as shown in Figure 1(a). The PICA tile layout is
also shown in this figure along with the predicted flow streamlines over the surface of the Thermal Protection
System (TPS). All of the pressure ports are located a minimum of 3-inches from the PICA tile seams. At each
of the pressure port locations there is an independent pressure measurement system installed on the internal
surface of the heat shield support structure.

Pressure ports P1 and P2 are located in the stagnation region to provide a nearly direct measurement of
the total pressure in the high Mach regime. Ports P3, P4, and P5 lie on the spherical cap and are placed in
order to take advantage of the simple geometry for angle-of-attack measurements. Additionally, P4, located
at the geometric center, provides a nearly direct total pressure measurement at the low Mach regime prior to
parachute deployment. The final two ports are located in the horizontal plane of symmetry, approximately
1.0 meters off of the centerline. The ports P6 and P7 provide the off-axis measurements needed to estimate
the angle of sideslip. The pressure ports are connected to pressure transducers via a tube system illustrated in
Figure 1(b). The measured pressures are sampled at a rate of 8 Hz during entry.

The MEADS trajectory reconstruction approach relies on four separate reconstruction methods. The first
three of these techniques are semi-independent methods that utilize different portions of the entire data set.
These techniques include a pure inertial reconstruction, an aerodatabase reconstruction, and a MEADS pres-
sure reconstruction. The fourth reconstruction is a combined approach in which all available data are pro-
cessed together using a Kalman filter technique.

The pure inertial reconstruction is based on a direct numerical integration of the measured accelerations
and angular rates, using initial conditions obtained from orbit determination. An assumed atmosphere profile
based on mesoscale models can be utilized to produce atmospheric-relative quantities such as Mach number
and dynamic pressure.

The aerodatabase reconstruction uses the sensed accelerations and the assumed vehicle aerodynamic database
to produce estimates of the freestream atmospheric profile and the angles of attack and sideslip. The method
first estimates density from the axial acceleration and axial force coefficient, and then ratios of normal to ax-
ial force coefficients and side to axial force coefficients to produce estimates of angle of attack and sideslip,
respectively.

The first two of the semi-independent reconstructions have long been used for planetary entry, descent,
and landing reconstructions. The third method, using the MEADS pressures, is new for this application. The
MEADS pressure reconstruction utilizes a nonlinear least-squares algorithm to produce estimates of angle
of attack, angle of sideslip, dynamic pressure, and static pressure. The least-squares algorithm includes a
novel IMU-aiding approach in which the IMU velocity is used to improve the estimate of Mach number.
Atmospheric density is computed from the dynamic pressure estimate and the IMU velocity, assuming no
winds. The MEADS dynamic pressure and IMU acceleration and angular rate measurements can also be
combined to produce estimates of the vehicle aerodynamic forces and moments.

Results from these semi-independent reconstructions are documented in Ref. 2. The overall good data
quality and general agreement between the three reconstructions supports a combined reconstruction involv-
ing Kalman filtering techniques to optimally blend all available data together into a single trajectory and
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Figure 2. MSL Entry, Descent, and Landing

atmosphere estimate, which is the topic of this paper.
This paper provides an overview of the Kalman filter approach for MSL/MEADS trajectory reconstruction

and the results of the reconstruction. An overview of the raw data is provided, along with an assessment of
data quality. Techniques used to preprocess the data are described, which includes editing out suspect data
and smoothing to reduce noise. The MISP sensors and associated modeling and reconstruction techniques
are documented in Ref. 3 and are not discussed further in this paper.

MARS SCIENCE LABORATORY ENTRY, DESCENT, AND LANDING OVERVIEW
Figure 2 shows a timeline of the different EDL events.4 EDL consists of six major segments: Exo-

Atmospheric, Entry, Parachute Descent, Powered Descent, Sky Crane, and Fly Away.5 The Exo-Atmospheric
segment begins once the cruise stage separation command is sent. Once the cruise stage separates, Guidance,
Navigation, and Control (GNC) is enabled. Once enabled, the entry body is despun and turned to its entry
attitude. Then, the two 75-kg Cruise Balance Masses (CBMs) are jettisoned to enable aerodynamic lift.

The Entry segment starts with the vehicle at the Entry Interface Point (EIP) defined at 3522.2 km from
the center of Mars, approximately 540 seconds after cruise stage separation. During the Entry segment, the
vehicle goes through peak heating and peak deceleration, the Reaction Control System (RCS) controls the
lift vector to achieve the desired down-range and cross-range target. Just prior to parachute deployment,
six 25-kg Entry Balance Masses (EBMs) are jettisoned to eliminate lift and the vehicle rolls to point the
Terminal Descent Sensor (TDS) to the ground. This maneuver is called the Straighten Up and Fly Right
(SUFR) maneuver.

The Parachute descent segment starts with the parachute deployment triggered once the vehicle reached
Mach 1.7. Once the vehicle achieves a speed of Mach 0.7, the heat shield is jettisoned and the TDS starts
acquiring the ground. Note that the MEDLI instruments are powered off 10 seconds prior to heat shield
jettison. The command to jettison the backshell and the parachute is issued at an altitude of 1.6 km and at a
velocity of approximately 79 m/s. Just before backshell separation, the Mars Landing Engines (MLEs) are
primed in preparation for the start of the powered descent segment.

The Powered Descent segment begins at backshell separation. During powered descent, eight indepen-
dently throttleable MLEs are actuated, initially to execute a divert maneuver for backshell avoidance which
brings the vehicle to vertical flight at a descent rate of 32 m/s. Once vertical flight is achieved, a descent
at constant velocity to adjust for altitude error at backshell separation starts. This constant velocity phase is
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Figure 3. NewSTEP Flow Diagram

followed by a constant deceleration phase, which reducs the vehicle’s speed to 0.75 m/s in preparation for the
sky crane segment. At this time, the four inboard MLEs are throttled down to near shutdown (1%) while the
four remaining MLEs were throttled at 50%.

The Sky Crane segment starts following issuance of the rover separation command, which occurrs at an
altitude of approximately 18.6 m. The rover is lowered to 7.5 m below the descent stage. Then, the descent
stage continues to descend until post-touchdown is detected.

The Fly Away segment starts after touchdown is sensed. Once the descent stage stops its vertical motion,
the bridle and electrical umbilical devices are cut and two of the MLE engines are throttled up to 100% while
the other two engines are at slightly less than 100%. This causes the descent stage to pitch to 45 degrees.
Once the turn maneuver is completed, all four engines are throttled up to 100%. Constant thrust is applied to
ensure the descent stage impacts the surface at least 300 m from the landing point.

TRAJECTORY AND ATMOSPHERE RECONSTRUCTION APPROACH
Overview

The Kalman filter based trajectory reconstruction is calculated using a statistical trajectory estimation pro-
gram known as NewSTEP. This trajectory estimation program is a Matlab-based Iterative Extended Kalman
Filter (IEKF) code that computes optimal 6-DOF trajectory estimates based on all available measurement
data along with uncertainty estimates. This code is a generalization of the Statistical Trajectory Estimation
Program (STEP)7 developed by NASA/LaRC and used extensively in the 1960s-1980s on a wide variety of
launch vehicle and entry vehicle flight projects. The NewSTEP code borrows heavily from the STEP formu-
lation, but includes several enhancements to the algorithms and implementation, such as the addition of the
iterative Kalman filter capability and new measurement types.

A flowchart illustrating the reconstruction data processing scheme implemented in NewSTEP is shown in
Fig. 3. The inputs to the reconstruction method consist of initial conditions, inertial measurement data in
the form of linear accelerations and angular rates, and various observed quantities such as radar and air data
measurements. Additionally, uncertainties on all these input data sources must be provided for the proper
weighting to be assigned to the data in the filtering algorithm. It is important that the input uncertainties be
realistic in order to avoid improper weighting: measurement data with uncertainties set erroneously low can
introduce non-physical dynamics because the filter will essentially track the noise. These inputs are shown
with the dashed gray boxes in Fig. 3. Pre-processing is conducted to perform any coordinate transformations
that may be necessary, and to improve data quality by reducing noise, eliminating systematic errors, and
editing potentially bad data that sometimes can arise. Note that the data pre-processing should be done care-
fully to avoid introducing artificial errors such as smoothing artifacts, and that the input uncertainties can be
adjusted to accurately reflect improvements in data quality. The pre-processing and the input transformations
are shown with the dashed black and solid gray boxes in Fig. 3, respectively.
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The core data processing algorithm consists of a forward and backward IEKF that together, when merged
using the Fraser-Potter smoothing algorithm,12 form optimal state estimates based on all available data. The
forward and backward filter algorithms are shown in the black boxes in Fig. 3. The Kalman filter algorithm
is reviewed in more detail in the next section, but at a high level it is a predictor/corrector algorithm in
which state predictions are computed from numerical integration of the rigid body equations of motion, and
corrections to the estimate are computed from a weighted least-squares fit of state to the observed data. The
forward filter processes the data in this manner starting from the initial time, propagating through all the
observed data. Since the end point of the forward pass has benefited from all available measurement data,
but the earlier points in the trajectory have benefited from data recorded only up to that time, a backward
pass is implemented that propagates the state estimate back to the initial time point. These two passes are
fused using the Fraser-Potter smoothing algorithm, so that each data point in the BET is estimated from all
available data.

Lastly, output transformations are conducted to generate estimates of quantities of interest, such as Mach
number and dynamic pressure, which are not internal state variables estimated in the Kalman filter. These
transformations include uncertainty transformations that map the internal state uncertainties into output un-
certainties. The end result of this process is the BET, shown in the black dash-dot box, which includes vehicle
trajectory estimates along with uncertainties.

Algorithm
The Kalman filter is a recursive weighted least-squares estimation procedure that optimally blends sensor

data and mathematical models to produce minimum variance estimates of the system state. Let the system
dynamics be represented by a mixed continuous-discrete nonlinear model of the form

ẋ = f (x,u,η, t) (1)
y = g (x,u, ξ, t) (2)

where x is the filter state with continuous dynamics, u is a deterministic input, η is a stochastic input to the
equations of motion (process noise), y is the measurement that is available at discrete time intervals, and ξ is
the measurement noise.

Let the quantities x̂k−1 and P̂ k−1 be the state estimate and state estimate error covariance matrix at time
tk−1, respectively, and let x̄k and P̄ k be the predicted state and covariance at time tk, computed from
numerical integration of the continuous process dynamics and the linear covariance propagation equation13

Ṗ = A(t)P (t) + P (t)A(t)T +B(t)Q(t)B(t)T (3)

where A(t) is the linearization of the system dynamics with respect to the state, B(t) is the linearization of
the system dynamics with respect to the process noise inputs, and Q(t) is the process noise spectral density.

Then, the measurement yk at time tk is processed according to13

x̂k,i+1 = x̄k +Kk,i [yk − g (x̂k,i,uk, ξk, tk)−Ck,i · (x̄k − x̂k,i)] (4)

where i denotes the iteration index and C is the linearization of the measurement model with respect to the
state. The quantity Kk,i is the Kalman gain matrix, given by13

Kk,i = P̄ kC
T
k,i

[
Ck,iP̄ kC

T
k,i +Dk,iRkD

T
k,i

]
(5)

where Rk is the measurement noise covariance matrix and D is the linearization of the measurement model
with respect to the measurement noise.

The filtering equations listed above are iterated until convergence (or until reaching a prescribed iteration
limit), leading to the state estimate that follows from the nonlinear measurement update. The covariance of
the state estimate is computed from

P̂ k = [I −KkCk] P̄ k [I −KkCk]
T
+KkRkK

T
k (6)

where I is the identity matrix of appropriate dimension.
After processing the IEKF forward and backward through all the available measurement data, the estimates

are combined using the Fraser-Potter smoothing algorithm, given by12

P̂ k =
[
P̂

−1

fk
+ P̄

−1
bk

]−1

(7)

x̂k = P̂ k

[
P̂

−1

fk
x̂fk + P̄

−1
fk

x̄bk

]
(8)
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where x̂fk and P̂ fk are the forward filtered state and covariance estimates, x̄bk and P̄ bk are the backward
predicted state and covariance estimates, and x̂k and P̂ k are the smoothed state and covariance estimates.

Equations of Motion
The filter state variables used in this formulation are

x =
[
r θ ϕ u v w e0 e1 e2 e3 uw vw ww p ρ

]T
(9)

where r is the radius of the vehicle from the center of the planet, θ is the longitude, ϕ is the declination,
u, v, w are the inertial velocity components in a topocentric frame (defined by the z-axis direction along the
radius vector, toward the center of the planet, and the y-axis to the east) ei are the Euler parameters describing
the attitude of the vehicle with respect to the topodetic frame (north-east-down). The quantities uw, vw and
ww are the wind components in the topodetic frame, and p and ρ are the atmospheric pressure and density,
respectively.

The state dynamics are modeled with the nonlinear system of differential equations given by8

ṙ = −w (10)

ϕ̇ =
u

r
(11)

θ̇ =
v

r cosϕ
− Ω (12) u̇

v̇
ẇ

 = GT

 ax
ay
az

+


(
uw − v2 tanϕ

)
/r −

(
3µJ2/2r

4
)
sin (2ϕ)

(uv tanϕ+ vw) /r

−
(
u2 + v2

)
/r + µ/r2 −

(
3µJ2/2r

4
) (

2− 3 cos2 ϕ
)
 (13)


ė0
ė1
ė2
ė3

 =
1

2


−e1 −e2 −e3
e0 −e3 e2
e3 e0 −e1
−e2 e1 e0


 ωx

ωy

ωz

− 1

r
G

 v
−u

−v tanϕ


 (14)

ṗ =
µρw

r2
(15)

ρ̇ =
µρ2w

r2p
(16)

u̇w = 0 (17)
v̇w = 0 (18)
ẇw = 0 (19)

where µ is the planetary gravitational parameter, J2 is the planetary oblateness coefficient, Ω is the angular
rate of the planet.

The matrix G is the transformation from the topocentric frame to the body frame, given by G = GdGϕ,
where

Gd =

 e20 + e21 − e22 − e23 2 (e1e2 + e0e3) 2 (e1e3 − e0e2)
2 (e1e2 − e0e3) e20 − e21 + e22 − e23 2 (e0e1 + e2e3)
2 (e1e3 + e0e2) 2 (e2e3 − e0e1) e20 − e21 − e22 + e23

 (20)

Gϕ =

 cos (ϕ− ϕgd) 0 sin (ϕ− ϕgd)
0 1 0

− sin (ϕ− ϕgd) 0 cos (ϕ− ϕgd)

 (21)

The body axis sensed accelerations are transformed from the IMU location according to the relations ax
ay
az

 =

 ãx
ãy
ãz

−

 −
(
ω2
y + ω2

z

)
(ωxωy − ω̇z) (ωxωz + ω̇y)

(ωxωy + ω̇z) −
(
ω2
x + ω2

z

)
(ωyωz − ω̇x)

(ωxωz − ω̇y) (ωyωz + ω̇x) −
(
ω2
x + ω2

y

)
 xm

ym
zm

 (22)

where ãx, ãy , and ãz are the sensed accelerations at the IMU location, xm, ym and zm are the position of
the IMU with respect to the center of mass in the body frame, and ωx, ωy and ωz are the body axis sensed
angular velocity components.
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Additive process noise terms are included on the acceleration and angular rate measurements to account
for sensor errors. Process noise terms are also included on the atmospheric winds, pressure, and density to
account for model uncertainties. Thus, the stochastic wind model is a random walk.

An important feature of the Kalman filter approach is that the wind components are treated as state vari-
ables, and as such can be estimated based on the various measurement data, without having to deal with the
singularities that arise in application of the method proposed in Reference 14.

Output Transformations
Auxiliary calculations are performed in order to transform the internal filter state into desired output quan-

tities. For example, the angle of attack is not an internal filter state but it is a desired output from the trajectory
reconstruction process. A mapping is utilized to transform the internal state variable uncertainties in the form
of the state covariance matrix into the output variables, so that uncertainty bounds on these output parameters
can be provided. The uncertainty of every derived quantity can be estimated by transforming the internal
filter state covariance into the output coordinates. This mapping can be made by using the central difference
transform, which provides second-order accuracy and does not require the use of any partial derivatives. The
transformation is given in Ref. 15.

MEASUREMENT SENSOR MODELING AND PREPROCESSING
The following sections provide details of the various sensor models and data that were acquired for trajec-

tory and atmosphere reconstruction. These data consist of orbit determination solutions for initial conditions,
IMU accelerations and rates, MEADS pressure sensors, on-board radar, and the measured landing site. Also,
atmospheric models required to produce data outside the range of the MEADS measurements are described.
All times are referenced to a t− t0 where t0 = 397501174.997338 s in Spacecraft Clock Time (SCLK).

Inertial Measurement Unit Data
Data from the onboard IMU, consisting of ∆V s and ∆θs were acquired at a rate of 200 Hz. These

velocity and attitude increments were converted into acceleration and angular rate by dividing by the time
step for each measurement. A Tustin bilinear filter was used to smooth the data for use in the reconstruction
of aerodynamics. Unfiltered data was integrated in the Kalman filter equations of motion. The filtered
and unfiltered accelerations are shown in Fig. 4 and the angular rate data are shown in Fig. 5. Note that
considerable noise due to structural vibrations occur during the bank reversal maneuvers where the RCS
jets are active. The bias, scale factor, misalignment, noise, and quantization for both the gyroscopes and
the accelerometers are combined together as consider parameters for the weighting in the reconstruction
algorithm. Further information on the IMU specifications can be found in Ref. 16.
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Figure 4. IMU Accelerations
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Figure 5. IMU Angular Rates

The initial conditions for the integration are based on the orbit determination (OD) number 230, which
provides the position and velocity of the vehicle in the Earth Mean Equator of J2000 (EMEJ2000) coordinate
system at a time of approximately 550 seconds prior to entry interface (t0-10 s).17 The attitude initialization
was based on the on-board navigation filter that performed a star tracker alignment prior to cruise stage
separation. This attitude solution was then propagated to the same initial time as the OD230 solution by
numerical integration.

Mars Entry Atmospheric Data System
A CFD-based table lookup model was developed for analysis of the MSL air data system. This CFD

database is based on supersonic and hypersonic regime pressure distributions from thin–layer Navier–Stokes
solutions generated using the Langley Aerothermal Upwind Relaxation Algorithm (LAURA).18, 19 The re-
laxation of vibrational temperature of the CO2 molecule is simulated using the Camac20 model. Forebody
solutions were obtained using a 7 block singularity-free grid.

The supplied CFD database was converted from absolute pressure to pressure coefficient in order to allow
the pressure distribution to scale with different trajectories and to enable estimation of freestream atmospheric
properties such as the static pressure. The data was re–interpolated from the 7 block grid to a single-zone
grid of clock and cone angles. This alteration simplifies the interpolation of surface conditions without
complications of search routines required to handle multiple zones. Note that each CFD grid point consists
of a full surface pressure distribution solution, with 37 clock angles in uniform 5 deg increments and 61 cone
angles with non-uniform increments. These grid points can be interpolated as needed to provide estimates of
the pressure distribution at any point on the aeroshell.

Note that the pressure model utilized for atmospheric state estimation is based entirely on these tabulated
CFD solutions. The CFD modeling approach was validated in air in wind tunnel experiments at Mach num-
bers of 2.5, 3.5, 4.5, and 10. The residuals between computed and measured pressure distribution were
within the measurement accuracy of the wind tunnel, which provides confidence in the modeling approach
for MEADS.

An uncertainty model of the CFD pressure distribution was developed to consider various error sources,
including basic wind tunnel to CFD differences, errors inherent to the wind tunnel data, deformation, OML
change, grid refinement, ablation, protuberances, and port location uncertainties. Pressure measurement sys-
tem error models consist of detailed transducer characterizations from thermal vacuum chamber calibrations,
thermocouple measurement errors such that an inaccurate temperature is used in the calibration database,
system noise and quantization, time tag errors and sampling delays, pressure path leaks, pneumatic lag, and
thermal transpiration.11 These error models are combined together to produce measurement uncertainty in-
puts required by the reconstruction algorithm.
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Figure 6. MEADS Ports 1 and 2
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Figure 7. MEADS Ports 3, 4, and 5

The MEADS pressure measurement data were acquired at an 8 Hz sample rate during EDL. For EDL
reconstruction, the data were first converted into engineering units, after which an in-flight zero was applied
to correct for transducer thermal drift. Subsequently, outlying data points due to the entry ballast mass
ejections were edited out and filled in with a first-order polynomial fit, and a 1 Hz optimal Fourier filter was
applied to smooth the data. The pressures were then interpolated to the Port 4 time tag in order to generate
pressure samples at a common 8 Hz rate. The resulting pressures are shown in Figures 6–8. These figures
illustrate that the sensor readings during EDL are reasonable, and that all transducers are functional. Data
quality during EDL was good for the majority of the trajectory. Some noise was introduced during pyro events
associated with mass ejections during the reorientation to zero angle of attack in preparation for parachute
deployment. Vibrations induced by the parachute mortar fire event were large, which further reduced the
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Figure 8. MEADS Ports 6 and 7

MEADS data quality. This vibrational noise, coupled with the rapid decrease in dynamic pressure following
parachute deployment, limited the last valid MEADS measurement to the instant prior to parachute mortar
fire. Other aspects of MEDLI hardware performance during EDL are described in Ref. 21.

Systematic errors are estimated in the MEADS measurements by a batch least-squares regression of post-
fit residuals using a second-order error model, consisting of bias, scale factor, and nonlinearity errors. These
error estimates are updated through a global iteration process of the Kalman filter.

Terrain Descent Sensor Data
After the MSL heat shield is jettisoned, the Terrain Descent Sensor (TDS) is used to acquire ground range

position and relative velocity measurements used by the MSL Navigation Filter.16 The system consists of six
pencil beam antennas located underneath the Curiosity Rover. The TDS system provides slant-range position
measurements along the line of sight of the antenna at a rate of 20 Hz. Each frame of data corresponds to a
single antenna measurement such that measurements from all six antennas are received individually by the
Navigation Filter. In order to match the measurement to the corresponding antenna, a beam identification
number is provided to the Navigation Filter along with each measurement.

The TDS model used by NewSTEP relies on a digital elevation model (DEM) implemented. Multiple
DEM layers are available for use, each having different levels of resolution. At higher altitudes, the coarser
resolution DEMs are used because vehicle oscillations under chutes can cause the antenna beams to swing
outside of the range of the higher resolution DEMs. As the vehicle approaches the planet surface, the finer
resolution DEMs can be used to provide a higher fidelity TDS measurement. Given the position and orienta-
tion vector of the current beam in the Mars-fixed reference frame, the model calls the appropriate resolution
DEM to generate a slant-range measurement of the beam intercept location.

The TDS uncertainty model includes noise, bias, scale factor, and misalignment uncertainties that are
combined together for a total instrument accuracy. In addition, a 3σ uncertainty of 100 m in the DEM model
was assumed. The TDS data and uncertainties for beams 1-3 are shown in Fig. 9 and the same data for beams
4-6 are shown in Fig. 10.

Atmosphere Model
Atmospheric models along the MSL EDL trajectory were generated from preflight mesoscale models,

tuned to match surface pressure measurements of 695 Pa from Curiosity, which were obtained after landing.
The modeled atmosphere is an average of two such mesoscale models, namely the the Mars Regional Atmo-
spheric Modeling System (MRAMS) and Mars Mesoscale Model 5 (MMM5).22 These models provide data
up to 50 km altitude, which can be extrapolated to higher altitudes as needed. This combined model was
queried along the trajectory at a rate of 8 Hz to generate pressure, density, and temperature profiles. These
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Figure 9. TDS Beams 1, 2, and 3
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Figure 10. TDS Beams 4, 5, and 6

models produce estimates of the uncertainty in density, but do not do so for pressure, temperature, or winds.
For the filter weighting, it is assumed that the pressure uncertainty is the same percentage as the density un-
certainty. Temperature is not used as an independent observation since the filtering approach internally makes
use of the equation of state. Winds are assumed to be zero mean along the trajectory with 1σ uncertainties of
10 m/s in north and east directions and 2.5 m/s in the down direction.

Landing Site
MSL’s landing site location was determined based on MARDI descent images and a HiRISE-derived map

of the surface. The landing site location is processed as a position measurement in the Kalman filter recon-
struction at the time of touchdown. The uncertainty in the measurement is assumed to be 50 m in a 3σ sense.
The measured landing position is given in Table 3.
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Figure 11. Position Estimates
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Figure 12. Velocity Estimates

The results of the trajectory reconstruction process are described in this section. Fig. 11 shows the altitude,
latitude, and longitude results along with their associated 1σ uncertainties. Fig. 12 shows the north/east/down
components of the planet-relative velocity and 1σ uncertainties. Similarly, Fig. 13 shows the time history of
the yaw/pitch/roll attitude estimates.

Atmospheric-relative quantities are shown in Figs. 14 and 15. Fig. 14 shows the wind-relative angle of
attack and sideslip reconstructions compared with the planet-relative (no wind) angles. The time scale is
focused on the range from atmospheric interface to parachute deployment. Here, the wind-relative angles
are shown in grey and the planet-relative angles are shown in black. The two angles match fairly well in
the regime of hypersonic flight, which is expected since the wind magnitudes are relatively small compared
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Figure 13. Attitude Estimates
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Figure 14. Angles of Attack and Sideslip Estimates

with the total vehicle velocity. As the vehicle decelerates, the angles start to become more sensitive to winds.
The observability of wind-relative angles is enabled by the MEADS pressure measurements. There is an
apparent wind event near t=670 s, as can be seen from the difference between the wind-relative and planet-
relative angles of attack. There is supporting evidence of such an event from the vehicle response to guidance
commands, which is discussed in more detail in Ref. 23. Wind profiles reconstructed from these data are
shown later in this section.

The estimates of Mach number and dynamic pressure are shown in Fig. 15. These time histories are also
enabled by the MEADS measurements, which provide estimates of the freestream atmosphere, that when
combined with velocity can be used to compute estimates of Mach number and dynamic pressure. The
improvement in uncertainties due to the MEADS measurements in the range of 590 to 780 s can clearly be
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Figure 15. Mach Number and Dynamic Pressure

seen in these figures.
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Figure 16. Atmosphere Estimates

The atmospheric outputs of the reconstruction filter are shown in Figs. 16. Here, the filter outputs are shown
in black and the mesoscale model data is shown in grey for comparison. While the MEADS measurements
are being processed, the filter is able to identify the atmospheric conditions. The filter tracks the mesoscale
model inputs when the MEADS measurements are not available.

Estimates of atmospheric winds in the north/east/down frame relative to the planet surface are shown in
Fig. 17. These result suggest that a north wind component (which is essentially a cross wind) could be the
cause of the guidance disturbance near t=670 s.23 These results also suggest a tail wind present as the vehicle
neared the chute deployment condition.

The reconstructed axial and normal aerodynamic force coefficients are shown in Fig. 18. These plots

14



600 700 800 900 1000
−20

−10

0

10

20

30

40

w
n
 [m

/s
]

Time [s]

(a) North Wind

600 700 800 900 1000
−10

−5

0

5

10

15

20

w
e [m

/s
]

Time [s]

(b) East Wind

600 700 800 900 1000
−1.5

−1

−0.5

0

0.5

1

1.5

2

w
d
 [m

/s
]

Time [s]

(c) Down Wind

600 700 800 900 1000
0

5

10

15

w
n
 1

σ 
[m

/s
]

Time [s]

(d) North Wind 1σ

600 700 800 900 1000
0

5

10

15

w
e 1

σ 
[m

/s
]

Time [s]

(e) East Wind 1σ

600 700 800 900 1000
0

5

10

15

w
d
 1

σ 
[m

/s
]

Time [s]

(f) Down Wind 1σ

Figure 17. Wind Estimates

compare the reconstructed aerodynamics in the black curve to the nominal aerodatabase queried along the
reconstructed trajectory in grey. These results indicate a roughly 2% higher than nominal axial force, which
is in agreement with the results from the semi-independent reconstructions presented in Ref. 2. Note that
the aerodatabase uncertainties shown include the actual database uncertainties as well as uncertainties in the
reconstructed trajectory on which the database is queried. The aerodynamic moment reconstruction is shown
in Fig. 19. These moments are about the vehicle center of mass. A complete reconciliation of the aerodynamic
model is beyond the scope of this paper; a more detailed description of the aerodynamic reconstruction and
model reconciliation can be found in Ref. 24.
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Figure 18. Aerodynamic Force Reconstruction

Residuals between the reconstructed trajectory and the MEADS measurement data are shown in Fig. 20.
The ±3σ thresholds based on the residual covariance are also shown. These results indicate that the residuals
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Figure 19. Aerodynamic Moment Reconstruction

Table 1. MEADS Systematic Error Estimates

Port Bias (Pa) Scale Factor Nonlinearity (1/Pa)

1 -3.19 1.54E-03 -1.83E-08
2 -2.39 1.23E-03 -1.29E-08
3 0.06 2.35E-04 -1.54E-09
4 2.18 -1.10E-03 1.48E-08
5 4.60 -3.95E-03 8.68E-08
6 3.95 -1.78E-03 2.00E-08
7 0.42 -8.42E-04 2.45E-09

fall within the filter uncertainty predictions and thus the filter is consistent. A summary of the systematic
error estimates in the MEADS data is shown in Table 1. The TDS residuals are shown in Fig. 21, which also
indicate consistent filter performance.

The inertial trajectory components are compared to measurement data in Tables 2 and 3. Table 2 shows
a comparison of the measured initial condition from OD 230 compared to the reconstructed initial condition
from the Kalman filter output. The measured and reconstructed landing site location is compared in Table 3.
In each case, the 1σ uncertainties shown in both the measured and reconstructed values.

CONCLUSIONS
This paper describes a Kalman Filtering approach that has been implemented for Mars Science Laboratory

entry, descent, and landing trajectory and atmosphere reconstruction. The methods makes use of the total
available data to reconstruct the trajectory and atmosphere from cruise stage separation to landing. This
paper describes the algorithm formulation, uncertainty models, and details of the processing of the data to
produce estimates of the trajectory, atmosphere, winds, and aerodynamics. In addition, uncertainties on all
reconstructed data are produced by the filter.

The data sources considered in the Kalman filtering approach include the inertial measurement unit accel-
erations and angular rates, the terrain descent sensor, the measured landing site, orbit determination solutions
for the initial conditions, and a new set of instrumentation for planetary entry reconstruction consisting of
forebody pressure sensors, known as the Mars Entry Atmospheric Data System. These pressure measure-
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Figure 20. MEADS Residuals
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Figure 21. TDS Residuals
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Table 2. Initial Conditions

State OD/Nav State Filter Estimates
State 1σ Uncertainty State 1σ Uncertainty

r, m 5082657.04 6.46 5082655.62 6.44
ϕ, deg -1.11749 2.04e-04 -1.11753 2.04E-04
θ, deg 91.05201 6.78e-05 91.05201 6.76E-4
u, m/s -349.691 0.012 -349.693 0.012
v, m/s 4047.656 0.008 4047.658 0.008
w, m/s 3608.537 0.009 3608.538 0.009
Φ, deg -103.744 0.033 -103.743 0.079
Θ, deg -42.090 0.033 -42.096 0.059
Ψ, deg 121.742 0.033 121.726 0.071

Table 3. Landing Site Location

State OD/Nav State Filter Estimates
State 1σ Uncertainty State 1σ Uncertainty

r, m 3391133.3 16.7 3391157.7 2.7
ϕ, deg -4.5895 2.81e-04 -4.5898 1.96e-04
θ, deg 137.4417 2.81e-04 137.4406 1.94e-04

ments are unique for planetary entry, descent, and landing reconstruction as they enable a reconstruction
of the freestream atmospheric conditions without any prior assumptions being made on the vehicle aerody-
namics. Moreover, the processing of the MEADS measurements in the Kalman filter approach enables the
identification of atmospheric winds, which has not been accomplished in past planetary entry reconstruc-
tions. This separation of atmosphere and aerodynamics allows for aerodynamic model reconciliation and
uncertainty quantification, which directly impacts future missions.

Future reconstruction work will be focused on incorporating the terrain descent sensor Doppler velocity
measurements and improved gravity models for Gale crater into the Kalman filter approach.
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