

Post-Flight EDL Entry Guidance Performance for the 2011 Mars Science Laboratory Mission

G. Mendeck & L. McGrew NASA Johnson Space Center

2013 AAS/AIAA Spaceflight Mechanics AAS 13-419

- Mars Science Laboratory landed Curiosity in Gale Crater on 5 Aug 2012
 - First Mars guided entry to a touchdown ellipse of 19 x 7 km, landing 2.2 km away from the expected target
- Entry guidance is derived from the Apollo capsule "final phase" logic and adjusts the range flown during entry by varying the direction of the lift vector (i.e., bank angle)
 - Flight proven algorithm with minor modifications
 - Algorithm consistently met ellipse size requirements and performance constraints since conceptual development in 2000

Guided Entry Phases

Event Description & Nominal State	Phase	Guidance Actions	
Maneuver to Attitude Hold After Cruise Stage Separation Prior to El-9 min Entry Interface Occurs E+0 sec, h=126km, range=632 km, inertial vel=5845 m/s, inertial FPA=-15.47 deg	Pre-Bank	Attitude hold at a ground- commanded bank angle until Range Control Phase starts	
Begin Range Control Phase Filtered drag acceleration ≥ 0.2g E+51 sec, h=52km, range=350 km, M=29, relative vel=5839m/s Peak Heating Occurs E+63 sec, h=39 km, range=283 km, M=24, v=5606 m/s, load=4g Peak Loading Occurs Load = 12.5 g E+80 sec, h=23 km, range=200 km, M=19, v=4189 m/s	Range Control (Start of Guided Entry)	 Command bank angle magnitude to minimize predicted downrange error at deployment Command bank reversals to manage crossrange error 	
Begin Heading Alignment Phase v = 1100 m/s E+136 sec, h=14 km, range=83km, M=5, load=1.7g	Heading Alignment	 Command bank angle to minimize residual crossrange & maximize deploy altitude 	
Initiate Chute Deploy Sequence v = 406 m/s E+259 sec, h=12 km, range=5 km, M=1.7	Chute Sequence (End of Guided Entry)	 Initiate sequence on velocity trigger to prepare for chute deploy 	

- Apollo final phase controls to terminal range and velocity target using pre-derived influence coefficients with respect to errors about a nominal reference trajectory that ends at parachute deploy
- Reference trajectory defined by range-to-go, drag acceleration, and altitude rate as a function of relative velocity
- Commanded bank angle varies to control range based on deviations in predicted range, altitude rate, and drag from a reference trajectory

$$\begin{array}{ll} \mbox{Predict Current Range:} & R_p = R_{ref} + \frac{\partial R}{\partial D} \left(D - D_{ref} \right) + \frac{\partial R}{\partial \dot{r}} \left(\dot{r} - \dot{r}_{ref} \right) \\ \mbox{Find Commanded Vertical} & \left(\frac{L}{D} \right)_{v, c} = \left(\frac{L}{D} \right)_{v, ref} + \frac{K_3 \left(R - R_p - R_{dep} \right)}{\partial R / \partial (L/D)_v} \\ \mbox{Range to Target:} & Bank Required For \\ \mbox{Commanded L/D:} & \Phi_c = \cos^{-1} \left(\frac{\left(L/D \right)_c}{(L/D)} \right) \times K_2 \\ \end{array}$$

Range to Target Range, predicted Range, reference Range, deploy bias Drag Drag, reference Lift Altitude Rate Altitude Rate, ref L/D over-control gain Bank left/right control

2013 AAS/AIAA Spaceflight Mechanics

- For a given atmospheric entry point, what guidance reference trajectory will perform well to reach the intended landing site?
- Evaluated thousands of combinations before settling on a small number of different guidance gain sets to be chosen via the predicted entry flight path angle (EFPA)

Contributions to Landing Site Error

			Mars Science Laboratory			
Source Data	Guidance Prediction, Relative (km)	Delta (km)	Downrange at Deploy, Relative (km)	Delta (km)	Downrange at Landing, Relative (km)	Delta (km)
Monte Carlo of Pre Entry Trajectory	0.0		0.0		0.0	
+ Actual EFPA Delivery	0.0	0.0	0.0	0.0	0.0	0.0
+ Actual Onboard Nav State	-0.1	-0.1	-0.1	-0.1	-0.1	-0.2
+ Reconstructed Aerodynamics	0.5	0.5	0.7	0.8	0.6	0.7
Best Estimate from Reconstructed Trajectory	-0.6	-1.0	-2.4	-3.1	-2.3	-2.9

Negative values are downrange past the target

Touchdown

2013 AAS/AIAA Spaceflight Mechanics

- Curiosity landed successfully only 2.2 km away from the expected target given the onboard navigation state
 - Better than the average Apollo capsule splashdown miss distance
 - A late bank reversal and a suspected tail wind contributed to this slight miss
- Refinement of the guidance gains and alternative parachute deploy triggers to reduce the ellipse size will be studied for future Mars landing missions