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ABSTRACT 
This paper presents recent results in an ongoing effort to understand and develop techniques to process launch vehicle data, 
which is extremely challenging for modal parameter identification.  The primary source of difficulty is due to the non-
stationary nature of the situation.  The system is changing, the environment is not steady, and there is an active control 
system operating.  Hence, the primary tool for producing clean operational results (significant data lengths and data 
averaging) is not available to the user.   This work reported herein uses a correlation-based two step operational modal 
analysis approach to process the relevant data sets for understanding and development of processes.  A significant drawback 
for such processing of short time histories is a series of beating phenomena due to the inability to average out random modal 
excitations.  A recursive correlation process coupled to a new convergence metric (designed to mitigate the beating 
phenomena) is the object of this study.  It has been found in limited studies that this process creates clean modal frequency 
estimates but numerically alters the damping.    
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INTRODUCTION 
The spacecraft launch environment is a highly complex and non-stationary event that is characterized by high amplitude input 
forces, highly variable loads, a wide spectrum of responses, constantly changing vehicle mass, active control interactions, 
staging, and limited instrumentation.  At the same time, structural response analyses and loads estimations must be performed 
with models that are only partially validated using ground test data due to the fact that access to diagnostic and environmental 
ground tests are limited.  To compound matters, project managers tend to reduce uncertainty factors designed to protect for 
loads increases and model unknowns.  As a result, the designs progress rapidly before loads and structural problems are un-
covered.  This means that there are very few tools available to recover from structural dynamics issues in such a highly dy-
namic environment without costly redesigns late in the design cycle or in early operations. 

Traditional modal testing applies a known input to the structure (or components/test articles) and structural dynamic parame-
ters are then extracted.  In spite of the relatively pristine data, these dedicated tests are often difficult to schedule or afford 
(and rarely achieve flight-like loading conditions).  The inclusion of operational modal testing and analysis tools can be used 
to offset these limitations by providing additional cost and schedule effective opportunities for diagnostic information extrac-
tion.  These opportunities are available on the ground and during flight as well as on full-up systems, subsystems, compo-
nents, and test articles.   

TECHNICAL BACKGROUND 
The technology for extracting structural dynamic properties from structures (i.e. modal testing) has rapidly improved over the 
last several decades.  Operational modal analysis (OMA) is one of the specialized spin-offs that have grown in importance 
over the last 20 years.  In OMA, a known and measured input is not artificially imparted to the structure to drive the known 
responses but measurements are made in-situ and processed to obtain a subset of the desired modal data.  This approach is 
very useful for large in-service structures that cannot be removed from service effectively (e.g. bridges, buildings, wind tur-
bines, off-shore structures, etc.).  One of the earliest OMA techniques was the Natural Excitation Technique (NExT). 1  This 
development showed that for a class of inputs, the auto and cross-correlation functions could be processed as time decay 
functions to estimate the modal frequencies and modal damping properties.  Time domain estimators, such as Polyreference2 
or the Eigensystem Realization Algorithm (ERA) 3 have been used to process such data.  Appendix A contains the theoretical 
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background for this technique.  Recent years have seen the OMA field become rich with other advanced techniques having 
broad applicability. 4  However, NExT has continued to spawn on-going efforts to improve, expand, and further understand 
the approach. 5,6,7,8,9,10 

Alternative Approaches for Traditional OMA 
There are two general classes of algorithms for performing stationary linear OMA: (1) time history-based techniques that are 
generally related to Stochastic Subspace Identification (SSI) and frequency domain-based techniques that are related to Fre-
quency Domain Decomposition (FDD).1,4,11 ,12 ,13,14  Early time domain approaches included tools like the Random Decrement 
and Maximum Entropy Methods. 15,16,17,18    The technical basis for the NExT approach mentioned previously involved con-
verting measured responses into auto and cross-correlation functions and processing with standard time domain modal analy-
sis routines.1  However, the more general SSI techniques directly integrate the correlation calculations and modal processing 
algorithms into a single step rooted in discrete time system identification theory.12,14  The earliest manifestations of FDD 
were peak picking and half-power bandwidth estimation schemes operating on the Power Spectral Density (PSD) functions.13  
However the advanced FDD algorithms refine the modal parameter estimates using powerful tools like the Singular Value 
Decomposition (SVD).4,13  An interesting direction for frequency domain approaches involves the use of Hilbert transforms 
applied to PSD’s to obtain biased Frequency Response Function (FRF) estimates.4,19 

There is another direction in operational testing that involves estimating the forces acting on the system.  This would allow 
more traditional FRF-based approaches to be used for system identification.  These forces can be estimated via known mass 
changes to the system or via hybrid analytical/experimental data. 20,21  For non-stationary systems, Wavelet Analyses repre-
sents one possible approach. 22,23  Another possible approach is via the Wagner-Ville developments. 24   For non-linear and 
non-stationary systems, the empirical Hilbert-Huang method is a possibility. 25,26,27 

Launch Environment Analyses 
There have been a limited number of reported attempts to analyze flight data to extract modal parameter information, alt-
hough there are certainly many other unreported attempts.  The time domain approaches based on correlation and SSI are 
generally used for flight data analyses as the rapidly changing vehicle properties do not allow the full advantages of the fre-
quency-domain approaches to be realized.  The responses are generally broken into a series of time windows, each of short 
duration (and quite often significant overlap), that are processed individually.  If the loading and system characteristics are 
fairly constant over each window, then estimates of the changing parameters can be obtained as a function of flight time. 
28,29,30,31,32,33,34,35 

Three of the references listed above show that one trajectory for NExT has been to act as a pathfinder for the development of 
operational analysis techniques to process launch data.28,29,30  This effort is doubly challenging as modal damping is one of 
the most sought after parameters from the launch environment, which is difficult to extract even in well controlled stationary 
environments.  However, flight damping during launch becomes a critical part of the discussions during the design and opera-
tions of space vehicles due to the control over the response of structures and components.  Hence, modal damping has be-
come an important metric for the utility flight data and flight data analyses. 

Reference [28] discusses the earliest work in the application of the NExT/OMA approach to launch data from a missile-based 
system.  The work used tight narrow-band filters to limit the data under processing to one or two modes at time.  Also, the 
time windows generally covered two to four cycles of the modes and had significant overlap.  In order to make this analysis 
tenable, the modal engine (ERA3) had to be called automatically.  Even with tight filtering and the processing software able 
to call ERA when needed, this analysis was a very labor intensive process.  The manual effort involved assessing the results 
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of the processing for each window, making decisions on the selected roots, resetting parameters if required, and restarting the 
processing when needed.  However, the traces for modal frequency and damping look fairly reasonable and smooth (except 
for the first mode damping in first stage flight). 

Reference [29] discusses a later launch analysis from the Space Shuttle.  For this analysis and automation process called 
AUTO-ID was added to the tool. 36,37  The addition of this technique eased the computational burden of extracting parameters 
in a consistent manner from the multitude of correlation functions calculated from the sliding time window segments of the 
random time histories to allow a rapid assessment of the data.  This was a much less labor-intensive process that the original 
processing effort as discussed in Reference [28].  As a result many more modes were assessed in much less time than seen in 
the previous case study.  However, the results were not a pristine and more excursions in the frequency and damping were 
allowed as a result.  The reported data for modal damping still shows trends and excursions during flight. 

Reference [30] is a recent study performed on the PA-1 test flight.  This test flight provided a very challenging data set with a 
very short flight time and extremely rapidly changing modal frequencies.   Autonomous identification was not used and the 
amount of frequencies studied was less that the study discussed in Reference [29].  The user effort required was intermediate 
between the two previous studies discussed.  Since the user interacted with data to a greater extent than previously and the 
experience of the previous exercises was available, two problems were for immediate attention: beat-like phenomena in the 
correlation functions of short time records and potential interactions between the vehicle control systems and extracted damp-
ing in the lowest bending modes of the vehicles.  A working hypothesis for the first problem (beat-like phenomena) has been 
developed in which the phenomena are apparent increases in correlation due to the lack of ability to temporally average out 
the random characteristics of the responses.  A limited number of potential mitigations for this effect are in-hand as well 
plans to assess other non-correlation based approaches.  This work continues an effort to study a mitigation which uses mul-
tiple correlation processes as applied to short time histories.38  The second problem of potential control system interactions is 
still being scoped.  

STUDY OF RECURSIVE CORRELATION AND AN ASSOCIATED CONVERGENCE METRIC 
A most significant complexity associated with operational analysis of launch systems is the unsteadiness due to rapidly 
changing mass properties.  This usually drives the available time records to be very short due to the need to utilize some type 
of sliding window analysis (at least for a process that assumes stationarity).  The analysis of several recent data sets has 
shown that one effect (at least on the correlation-based processing approaches) is a “beating” or “blooming” phenomena 
which limits the amount of the correlation functions that can be used for processing.30,35, 39    Although the first low-lag points 
in the correlation functions are relatively unaffected, the higher-lag time data points are relatively useless for analysis. 

Previous Findings 
Figure 1 illustrates the beating phenomena as illustrated by a simple one DOF analytical model of a 10 Hz mode with 1% 
damping excited by random white noise using Newmark-Beta integration.  The 32,768 length time history has a time step of 
.001 seconds.  The random input is shown in the top plot of Figure 1.  The displacement response of the 10 Hz system is 
shown in the middle plot.  Displacement is used as opposed to the more easily measured acceleration as it illustrated the issue 
with more clarity.  Notice that the response shows random excitations of the 10 Hz system mode, which eventually damps 
out.  The lower plot provides the autocorrelation function of the displacement shown in the middle plot.  The beating phe-
nomena are clearly seen as the correlation increases at longer lags.  Note that the “beating” terminology is adopted as the cor-
relation function looks like a time history of closely spaced modes interacting or “beating”.  The periodic increases in correla-
tion deviates from the theoretical damped sinusoids that are expected from OMA/NExT correlation functions and limit the 
utility to separate closely space modes as only early lags can be used for analysis.1 The working hypothesis for this phenome-
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na is that the random “blooms” in the response data (middle plot of Figure 1) result as the internal modes are randomly excit-
ed by the input.  During the correlation process these “blooms” in the response data become the beating phenomena in the 
correlation functions (see bottom plot of Figure 1). 

Previous work to address this issue suggested that the beating effects can be reduced via repeated correlation calculations 
using the same parent time data.  Figure 2 shows the effectiveness of this approach.  The top plot shows an autocorrelation 
function of a 10 Hz single DOF system excited randomly.  If a another correlation calculation is performed using the first 
autocorrelation function as the parent data then the correlation function shown in the middle plot results.  The bottom plot 
results after performing an additional eight correlation calculations using the function shown in the middle plot as the parent 
data (10 correlation calculations total).  This obviously produces a damped sinusoidal function as expected.  It can be seen 
that the proper damping seemed to result after a number of these correlations are performed.  However, the application of 
additional correlations does numerically alter the extracted damping.  Hence, this approach needs a convergence metric to 
allow the analyst to know when to stop performing additional correlations.30   A metric was presented in reference [38] and 
will be repeated here. However the ongoing effort has discovered that there are numerical issues with the recursive correla-
tion approach that need to be understood as validation of the technique is proving elusive.   

Development of a Convergence Metric 
The problem at hand involves performing additional specialized averaging (in the form of autocorrelation functions) on the 
randomly excited data.  The desired result is a mathematical function that more closely matches the theoretical expectation of 
damped sinusoids.  The primary issue in the current single pass correlation functions is not the sinusoidal content but the in-
complete capture of the decaying exponential envelope.  Hence, the first step will be to extract the envelope.  To do this we 
start by generating an analytic function using the Hilbert transform of the first pass correlation functions: 

 

Figure 1.  Beating Phenomena in Correlation Functions in Single DOF Analytical Data 



5 

 

 

 

Figure 2.  Use of Repeated Correlation Calculations to Reduce Beating Phenomena 
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Rij is correlation function between outputs i and j; 

Hij is the Hilbert transform of Rij; and 

Cij is the analytic function associated with Rij and Hij. 

 

The Hilbert transform is defined as follows: 
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The envelope is then the amplitude of the complex analytic function: 

     .22 tHtRtA ijijij                                                                    (3) 

Figure 3 contains an example of the previous functions.  The top plot is the numerical displacement response of a single-
mode 10Hz system with 1% damping as excited with random inputs.  The middle plot shows the autocorrelation function 
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from the data in the top plot.  The bottom plot shows the associated envelope as described by equation (3) above.    Now the 
theoretical result suggests that the correlation function looks a decaying sinusoid, hence for this single-mode system, the en-
velope should look like an exponential decay: 

  at
ij AtA  e0 .                                                                         (4) 

Therefore for this simplified system, we can take the natural log to simplify: 

       .lnlnln 00 ataeAtA at
ij                                                     (5) 

There are two possible approaches to determine estimates of the exponential parameter from the log envelope.  The first ap-
proach is to fit a line to the natural log of the envelope with the offset providing a0 and the slope (a) parameter.  For subse-
quent discussions, this approach shall be referred to as the “linear slope” approach and the slope parameter designated as 
“a1”. The alternative approach is to take a mean value of the differences between any two values of the log envelope and di-
vide by the time step.  This approach will be referred to as the “mean difference” and the slope parameter designated as “a2”.   
Figure 4 shows those two approaches and the best fit estimates for the first half of the records of the log envelope given in 
Figure 3. 

 

Figure 3.  Envelope of Correlation Function of a Single DOF Analytical Data 

In order to further increase the content of the modal response and reduce the effects of the random forcing function, the cur-
rent correlation function is subjected to another pass through the correlation processing step.  Correlation processing (in a 
time domain sense) involves a summation process of all data separated by the same number of time steps (or correlation lags 
in this case): 
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Figure 4.  Fits to Log Envelope of a Single DOF Analytical Correlation Function 
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Now if we substitute the original time history products for the current correlation function and add a subscript to denote the 
iteration or number of the successive correlation steps (k): 
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Where l = k-1. 

Hence, the variables of interest will be estimated at each iteration and will receive a “k” subscript: Hijk(t), Cijk(t), Aijk(t), a0k, 
a1k,and a2k.  The slope parameters are updated each iteration and compared to the previous value and scaled with respect to 
the first slope value to produce a convergence metric (labeled as b0k and b1k).  Hence for the linear slope metric: 
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And for the mean difference metric: 

.*100
21

22
2 







 


a

aa
b lk

k                                                          (9) 

Figure 5 shows typical convergence histories for these two metrics. The top plot provides the actual values of the slope pa-
rameters (as illustrated in Figure 4) for multiple subsequent correlation iterations.  The lower plot shows the traces of the re-
lated convergence metrics.  For this example the process was ended when the convergence metric was lower than .1% in ei-
ther parameter.  Typically the mean difference converges first.  Figure 6 shows the fits to the converged log envelopes.  Alt-
hough there are some obvious numerical issues for longer lag times, the overall trends are much closer to the expected expo-
nential decay model.   Figure 7 shows the final correlation trace after convergence in the top plot.  The middle plot contains 
the final envelope of the correlation trace.  These plots show the expected decaying exponential shape.   After performing a 
modal identification on the data shown in Figure 7, the resulting modal frequency is found to be 10.1 Hz with .99% damping.  
The resulting synthesis to the converged data is provided in Figure 8.  The final extracted frequency and damping is used to 
generate damped sine and cosine functions which are least-squares fit to the correlation data to generate the synthesis. 

 

Figure 5.  Convergence of Multiple Correlations of Single DOF Analytical Data 
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Figure 6.  Converged Fits to Log Envelope of Single DOF Analytical Data 

 

Figure 7.  Envelope of Converged Correlation Function of Single DOF Analytical Data 
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Figure 8.  Data and Synthesis of Modal Fit to Converged Correlation of Analytical Data 

Numerical Assessment of Recursive Correlation/Convergence Metric Approach 
The data provided above to study and develop a mitigation strategy for correlation beating on short time records is subject to 
several simplifying factors that will have to be assessed before the process becomes truly useful.  These include multiple 
modes, data stationarity, multiple sensors, numerical round-off error, system noise, the role that the phase of the analytic 
function may play, digital parameter shifting (as seen in numerical integration algorithms), and the order to apply the cross-
correlation and iterative autocorrelations when using data from different sensors.  However, the most critical unknown to be 
removed before this mitigation process is useful for short time record launch data analysis are the actual effects of data record 
length.  Hence, a scoping study of the effects was performed some critical features of the overall technique were uncovered. 

This scoping study involved utilizing several different data record lengths of data to develop estimates of the modal frequen-
cy and modal damping to assess the trends in the parameters.  For the 10Hz analytical data with 1% damping, data lengths 
from 1024 samples to 32768 length data record were assessed in increasing data record length increments of 1024 samples 
for 32 different analyses.  Figure 9 provides the results of this study.  The top plot shows the variation of the extracted fre-
quency as the data record length processed in increased.  The frequency variations are exaggerated due to the scale and are 
not significantly problematic.  However, the lower damping plot shows a clear trend of increasing damping estimates away 
from the 1% expected value as the record length is increased.  This is an issue that must be dealt with as damping is a critical 
parameter in these studies and the shorter time records are the region that launch data processing will be utilizing.  The good 
news from the initial study was that the process break-down appeared to be stochastic with a clear monotonic trend.  This was 
the state of the work as reported in Reference [38]. 

Further work to understand short time history effects lead to an unfortunate finding.  Figure 10 shows the same scoping study 
if the damping is increased from 1% to 10%.  In this study, the damping was seen to continue to converge to 1%.  Several 
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other input values of damping were exercised with very similar results.  Hence the extracted damping values of the recursive 
correlation technique were completely numerical in origin.   

Analytical Study of Recursive Correlation Damping 
In order to study the short time history and recursive correlation effects, assume a damped cosine function (see Appendix 1 
for the theoretical basis of this assumption):  

                                                                           (10) 

The autocorrelation function could then be defined as: 

                                                           (11) 

With the following definitions feeding equation (11): 

                                                                                         (12) 

                                                                                 (13) 

                                                                                      (14) 

                                                                 (15) 

                                                                      (16) 

                                      (17) 

After rearranging the following equation results:  

                                        (18) 

With the following definitions used to generate equation (18): 

                                                          (19) 

                                                                           (20) 
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Figure 9.  Effect of Data Record Length using Single DOF Analytical  Data – 1% Damping 

 

Figure 10.  Effect of Data Record Length using Single DOF Analytical Data – 10% Damping 
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Now when the following assumption is used: 

                                                                           (21) 

 These simplifications result: 

; and                                                  (22) 

                                                                     (23) 

With these simplifications, the autocorrelation reduces to the following: 

                                                       (24) 

Equation (24) can also be written as the following: 

                                                      (25) 

Now for the case of ω = 10 Hz, δ = 1%, tf = 1 sec, the function is shown in Figure 11. 

 

Figure 11.  Numerical Scaling Factor for Autocorrelation Function based on a One Second Time History 
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As the final time gets larger, the resulting function shown in Figure 11 rapidly approaches 1.0 for most lags in the correlation 
function.  Figure 12 shows the function for a 10 second time history and Figure 13 for a 100 second data record.  Hence for 
short time records the damping will be significantly affected by each correlation processing step that is used.  For longer time 
histories, the numerical damping effects are limited to the last few lags of the resulting correlation function.  However, these 
limited longer time history effects apparently build up over time to reach some steady-state value of numerical damping.  It is 
very interesting that the modal frequency is largely unaffected by this numerical error. 

 
Recommended Follow-on Work 
The direct use of the suggested convergence metric for recursive correlation functions to extract modal damping is not a 
promising activity based on this work.  Although, a more in-depth study of the damping modification build-up as a function 
of recursion step and the subsequent information contained in the phase of the analytic function are promising avenues to 
increase understanding.  However, the ability clean up randomly excited data and extract well-behaved frequency estimates is 
an advantage to be pursued.  A suggested next step would be to verify the frequency stability based on a larger set of increas-
ingly realistic data characteristics as was mentioned above.  If successful modal frequency extraction is seen, then these esti-
mates could be used to drive a supplemental extraction process for damping.  Such supplemental processes might be based on 
wavelet functions (see references 22 and 23) as a first recommended trial study.  
 
CONCLUSION 
The process of identifying modal parameters during launch is a difficult and challenging process.  In this work, the launch 
phase of flight is assumed to be processed with small moving windows that are intended to keep the variations in modal pa-
rameters to a minimum such that stationary assumptions can hold.  A more specific assumption of this work is that accelera-
tion data in each window are processed into cross- and autocorrelation functions.  It has been found that this process is ham-
pered by “beating” or “blooms” in the correlation functions.  These unwanted features limit the amount of data that can be 
used in the subsequent time domain algorithm processing.  In typical ground based applications, these effects are rarely seen 
as frequency-domain averaging using long stationary time histories is highly effective at eliminating the issue.   

An alternative approach has been reported that may be applicable in launch processing is the use of multiple iterations of cor-
relation processing using the same base data.  This mitigation had been hampered until recently by the lack of a convergence 
metric to allow the process to terminate. The recent development of a convergence metric has allowed this recursive correla-
tion process to be subjected to further scrutiny. The convergence metric utilized a Hilbert transform of the resulting correla-
tion function from each recursive step to generate an analytic representation of the data.  The envelope of each correlation 
function can thus be extracted from the analytic function.  The natural log of this envelope is then used to set the data into a 
format where a linear slope can be estimated.  A significant finding is that for a limited class of data studied to-date (single 
dominant mode) is that these slope parameter estimates converge.  Previously, this convergence seemed to produce an esti-
mate of the proper damping for long enough time histories with a deterministic bias affecting shorter time histories.   
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Figure 12.  Numerical Scaling Factor for Autocorrelation Function based on a Ten Second Time History 

 

 
 
Figure 13.  Numerical Scaling Factor for Autocorrelation Function based on a One Hundred Second Time History 
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Work reported herein has shown that the proper modal damping is replaced with a fairly consistent value of numerical damp-
ing by repeated correlations.  However, the modal frequency is left intact in this process.  Subsequent mathematical studies 
have suggested that there is an expected numerical modification of the modal damping when short time history correlation 
processing is used.  Furthermore this study has suggested that longer time histories will also be subjected to numerical damp-
ing modification via repeated correlation processing based on the same limitations of the correlation functions.  There are 
some fruitful follow-on studies that can be envisioned to further understand the numerical effects on damping such as a 
mathematical assessment of multiple correlations and the information available in the phase of the analytical function. 

The modal frequency estimation process becomes a much more refined activity and this advantage needs to be studied and 
pursued.  If this holds after subsequent studies with more realistic data sets, then a supplemental process to extract damping 
can be pursued with refined estimates of frequency available.  Wavelet technology has been suggested as one potential basis 
for such a supplemental process. 

 
APPENDIX A: THEORETICAL BASIS FOR AN OMA PROCESS, NExT 
A critical step in the development of NExT was to find a function that could be measured from operational data, but possessed a 
clear relationship with and a dependence on the modal parameters of the structure.   For NExT, the function selected was cross-
correlation functions between responses without a measurement of the input force.  This section outlines the development of the 
relationship between the cross-correlation function and modal parameters.  The full details of this development can be found in 
multiple references.1, 40,41 

The derivation begins by assuming the standard matrix equations of motion: 

  )}({x(t)}{]K[)}t(
.

{][)}t(
..

{M tfxCx                                                     (1) 

where 

 

[M] is the mass matrix; 

[C]is the damping matrix; 

[K]is the stiffness matrix; 

{f}is a vector of random forcing functions; 

{x}is the vector of random displacements; and t is time. 

 

Equation (1) can be expressed in modal coordinates using the standard modal transformation and diagonalized matrices (assuming 
proportional damping).   A solution to the resulting scalar modal equations can be performed via the convolution or a Duhamel 
integral and assuming a general forcing function {f} with zero initial conditions.42  The solution can be converted back into 
physical coordinates and specialized for a single input force and a single output using appropriate mode shape matrix entries.  The 
following equation results: 
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is the damped modal frequency; 

 r
n  is the rth modal frequency; 

r  is the rth modal damping ratio; 

mr is the rth modal mass; 

n is the number of modes; 

ir is the ith component of mode shape r; and 

t is the time. 

The next step of the theoretical development is to form the cross-correlation function of two responses (xik and xjk) due to a 
white-noise input at a particular input point k.  The cross-correlation function  as the expected value of the product of two 
responses evaluated at a time separation of T, 

  ijk T E xik t T xjk t( ) [ ( ) ( )]                                                (3) 

where E is the expectation operator.13,43 

Substituting Equation (2) into (3) and recognizing that the force f is the only random variable, then the expectation operator 
functions only on the forcing function.  Using the definition of the autocorrelation function17, and assuming for simplicity that the 
forcing function is white noise (this is only approximately true), then the expectation operation collapses to a scalar times a Dirac 
delta function.  The Dirac delta function collapses one of the Duhamel integrations embedded in the cross-correlation function. 
The resulting equation can be simplified via a change of variable of integration ( = t-).  Using the definition of g from Equation 
(2) and the trigonometric identity for the sine of a sum results in all the terms involving T being separated from those involving .  
This separation allows terms that depend on T to be factored out of the remaining integral and out of one of the modal 
summations.  This results in: 
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where A
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ijk  and B

r
ijk are independent of T, are functions of only the modal parameters, contain completely the remaining modal 
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Equation (4) is now the key result of this derivation because many time-domain modal analysis algorithms utilized impulse 
response functions as the input data for estimating the modal parameters.  We see that Equation (4) shows that the 
cross-correlation function has the same characteristics as the impulse response function, a sum of decaying sinusoids with the 
same damping and frequency as the impulse response function.  Thus, cross-correlation functions can be used in place of impulse 
response functions in these time-domain modal parameter estimation algorithms.  Consequently, Equation (4) provides us with the 
desired function that can be measured from operational data and used to extract the modal parameters.  The reader can refer to the 
provided references for more details of the intermediate steps in this derivation.1,14,15  These references also provide verification of 
this derivation, using the maximum of an autocorrelation function and a cross-correlation identity. 
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