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ABSTRACT 
This historical work couples model order reduction, damage detection, dynamic residual/mode shape expansion, and 
damage extent estimation to overcome the incomplete measurements problem by using an appropriate undamaged struc-
tural model.  A contribution of this work is the development of a process to estimate the full dynamic residuals using the 
columns of a spring connectivity matrix obtained by disassembling the structural stiffness matrix.  Another contribution 
is the extension of an eigenvector filtering procedure to produce full-order mode shapes that more closely match the 
measured active partition of the mode shapes using a set of modified Ritz vectors.  The full dynamic residuals and full 
mode shapes are used as inputs to the minimum rank perturbation theory to provide an estimate of damage location and 
extent.  The issues associated with this process are also discussed as drivers of near-term development activities to under-
stand and improve this approach. 
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INTRODUCTION 
The use of changing structural dynamics parameters as indicators of damage state and structural health has received in-
creasing attention in recent years. The global nature of these parameters provides a unique capability to monitor internal 
components of aerospace, civil, mechanical, naval, and nuclear structures. The ability to model the structural response 
analytically enhances this unique capability to locate damage in unmeasured locations as well as to provide tools to de-
termine the extent of the damage. However, much work needs to be done to use experimental and analytical models 
properly in a coordinated fashion to perform damage identification. One of the most difficult issues to overcome is the 
incomplete measurement problem, which means that 1) there is an inherent mismatch between the experimental and the 
analytical degrees of freedom (DOFs) and 2) there is a mismatch between the numbers of measured and analytical 
modes. Another difficult issue is that neither the experimental measurements (noise) nor the analytical model (modeling 
errors) is correct. The last statement is especially true in damage identification as the analytical model is typically pro-
duced for the undamaged structure. 
 
The incomplete measurement problem means that model order reduction [1-6] and/or test data expansion [4-11] must be 
performed to utilize both data sets fully. However, it has been found that most reduction expansion techniques are not ex-
tremely useful for damage identification [6, 10, 11].  It has been suggested that reduction/damage identifica-
tion/expansion should be handled as coupled problems [6].  This work describes the development of such an integrated 
procedure that is initiated by first disassembling the structural stiffness matrix [12-15] into a connected set of springs. 
The columns of the spring connectivity matrix are then used as a set of candidate basis vectors for estimating the full dy-
namic residual. This candidate set is down selected using the modal assurance criteria (MAC) between the reduced dy-
namic residual and a reduction of each candidate vector averaged over the modes of interest. A least-squares fit is then 
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used to scale the remaining basis vectors to match the dynamically reduced residuals for each mode. The estimated full 
residuals provide damage location information and are used to initiate a modified Ritz vector [16] calculation process. A 
set of Ritz-like vectors are calculated and used as a set of basis vectors to expand the mode shapes and to guarantee mass 
orthogonality. The full dynamic residuals and full mode shapes are then used as inputs to the minimum rank perturbation 
theory (MRPT) [17-19] to provide an estimate of damage.  The process suggested herein was originally published in ref-
erences [20,21]. 
 
TECHNICAL BACKGROUND OF ORIGINAL WORK 
This section briefly describes the basic theoretical components used in the coupled damage detection approach. 
 
Dynamic Residual Formulation 
This study will proceed with a standard math model for a dynamical system (ignoring damping): 
 

       .FUKUM                                                                                      (1) 

 
The corresponding eigenvalue problem for the undamaged structure is given as: 
 

   ;0
2   uiui

KM                                                                                       (2) 

 
where the subscript u denotes undamaged and i denotes the ith mode of vibration. The eigenvalue problem for the dam-
aged structure is: 
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where the Δ matrices represent the effect of damage on the structural property matrices.  Now Eq. (3) can be rewritten in 
dynamic residual form: 
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Model Reduction 
The dynamic residual form can be rearranged into an active or measured set of DOFs and an omitted or unmeasured set 
of DOFs.  It is commonly assumed that the model of the undamaged structure can be used to create a transformation re-
lating the unmeasured and measured DOFs. One approach is to produce a physical-coordinates based transformation [7] 
that for a single mode shape has the following form: 
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The transformation matrix [T ] in Eq. (5) can be calculated from the stiffness matrix [K] using the static or Guyan–Irons 
[1,2] reduction/expansion.  A scaled sum of the mass [M] and stiffness matrices can also be used to estimate [T ] as sug-
gested by dynamic reduction/expansion [3].  The transformation matrix [T ] denoted in Eq. (5) can be used to reduce the 
order of the analytical model. Substituting Eq. (5) into Eq. (4) and premultiplying by [T ]T , one finds that the reduced 
equations of motion are: 
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The reduced dynamic residual, {bri}, given in Eq. (6) has been shown to be of importance in damage identification [17-
22] to localize and to calculate the extent of damage. However, these capabilities are limited by the application of the 
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transformation [T ], which tends to redistribute residual forces to undamaged DOFs. A primary contribution of this work 
is to provide an approach to retain these capabilities by first estimating the full dynamic residual {bi}.  The procedure 
suggested to perform this estimation begins by performing a matrix disassembly on the stiffness matrix [12-15]. This will 
produce a set of basis vectors used to estimate the full dynamic residual. 
 
Matrix Disassembly 
Matrix disassembly is a process that decomposes a structural matrix into a matrix representation of the connectivity be-
tween DOFs and a matrix containing the magnitude information [12-15]. This formulation has the following form for the 
stiffness matrix: 
 

   .TCPCK                                                                                       (7) 

 
Advanced applications utilize a disassembly into the same finite elements that were used to create the model [14].  How-
ever, this work utilizes a disassembly into a set of equivalent springs.  This produces a general technique that can be ap-
plied to any model without detailed knowledge about the actual elements used in the assembly. The matrix [C] is an n x 
m matrix, where n is the matrix dimension for [K] and m is equal to the total number of unique entries in [K] (for sym-
metric [K] this amounts to the nonzero entries in the upper triangular portion of the stiffness matrix). The diagonal matrix 
[P] is calculated as: 
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The first n columns/rows of [C] form an n  x n identity matrix. The remaining (m-n) columns are defined according to the 
element locations of the unique entries in the matrix [K]. For the element K(j,k), which is used to define the ith 
row/column of [P] for the index i running from n +1 to m, the ith column of [C] is given as: 
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Estimating the Expanded Dynamic Residual 
For each mode of interest, equation (6) relates a known quantity ({bri}, the reduced dynamic residual) to an unknown 
quantity ({bi}, the full dynamic residual). This work assumes that the full dynamic residual can be described as a linear 
combination of the columns of the connectivity matrix.  Therefore, each column will initially be considered a candidate 
for inclusion in the calculation of the full dynamic residual vector for that mode.  The first issue is to down select the set 
of columns of [C] to the most promising subset for further analysis.  Although it was not rigorously necessary, this work 
constrained the selected subset to have linearly independent columns. (The full [C] matrix contains a high degree of col-
umn linear dependence.) Each candidate vector from [C], {cj}, will serve as an approximate full dynamic residual vector. 
The resulting reduced dynamic residual basis vector {βrij} is calculated from equation (6) by replacing {bi} with {cj}. In 
this work, a comparison with the actual reduced dynamic residual for that mode is made using the MAC, which relates 
the global similarity between two vectors: 
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The MAC values are averaged over the modes of interest. These averaged values then provide a discriminator between 
the candidate columns of the connectivity matrix. Columns {cj}, which produce large MAC values over a wide range of 
modes, are candidates for down selection. The user must select the number of the largest average MAC candidate basis 
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vectors to include in the next analysis.  This selection is made based on the relative sizes of the average MAC values, the 
spatial relationship between the candidate vectors, and the linear dependence of the resulting set of vectors.   
 
The next step is to use the selected vectors as basis vectors for approximating the full dynamic residual. Substituting a 
linear combination of the basis vectors into equation (6) yields: 
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where the unknown coefficient αi is determined by a least-squares approach. (Note that the reduction transformation will 
change with each mode if dynamic reduction is used.) The critical output of this step is a set of full dynamic residual vec-
tors that match the reduced equations. The next step will be to use these expanded residuals to expand the mode shapes. 
 
Mode Shape Expansion 
Mode shape expansion estimates the unmeasured DOFs given the undamaged model, the experimental modal frequency, 
the measured mode shape DOFs, and the full dynamic residual. However, the physical coordinate transformation ap-
proach listed earlier typically assumes that the omitted partition of the dynamic residual is zero [1-3].  Because this may 
not be the case for the damage identification problem, this approach must be modified assuming a nonzero residual vec-
tor.   
 
An approach called eigenvalue filtering (EV) utilizes the full residual to expand the mode shape. This approach uses 
eqution (4) to generate the expansion by inverting the dynamic stiffness matrix [D] using the associated experimental 
modal frequency ωi (reference [23]): 
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The EV approach ensures that the full mode shape produces the estimated dynamic residual when operating on the un-
damaged model shifted with the experimental modal frequency. However, it should be noted that the active partitions of 
the mode shapes are not constrained to be the measured values. One contribution of this work is to extend this approach 
to allow the user to add in these constraints in an incremental process.   
 
The modified approach assumes that the full mode shapes are a linear combination of basis vectors. A modified Ritz vec-
tor calculation will be used to generate a set of basis vectors to expand the mode [16].  The Ritz vector calculation proce-
dure provided in reference [16] initiates the process by operating on a force vector with the inverse of the stiffness ma-
trix. The resulting deflection vector is mass normalized and used as the input vector to an inverse iteration with the 
stiffness matrix inverse and mass matrix as the multipliers. The successive Ritz vectors are orthogonalized with a modi-
fied Gram–Schmidt process and mass normalized.   
 
The modified process will generate a set of Ritz-like vectors for each mode of interest using the dynamic residual for 
each mode as the initial force vector. Two additional modifications to the Ritz vector calculation approach referenced 
earlier are required. First, to be consistent for perfect data and perfect dynamic residuals, the stiffness matrix is replaced 
with the dynamic stiffness matrix [D] appropriate for each mode. The next modification is that the mass orthogonaliza-
tion step includes not just the previously calculated Ritz vectors for that mode but also the previously expanded mode 
shapes.  Hence, a set of basis vectors responding to the forces represented by the dynamic residual and mass orthogonal 
to themselves and the previously expanded modes of the system will be calculated.  Therefore, a linear combination of 
these basis vectors will be mass orthogonal to the previously expanded modes of the system. These basis vectors will be 
linearly combined to match the active partition of the mode of interest. Hence for the lth mode of the system the follow-
ing equations are used: 
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This procedure produces a set of expanded mode shapes that are mass orthogonal and consistent with the full dynamic 
residuals. It is important to note that the first vector is equivalent to the full mode shape calculated with the EV approach 
given in equation (12). The coefficients γli in equation (18) are determined by partitioning equation (18) into the active 
and omitted sets and then solving a least-squares problem involving only the active set. Hence, by allowing additional 
terms in the expansion process, the user can trade off confidence in the expanded dynamic residual for confidence in the 
measured mode shape DOFs. 
 
Damage Location and Extent: MRPT 
The estimation of damage location and extent is performed via the Minimum Rank Perturbation Theory (MRPT) [17-20].   
The underlying philosophy of the MRPT is that reduced rank perturbations to the structural matrices are the manifesta-
tion of damage. In this approach, damage results in a zero–nonzero pattern in the dynamic residual as given by equation 
(4). Typically, measurement noise and model order reduction or expansion destroys this pattern.  Hence, a significant re-
sult of this approach is that the zero–nonzero pattern of the dynamic residual will be controlled by the columns of the 
connectivity matrix that are used to create it.   
 
The estimation of damage extent using a minimum rank formulation utilizes the following calculation (assuming that all 
damage is manifested only in the stiffness matrix): 
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where [B] is the matrix formed of all column vectors of the expanded dynamic residuals for the modes of interest and [Φ] 
is the matrix of the expanded modal vectors. 
 
EXAMPLE APPLICATION OF ORIGINAL WORK 
The example application chosen for this section closely parallels the examples provided in precursory work to provide a 
context for interpreting the results [6, 11]. 
 
NASA Eight-Bay Truss 
For the comparisons in this work the NASA eight-bay truss structure [24] is utilized.  The eight-bay truss structure is an 
experimental test article developed to study a variety of damage identification issues. The cantilevered truss includes 32 
nodes, each of which was instrumented with triaxial accelerometers. Fifteen unique damage cases were produced by re-
moving individual truss members. The structure and representations of the damage cases (denoted by alphabetic charac-
ters) are provided in Figure 1. This work uses 12 modes from a 96-DOF analytical model of the undamaged structure and 
the damage cases to explore the developments discussed in previous sections. The DOFs that are assumed to be active or 
measured for the example provided in this section are denoted by circles in Figure 1.  At these nodes, full triaxial meas-
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Dynamic Residual Expansion 
The issues in this step revolve around the necessary expansion of the limited measured data set to the larger unmeasured 
data set.  Since the inability to measure every Degrees-Of-Freedom (DOFs) in the model is a physical constraint, it is un-
likely that much progress can be made on these issues in the near term.  However, since this step in the process is critical-
ly dependent on the reduction/expansion transformation used, there is some hope for minor near-term improvements that 
can be realized by improving and tailoring the transformation process used as well as selecting the basis vectors form the 
disassembly process. 
 
Mode Shape Expansion 
Many of the same issues that plague the dynamic residual expansion exist in this step as well, namely the physical con-
straint of unmeasured DOFs.   In fact the expansion of the mode shapes will be dependent on the expansion of the dy-
namic residuals in the previous step.  Hence, improving and understanding that process is likely to be a precursor to un-
derstanding the errors in the mode shape expansion step.  Additionally, there is a need to further study the effectiveness 
of the novel expansion technique provided in the original work. 
 
Damage Extent 
The MRPT-based damage extent based approach follows directly from the expanded residuals and mode shapes pro-
duced in the previous steps.  However, it has been seen that selection of the proper set of basis vectors for the expansion 
steps is critical to producing unambiguous results in this step.  Hence, the issues associated with this step are largely de-
pendent issues on the problems in implementing the previous steps.  This does suggest that the damage extent results will 
be useful as a metric for the integrated effects of all the previous steps and sensitivity studies involving the application of 
the entire process are called for as a near term activity. 
 
SUMMARY AND CONCLUSIONS 
The procedure reviewed in this work integrates several technologies into an integrated procedure to perform damage lo-
cation and extent estimation. Of significant importance is the integration of model order reduction and mode shape ex-
pansion into the location and extent algorithm. The end result is a hybrid approach that utilizes an analytical model and 
experimental data to perform rank constrained damage identification.  The procedure utilizes minimum rank perturbation 
theory, spring disassembly, and Ritz vector calculation to couple these technologies. As a result, the issue of determining 
damage-affected modes is supplanted by determining a truncation order for a set of localized basis vectors.  An applica-
tion to experimental data in the original work proved to be successful in locating the damage.  However, this same appli-
cation pointed out the need to acquire enough modes to discriminate between the residual basis vectors that drive the rest 
of the process.  Earlier studies suggested that this process is fairly robust with respect to noise.  The experimental appli-
cation also suggested that a sparse analytical model could improve the basis vector selection process.   
 
The technical issues associated with the process reviewed herein need to be systematically addressed by mitigating or 
understanding the effects.  Development work to create targeted reduction techniques, generic disassembly, and basis 
vector selection processes is needed.  Understanding and improving the expansion processes are also called for.  Other 
active sensor sets and damage cases should be exercised to understand the experimental potential and sensitivities of this 
process more completely. 
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