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[1] We present the results of a finite difference implementation of the kinetic
Fokker-Planck model with an exact form of the nonlinear collisional operator. The model
is time dependent and three-dimensional; one spatial dimension and two in velocity space.
The spatial dimension is aligned with the local magnetic field, and the velocity space is
defined by the magnitude of the velocity and the cosine of pitch angle. An important
new feature of model, the concept of integration along the particle trajectories, is discussed

in detail. Integration along the trajectories combined with the operator time splitting
technique results in a solution scheme which accurately accounts for both the fast
convection of the particles along the magnetic field lines and relatively slow collisional
process. We present several tests of the model’s performance and also discuss simulation
results of the evolution of the plasma distribution for realistic conditions in Earth’s

plasmasphere under different scenarios.

Citation: Khazanov, G. V., I. K. Khabibrakhmanov, and A, Glocer {2012), Kinetic description of ionospheric outflows based on
the exact form of Fokker-Planck collision operator: Electrons, J. Geophys. Res., 117, A11203, doi:10.1029/2012JA018082.

1. Introduction

[2] Magnetosphere-ionosphere (MI) coupling has interested
scientists for decades, and in spite of experimental and theo-
retical research efforts, it remains one of the least understood
dynamical processes in space plasma. The reason for this is
that the numerous physical processes associated with MI
coupling occur over multiple spatial and temporal scales. One
typical example of MI coupling is the production of upflowing
ion events (or ionospheric outflows), such as auroral acceler-
ation, ion energization in the cleft ion fountain, convective
heating, polar wind, and plasmaspheric refilling. The classifi-
cation of ionospheric outflows contributing to MI coupling
has frequently been divided into two broad physical catego-
ries. The first of these is the polar wind which exists on high-
latitude field lines connecting to the interplanetary medium
and the geomagnetic tail. Several tutorials by Schunk [1986,
1988a, 1988b] and reviews by Ganguli [1996] and Yau et al.
[2007] provide a complete picture of the historical develop-
ment of polar wind studies. The second region where iono-
spheric outflows are important is the plasmasphere, where
closed field lines allow this region of the inner magnetosphere
to become saturated with thermal ions (e.g., see the review by
Singh and Horwitz [1992]).
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[3] The present generation of ion upflow models is based
either on a truncated series of higher-order velocity moments
[e.g., Schunk and Watkins, 1979; Barakat and Schunk,
1982a, 1982b; Mitchell and Palmadesso, 1983; Khazanov
et al., 1984; Gombosi et al., 1985; Singh and Schunk, 1985;
Gombosi and Killeen, 1987; Ganguli and Mitchell, 1987,
Ganguli et al., 1993; Rasmussen and Schunk, 1988; Demars
and Schunk, 1989, 1994; Moffett et al., 1989; Singh and Torr,
1990; Kordsmezey et al., 1992] or on kinetic methods
including simplified hybrid PIC simulations [e.g., Barakat
and Lemaire, 1990; Wilson et al., 1990; Demars and
Schunk, 1989, 1992; Wilson, 1992; Barakat et al., 1993,
1995; Miller et al., 1993, 1995; Barakat and Schunk, 2001;
Horwitz and Zeng, 2009; Barghouthi et al., 2011] and direct
solution of the kinetic equations [e.g., Lemaire and Scherer,
1972; Lie-Svendsen and Rees, 1996; Khazanov ei al., 1997).

[4] These techniques have been further applied to study
the global nature of ion upflow [e.g., Schunk and Sojka,
1989; Gardner and Schunk, 2004; Barakat and Schunk,
2006; Glocer et al, 2009]. Both of these methods have
powerful strengths and considerable weaknesses that have
been reviewed and discussed by Echim et al. [2011].

[5] The higher-order fluid models have serious limitations
when they are applied to regions where collisions are infre-
quent or negligible. These limitations are a result of a fun-
damental approximation used by all generalized transport
models: the models are based on a perturbation approach
which assumes distribution functions are close to Maxwellian
or bi-Maxwellian, This approximation makes fluid models
computationally efficient, but limits their applicability at
higher altitudes. The bi-Maxwellian based perturbation
approaches are more appropriate for gyration dominated
plasma, but still require collisional dominance. It is well
known that collisions drive the distribution function toward
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equilibrium: this process is the physical reason behind all
velocity moment based approximations. A natural consequence
of this is that as collisions become less and less frequent, the
velocity distribution can develop highly nonequilibrium fea-
tures (such as conics or double humps) that cannot be accounted
for with perturbation methods. To put it plainly, generalized
transport methods lose validity in collisionless regimes and
must be replaced by a kinetic treatment.

[6] True kinetic methods provide a full solution for the
multispecies phase-space distribution function with respect
to seven independent variables: time, three-dimensional
location, and the particle velocity vector. Results from a
kinetic solution can be directly compared with in situ
observations of the ion distributions by spectrometers on
rockets and satellites with no need to take moments of the
measurements, The full informational content of the data
may be exploited in this type of comparison. By looking for
characteristic “signatures” in the distribution function, one
would be able to identify which physical mechanisms are
responsible for certain ion outflow events.

[7] The disadvantage of a kinetic treatment is that it is
computationally demanding, and that development of ade-
quate solution methods is not straightforward. Presently no
existing plasma outflow model is based on such an approach
and it is not likely that anyone will be able to develop one in
the near future. Also, most of the previous kinetic iono-
spheric outflow studies have used the statistically based
Monte Carlo technique [e.g., Barakat and Lemaire, 1990;
Wilson, 1992; Miller et al., 1993; Barghouthi et al., 1993].
This method is encumbered with random uncertainties from
the particle simulation, as described by Miller and Combi
[1994] and Barakat et al. [1998]. Therefore, great care
must be taken when applying this technique.

[¢] Another approach, and the one applied in this study, is
to use the Fokker-Planck collisional operator, similar to the
studies by Khazanov er al. [1994) and Lie-Svendsen and
Rees [1996]. The main development of this paper and the
difference from all previous studies, however, is the use of
the exact form of the Fokker-Planck collisional operator
without any assumptions with respect to the distribution
function of the background particles. In this study the non-
lincar form of the Fokker-Planck collisional operator has
been solved self-consistently for the first time for space
plasma applications. This method will not have to deal with
the statistical uncertainties of a particle simulation because
the solution procedure of such a problem is not statistical in
nature [see Khazanov et al., 1994; Khazanov and Liemohn,
1995]. For the sake of simplicity, this paper will only
focus on the electron distribution function formation, leaving
the discussion of electrodynamic and Coulomb electron-ion
coupling to our forthcoming paper. It should be noted
though that the numerical approach developed here will be
exactly the same for the ion population of space plasma and
is therefore presented here in rather general form.

2. The Fokker-Planck Kinetic Equation

[9] As mentioned above, we will use the exact form of the
Fokker-Planck collisional operator to develop a complete
kinetic description of ionospheric plasma outflows from the
collision-dominated region to the collisionless magnetospheric
plasma, Such an approach provides a continuous calculation of
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the self-consistent coupling processes between the different
components of the ionospheric and magnetospheric plasmas
along geomagnetic field lines. The Fokker-Planck kinetic
equation, written in terms of the two Rosenbluth potentials
H,(v) and G,(v), in the presence of gravitational g, electric E
and magnetic B fields can be presented in the following gen-
eral form [Rosenbluth et al., 1957; Shkarofsky et al., 1966]:

af e 1 X = drngnete?
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Here /= f{t, r, v) is the distribution function, where r and v are
the position and velocity vectors, respectively; index a
denotes the background species with which the particle with
charge e and mass m collides; and n,, is the density of the
species . The Rosenbluth potentials H,(v) and G,(v) are
integrals over the distribution of the background particles
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[10] Previous use of the Fokker-Planck collisional operator
for ionospheric plasma outflows was restricted to its simpli-
fied, linearized, form by assuming that the thermal background
electrons and ions are static and have Maxwellian distribution
functions. This greatly simplifies the calculation of the
Rosenbluth potentials and equation (2) can be presented in an
analytical form. Such a linearized Coulomb collisional oper-
ator has been used in earlier calculations of superthermal
electron transport [Khazanov et al., 1979; Yasseen et al., 1989;
Khazanov et al., 1994] and in the polar wind model by Lie-
Svendsen and Rees [1996]. It should be stressed, however,
that in some cases the departure of the plasma distribution
function from a Maxwellian or bi-Maxwellian can be very
large, causing the linearized Fokker-Planck collisional opera-
tor to lose validity. For example, [Barakat et al., 1995], using
their Monte Carlo model, found that between the low-altitude
collision-dominated and high-altitude collisionless regions,
the H" velocity distribution becomes double-humped in
energy. The formation of this double hump is a natural con-
sequence of the interplay between the electrostatic ion accel-
eration and the velocity-dependent Coulomb (H™-07)
collisions. It may also occur in other regions of space plasma
and should be rigorously analyzed with the model being pro-
posed in this study. This will be the case not only for the ions
but also for the electrons. Such a unified treatment for the
electron distribution function is especially needed in the
presence of superthermal electrons. Artificial separation of
the electron distribution function into thermal and super-
thermal parts leads, in some cases, to unrealistically high
values of electron temperatures and particle fluxes [Tam et al.,
1995].

[11] As we pointed out in section 1, we use the exact form
of the Coulomb collisional operator (1) without any
assumptions with respect to the distribution function of the
background particles. In this case, the collisional operator
becomes nonlinear and depends on the plasma distribution
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4 = cos®

Figure 1. Geometry of the problem. Spatial coordinate s
along the magnetic field line. Principal variables in velocity
space are the velocity of the particle v and cosine of pitch
angle & = cos f.

function itself because collisions between similar particles
may no longer be neglected. Also, we expect that in some
cases the departure of the plasma distribution function from
Maxwellian can be very large and the linearized Fokker-
Planck collisional operator can lose validity, even for the
interaction between different kinds of particles. To deal with
this problem, we will transform equation (1) into a computa-
tionally manageable form below, as established and described
by Khazanov et al [1979, 1994, 1996; Khazanov and
Liemohn, 1995] for the case of superthermal electron trans-
port. Nonlinearity in equation (1) will be handled using an
iterative scheme similar to the case when we used the isotropic
part of the Fokker-Planck collisional operator to calculate the
electron distribution function in the collision-dominated
region [Khazanov et al., 1978, 1979].

[12] Another type of nonlinearity occurs in our model
through the development of the self-consistent electric field
that is part of the calculation of the hydrodynamic model and
the Fokker-Planck kinetic equation (1). The reason for the
formation of a self-consistent potential in a collisionless
plasma is this: high mobility electrons tend to overtake ions.
As a result, the electric neutrality of the plasma is violated
and an electric field appears which constrains the electrons,
forcing them, on average, to travel together with the ions.
This field also significantly affects the motion of the ions by
accelerating them. The electric field acts as a catalyst by
transferring the pressure of the electron gas to the plasma
ions; this pressure is proportional to the electron temperature,
T,. Therefore, when T, = T}, the effects of the self-consistent
electric field and the effects of the ions’ thermal motion are
generally of the same order of magnitude. Photoelectrons,
which form due to ionization of the atmosphere by solar
radiation, can alter the self-consistent potential in the space
plasma. The presence of the enhanced high-velocity tail in
the electron distribution will increase the number of fast ions.
Due to the enhanced ion acceleration in an expanding
plasma, the initial superthermal electron distribution function
could be changed. As we pointed out in the Introduction, the
electrodynamic electron-ion coupling will be ignored in our
current study for sake of simplicity. The calculation of the
self-consistent electric field will be included in the iteration
loop of the model in future studies, similar to the descriptions
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of Khazanov et al. [1997], based on the quasi-neutrality and
currentless conditions.

3. Description of the Model

[13] In the Earth’s strong magnetic field the distribution
function is highly symmetric in the plane transverse to the
magnetic field direction. It is therefore convenient to choose the
spatial coordinate ‘s’ along the local magnetic field line and in
the velocity space to choose the spherical system of coordinates
with polar axis along the local magnetic field line (Figure 1).

[14] Under assumption of azimuthal symmetry of the dis-
tribution function the equation (1) is transformed to the form

Y val LB L0 )

Here we omitted gravitational and electric fields. The vari-
able &, is the cosine of the angle between particle velocity
vector and magnetic field direction, or in other words it is
cosine of the pitch angle, which in our geometry corresponds
to the polar angle. Only inhomogeneity of the magnetic field
is included in the last term of the left hand side. This term is
responsible for conservation of the adiabatic moment of the
particle in the absence of collisions

1~ 1-§
B B

= const (4)

and represents the most important dynamic effect of trapping
particles in the Earth’s magnetic field.

[15] The Coulomb collisional operator will be in its exact
form, similar to [Khabibrakhmanov and Khazanov, 2000],
which in spherical system of reference in velocity space
takes the following form:
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in terms of the Rosenbluth potentials G and H. The integral
definitions (equation (2)) for these potentials are equivalent
to couple of Poisson equations in the velocity space

AH=—f, AG=H (12)
As was originally suggested by Rosenbluth et al. [1957];, itis
convenient to use a truncated series of Legendre poly-
nomials Ly(£) for the expansion in the angle variable £

S8 =) fL(E) (13)
k=0

This type of expansion has been widely used in fusion
research [e.g., Killeen et al., 1976], where magnetic particle
trapping and collisional transport is very sensitive to fine
details of the plasma particle distribution function. Khazanov
[1979] also used this approach in order to describe ionosphere-
plasmasphere transport of superthermal electrons. Pierrard
and Lemaire [1998] as well as Pierrard et al. [2001] used
similar expansions to study the polar wind and, more recently,
to obtain a self-consistent description of the electrons in the
solar wind.

[16] For the expansion coefficients Hyv) and Gyv)
then we have a set of second-order ordinary differential
equations:

VZ%H;( — k(k — 1) Hy = —V*f; (14)

2
£y

%\ﬂé%ck—k(k—nm =V Hj (15)
with appropriate boundary conditions. The solution again
can be expressed in terms of corresponding Green’s function
[Rosenbluth et al., 1957], for numerical purposes; however,
it is more convenient to solve corresponding boundary value
problems using standard finite difference approximation.

[17] It is convenient at this point to transform to dimen-
sionless variables. The spatial variable is normalized to the
length of the given magnetic field line § so that dimension-
less length along the field line varies from —1 to 1 when
particle moves from the boundary in Northern Hemisphere to
the conjugate point in the Southern Hemisphere

s — —1+2s5/S

We fix the maximum value of the velocity of the particle on
the grid V. With this choice the characteristic timescale of the
problem becomes S/ ¥, which is the time required for fastest
particles under consideration to travel the distance S. In
dimensionless variables equation (3) still has the same form
with dimensionless collisional strength defined as

. dmeSnin A )
Here we also assumed that distribution function is normal-
ized to unity. Therefore, the problem is characterized by only
one dimensionless parameter, the relative strength of the
collisional operator. This is very important step. As a result,
every numerical solution presented in the paper represents a
whole family of solutions. Changes in physical plasma
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density » and scaling velocity ¥ such that n / * leaves the
parameter " unchanged do not affect the solution of the
problem. Of course the interpretation of the result will change
as the “kinematic” timescale is still defined by » = §/ V and
the physically most meaningful interpretation of the dimen-
sionless parameter I' is the ratio of that “kinematic” timescale
to collisional timescale. When [" < 1 is small we expect most
of the particles collide very rarely with distribution function
deviating strongly from Maxwellian. In opposite regime I" =
1 the distribution function is expected to stay close to Max-
wellian form and the details of the deviation of the distribu-
tion function are fully described by the value of the parameter
and physical nature of the operator in the right hand site. The
results are also invariant under change of the particles mass
and charge which conserve the factor I

[18] Equation (3) is subject to boundary conditions. In the
spatial variable we specity the distribution function at s = —1
and s = 1. In the velocity space it is required that the flux of
the particles across the boundaries vanish. For the angular
variable corresponding fluxes vanish automatically as the
Fokker-Planck coefficients Dgg, Dy, Dy, are equal zero there.
In velocity variable some of the Fokker-Planck coefficients
are singular at v = 0, for instance D, and the boundary
condition

af =
.= 0
must be imposed. In the past, Khazanov [1979] and Pierrard
and Lemaire [1998] used this “regularity condition™ to avoid
singularities which appear at v = 0.

4, Numerical Implementation

[19] Numerical implementation of the equation (3) follows
the general scheme of time splitting for multidimensional
problems [Marchuk, 1975].

4.1. Integration Along the Trajectories

[20] In the absence of collisions the left hand side of
equation (3) conserves the adiabatic moment of the particle
given by (4). Therefore, for a given magnetic field profile B
() the particle moves in the plane (s; £) along the trajectories
defined by the integral of motion (4). These trajectories are
independent of particle velocity v and are shown in Figure 2
for dipole magnetic field as the lines connecting the grid
points. If we choose particular grid point (s; &) in this plane as
shown in Figure 2, the points (s + 1; k+ D and (s — 1; k— 1)
belong to the same trajectory. We can expand the value of the
distribution function f; + 1, ¢ + 1 at the point (s + 1; £+ 1) in
Taylor series

Listdrt =fictp—1 + (%)L}(Sm =8:9)

a
+ (5’5)” (Eh-l — 1) + oo

From expression (17) the centered spatial derivative in the
(s, &) plane at the grid point (s; k) is approximated as

£(f}:) Sitdr) =fiothar (ﬁ) &1 — =1
"Nos),y G/ o4

(17)

(18)
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Distance along the field line, s

Figure 2. Trajectories of the particles in (s, £) plane as defined by the conservation of the magnetic

moment of the particle.

here we also took into account that £ = £(s) along the trajec-
tory and used new variable z

ds

£(s)
Using approximation (18) in the left hand side of (3)

(_Q_f') e A e U e (@) Eril = &b
ot sk Zspl — Zy—| ¢/ sk Takl T Ep-1

y (ﬂ 148 ﬁ)
2 Bdsot),,
one can see that the last two terms cancel each other when

i _(‘ _ ld_B)
B 2 Bds/,

(19)

(20)

Zeprl — Zg-1

But this is just a finite difference approximation of the
equation for trajectories (4). In other words, when grid points
(s —1,k— 1) and (s + I, £+ 1) belong to the same trajectory
as point (s, &), the left-hand side of equation (3) has simple
finite difference approximation

1k _f;—l,k—l

&,

and conservation of the adiabatic moment of the particle is
accounted by nonuniform grid, where all the grid points
belong to trajectories of the particle. As we show section 4.2,
this procedure is able to completely eliminate numerical dif-
fusion in the absence of collisions. We note that Lie-Svendsen
and Rees [1996] also obtained a solution to the Fokker-
Planck equation for the case of polar wind minor ion outflow,
but they used a standard finite difference rather than our
approach which chooses grid points belonging to the

(21)

Zypl — Ty

trajectories of the particles in absence of collisions. More-
over, their approach was for a steady state solution, while our
approach is for a time-dependent solution.

4.2. Time Splitting

[21] The time splitting technique allows one to use inde-
pendent approximations of the differential operators acting
in each of the independent variables. Equation (3) is repre-
sented as

M

¥ L,
5= L (22)

Then M equations
af’—L-f, i=1.M (23)

=
are solved in succession using as an initial value result of the
previous fractional time step f;_;. This technique is very
flexible in allowing addition of new terms. The second-order

approximation in time can be achieved by proper choice of
the operator splitting in representation (22).

4.3. Testing the Code

[22] In this section we will validate the quality of the
numerical approach. In particular, we will carry out four
carefully crafted tests that demonstrate the model’s fidelity
to the well known properties of the Coulomb collisional
operator, the model’s low numerical diffusion, and a com-
parison with previous models. The following list provides a
short description of each test with the complete results and
details left to sections 4.3.1-4.3.4.

[23] 1. One of the most important properties of the Cou-
lomb operator is conservation of density and energy of the
distribution during the process of relaxation toward a Max-
wellian form. We test the Coulomb collision operator with a
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Figure 3. Relaxation of the initial streaming distribution function (24) toward Maxwellian.

fairly arbitrary initial distribution and follow its relaxation to
a Maxwellian distribution (section 4.3.1).

[24] 2. An important property of the transport operator in
the left hand side of equation (3) is the complete isolation of
the trapping region from the loss cone. In the absence of the
collisions, particles are trapped in the equatorial region or are
freely moving along a magnetic field line from one end to the
other; there is no diffusion into or out of the trapped region.
We test this property by turning off the collision terms and
considering an upflowing population in the ionosphere that
completely fills the loss cone region (section 4.3.2).

[25] 3. Inside the trapped region any initial nonuniformity
of the distribution function along the trajectory of the parti-
cle becomes quickly “bounce™ averaged and uniform. We
illustrate that important property by considering convective
phase mixing of the distribution in the absence of collisions
(section 4.3.3).

[26] 4. Sharp boundaries can appear between trapped and
free motion regions as result of collisions. This effect was
the subject of numerous studies in the past. We compare our
model results against these previous studies as an additional
test (section 4.3.4).

4.3.1. Relaxation to Maxwellian Distribution

[27] In this test the convection term was turned off. It is

assumed that distribution function is independent of the

spatial variable but has an arbitrary dependence on velocity
and pitch angle. Figure 3 consists of several snapshots of the
time evolution of an initial distribution defined by

F(E,v) = 101 exp(—1?/0.08) €2 (24)
The space-pitch angle grid corresponds to L = 2 with total of
75 grid points at the equator. The number of velocity grid
points has been taken to be 64. Although the problem has
been solved in spherical system of coordinates in velocity
space, the results have been transformed to v, = vcos#, v, =
vsinfl space for presentation. In this test, special attention has
been drawn to the conservation properties of the numerical
model. It was found that density and energy of the distri-
bution is conserved within a fraction of a percent on colli-
sional time scales (Figure 3).

28] The final distribution is shown in Figure 4. Here the
difference between calculated distribution function and
Maxwellian 0.9 exp(—v* / 0.08) has been plotted for every
value of the pitch angle. As we can see, the distribution
function has relaxed to a Maxwellian with relative error of a
fraction of a percent for all pitch angles.

4.3.2. Loss Cone Passing With No Collisions

[29] The second new feature of the model is integration

along the (rajectories. This technique helps to virtually
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Figure 4, Relaxation of the initial distribution function:
approximation error.

eliminate the numerical diffusion across the trajectories in
the absence of interparticle collisions, This important prop-
erty is illustrated in Figure 5. Here the collisions have been
turned off, and we start the calculations with an empty mag-
netic field line. At one of the ionospheric boundary the dis-
tribution function is specified such that the loss cone is
populated but not the trapped region. As is clear from the
results, the trapped region remains completely empty every-
where along the field line with a step-like increase at the loss
cone boundary.
4.3.3. Convective Phase Mixing of the Distribution
in the Absence of Collisions

[30] As the second test of the concept of integration along
particle trajectories the evolution of the initial distribution
function with the maxima inside the trapped region has been
modeled. Figure 6 (top left) shows an initial distribution
which is localized at equator inside the trapped region and is

a) T=20,v=05

; 0
Distance, s

1 -1
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moving toward the right boundary. The distribution is con-
vected toward the right boundary as can be seen in Figure 6
(top right). Later on, particles are reflected and move back
toward the left boundary, as Figure 6 (bottom left). The
circulation along the trajectories inside the trapped region is
differential. Particles with larger velocity move faster along the
trajectories and the initially localized maxima, even for the
particles with the same velocity v as in Figure 4, is being dis-
persed by the differential circulation. At later times (Figure 6,
bottom right), the distribution attains a characteristic “*hat-like”
shape, where distribution is completely smoothed along the
particle trajectory. As before, in the absence of collisions there
is virtually no diffusion of the particles across the boundary of
the trapped region.

[31] The effect of rapid phase mixing of the particles
inside the trapped region is the basis for the so-called
“bounce-averaged” description of the plasma, where the
assumption that the distribution function is constant along
the trajectory of the particle in s space considerably sim-
plifies the description.

4.3.4. Comparison With Earlier Model

[32] Khazanov et al. [1993] used the linearized coulomb
collisional operator in order to study the evolution of
superthermal electron component. In their model the mir-
roring term in equation (3) has been eliminated by direct
change of angle variable £ to &, according to the adiabatic
invariant (4).

[33] In order to verify the concept of integration along the
trajectories the test calculation was performed on exactly
same, linearized model of Khazanov et al. [1993, equation (1)]
but using algorithm presented in this paper. The result of the
comparison is shown in Figure 7 as an equatorial distribution
function for high-energy 50 eV electrons against the pitch
angle at the L shell L = 3. As shown in Figure 7, integration
along the particle trajectories yields a result very close to dis-
tribution obtained earlier by a different technique.

5. Results and Discussions

[34] The above tests of the numerical model has demon-
strated that it is capable of accounting for particle convection

b) T =690, v=0.5

Figure 5. Refilling of the empty field line tube in the absence of collisions, There is no numerical diffu-

sion into the trapped region.
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Figure 6. Phase mixing of the initial distribution function with maximum at the equator,

without introducing spurious numetical diffusion between
the loss cone and trapped region. In this section we present
results of several simulations of the dynamics of the particle
distribution function in the plasmasphere. We assume a
magnetic dipole configuration and L = 2. In general, how-
ever, this model can be adjusted to use an arbitrary magnetic
field confliguration,

5.1. One-Sided Refilling of the Initially Empty
Plasmasphere

[35] As the plasma particles are treated in our model in a
self-consistent and unified fashion it is now possible to
compute the refilling of completely empty plasmasphere
with a given source at the ionospheric boundary. The models
with linearized version of collisional operator always assume
the presence of a background plasma and therefore are not
capable of modeling a completely empty plasmasphere.
Moreover, such models are incapable of handling the refill-
ing of the core low-energy plasma.

[36] For L = 2 and an initially empty magnetic flux tube,
the distribution function at the ionospheric boundary is taken
in the form

0.1 exp(—*/0.05) (25)

There is no specification of the particles in our model, which
is described by only one dimensionless parameter (16).
Thus, as we mentioned above, the developed approach is
applicable for electron and ions. In Figures 8 and 9 the time
evolution of one-sided refilling for parameter value T = 1

Comparison

0.009
0.008 |
0.007
0.006
0.005
0.004
0.003
0.002
0.001

0
0O 20 40 60 80 100 120 140 160 180
Pitch angle, &

Figure 7. Comparison of the stationary distribution fune-
tion for 50 eV electrons at the equator 1. = 3 with that com-
puted by Khazanov et al. [1993].
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Figure 8. One-sided refilling of the empty plasmaspheric tube with L = 2: distribution function at v = 0.5
as function of the distance s along the field line and cosine of the pitch angle €.

is presented. Figure 8 (top left) shows the earlier stage of the
refilling process. The loss cone is quickly filled by the
source at the left boundary, while the trapped region remains
essentially empty. At later times the small amount of slow
particles, which has entered trapped region due to finite
collisional strength, appears as a component moving back-
ward, from the right to the left (negative £). Particles accu-
mulate in the trapped region, with the peak intensity at the
boundary of the trapped region.

[37] Finally, a quasi-stationary state is approached, where
the detailed balance between convection and collisional
diffusion in velocity space gives rise to the distribution
function, which is far from a Maxwellian distribution. This
is even more clear from the high energy part of the distri-
bution function shown in Figure 10.

5.2. Relaxation of an Initially Maxwellian Distribution
in the Plasmasphere

[38] In order to understand the importance of convection
and particle trapping, the model with an initial isotropic
Maxwellian distribution has been calculated. The distribu-
tion at the boundary and initial distribution throughout the
magnetic tube line is Maxwellian. The density of the initial
distribution is nonuniform along the field line and is pro-
portional to magnetic field strength B(s). Evolution of the
distribution is shown in the same format as before. Figure 11

shows the distribution of particles with v = 0.67 for four
different times. The distribution near the right boundary of
the magnetic tube line, s = —0.96 is shown in Figure 12. The
redistribution of the particles during the relaxation is clear
with a transient appearance of anisotropy and overall change
in shape. Although the distribution for long time evolution
appears to be isotropic at low and intermediate energies, the
strong anisotropy builds at high energies. This is shown in
Figure 13 where the high-energy part of the same distribu-
tion function as is shown in Figure 11 (bottom right).

5.3. Particle Precipitation Into the Loss Cone With an
Initially Maxwellian Distribution Function of Particles

[39] The process of particle precipitation from the plas-
maspheric tube is modeled again with an initially isotropic
Maxwellian distribution everywhere in the tube, The evo-
lution of the computed distribution function at velocity v =
0.67 is shown in Figure 14. The particles quickly precipitate
from the loss cone. It takes much longer for particles in the
trapped region as a result of collisions to scatter to loss cone
and precipitate. The velocity distribution function close to
the right boundary at s = —0.96 is shown in Figure 15. It is
clear that a strongly anisotropic distribution is formed due to
the precipitation near the ionospheric boundary. The high-
energy tail of the distribution at 7= 800 is shown separately
in Figure 16 and demonstrates that the anisotropy of the
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Equatorial Distribution, T=2.0

Equatorial Distribution, T=4.4

0.1
0.08
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0.04
0.02

Equatorial Distribution, T = 40.0

Figure 9. One-sided refilling of the empty plasmaspheric tube with L = 2: distribution function at s =
—0.96 as function of the velocity v and cosine of the pitch angle £,

Equatorial Distribution, T = 40.0

Figure 10. One-sided refilling of the empty plasmaspheric tube with L = 2: high-energy part of the dis-
tribution function at s = —0.96 as function of the velocity v and cosine of the pitch angle &
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Figure 11. Relaxation of the initial Maxwellian distribution function to stationary distribution at v = 0.67
as a function of distance s and the cosine of the pitch angle £ = cos 0.
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Figure 13. High-energy part of the stationary distribution at s = 0.96 as function of velocity v and cosine

of pitch angle £ = cos .
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Figure 14. Precipitation from the plasmaspheric tube with L = 2: distribution function at v = 0.67 as a
function of distance s and cosine of pitch angle £ = cos @.

13 of 16



Al11203 KHAZANOV ET AL.: IONOSPHERIC OUTFLOWS—ELECTRONS Al1203

Distribution at s=-0.96, T = 0.0 Distribution at s=-0.96, T = 200

0.07

0.01

i Y.
Velocity, v =

Distribution at s=-0.96, T = 400 Distribution at s=-0.96, T = 800

Figure 15. Precipitation from the plasmaspheric tube with L = 2: distribution function at s = —0.96 as a
function of velocity v and cosine of pitch angle £ = cos 6.

Distribution at s = -0.96, T = 800
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Figure 16. Precipitation from the plasmaspheric tube with L = 2: high-energy portion of the distribution
function at s = —0.96 as a function of velocity v and cosine of the pitch angle £ = cos 0.
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distribution function is very strong due to the very slow
collision rate of high-energy particles.

6. Conclusions

[s0] The kinetic Fokker-Planck model with an exact non-
linear Coulomb collisional operator has been implemented
numerically and tested. The concept of integration along the
particle trajectories and time splitting technique has been
developed and used. This allows us to obtain an accurate
description of collisional relaxation of the particles in the
presence of fast convection along the field lines in the loss
cone, rapid circulation inside the trapped region, and relatively
slower collisional diffusion of velocity space. The numerical
model has been used to describe the plasma dynamics and
transport in the plasmasphere between the conjugate regions of
the ionosphere. The numerical modeling results have been
presented in the form of time-dependent distribution functions
of the charged particles along the geomagnetic dipole mag-
netic field line as a function of velocity and pitch angle.
Results for high-energy tails of the distribution are compatible
with the previous models, based on a simplified description of
the Coulomb collisions.

[41] The use of exact form of Coulomb collisional opera-
tor allows us to overcome most serious limitations of the
linearization procedure used in previous research. As a
result, a complete picture of particle distribution function is
available. This represents a major step toward the accurate
self-consistent global modeling of the ionospheric outflows
with inclusion of self-consistent electromagnetic effects and
multiple plasma components.
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