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Abstract 
Black Kapton XC polyimide was flown as part of the Polymer Film Tensile Experiment (PFTE) on 

Materials International Space Station Experiment 6 (MISSE 6). The purpose of the experiment was to 
expose a variety of polymer films, typical of those used for thermal control blankets or supporting 
membranes on Earth orbiting spacecraft, to the low Earth orbital (LEO) environment under both relaxed 
and tension conditions. Black Kapton XC under tensile stress experienced a higher erosion rate during 
exposure in LEO than the same material that was flown in a relaxed condition. Testing conducted to 
determine the magnitude of the stress and erosion dependence using a ground-based thermal energy 
atomic oxygen plasma showed a slight dependence of erosion yield on stress for Kapton HN and Black 
Kapton XC, but not to the extent observed on MISSE 6. More testing is needed to isolate the factors 
present in LEO that cause stress dependent erosion. 

Introduction 
Thin film polymers are used in many spacecraft applications for thermal control (multi-layer 

insulation and sunshields), as lightweight structural members (solar array blankets, inflatable/deployable 
structures) and have been proposed for propulsion (solar sails). Polymers in these applications are 
exposed to the space environment and are vulnerable to degradation by solar ultraviolet radiation, solar 
flare x-rays, solar wind electrons and protons trapped in Earth’s magnetic field, temperature and orbital 
thermal cycling, and low Earth orbit (LEO) atomic oxygen (Ref. 1). In applications where the polymer 
film is under tension while exposed to these environmental factors, it is important to understand the effect 
of stress in combination with the environment on the durability of thin polymer films. Polymer films were 
flown previously in the Polymer Film Thermal Control Experiment and the Gossamer Materials 
Experiment as part of Materials International Space Station Experiment (MISSE) 1 as well as on MISSE 
3, MISSE 4, and MISSE 5 (Refs. 2 and 3). The MISSE 6 exposure is different from prior such 
experiments in that a number of the samples were designed to be exposed while under tension to better 
simulate their use in space and determine if the stress level affects the durability. The dog-bone shaped 
tensile samples of polymers were flown on both the ram and wake facing sides of the MISSE 6 Passive 
Experiment Containers (PECs). A description of all of the samples flown as part of PFTE is contained in 
Reference 4. This paper focuses on the results observed for Black Kapton XC flown on MISSE 6 and the 
results of ground testing conducted in an attempt to gain a better understanding of the erosion observed  
in LEO. 
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Flight and Ground Based Experiment Description and Procedure 
MISSE 6 Environment and Ground Based Atomic Oxygen Exposure 

MISSE 6 was composed of two Passive Experiment Containers (PECS), 6A and 6B. Both PECS had 
one side of the suitcase style containers facing ram and the other side facing wake. They were both 
installed on the European Columbus module of the International Space Station (ISS) on March 22, 2008, 
during the flight of STS-123. They were retrieved on September 1, 2009, by the crew of STS-128 after 
slightly over 17 months in LEO. Environment exposure condition estimates that have been determined to 
date are the atomic oxygen exposure level on each side and the UV radiation level (Refs. 5 to 7). There 
were also two Kapton HN/VDA tensile dogbones that were flown as part of this experiment on the wake 
side of MISSE 6A from which scanning electron microscope images of protected locations on the surface 
were used to determine the erosion depth and ultimately the atomic oxygen fluence (Ref. 4). All of the 
data seemed in good agreement with an estimate of the atomic oxygen arrival fluence for the ram side of 
6A and 6B of approximately 2×1021 atoms/cm2, and for the wake side approximately 1.2 to 1.4×1020 
atoms/cm2. This indicates that the wake side of MISSE 6, which was to have received very low atomic 
oxygen exposure was oriented in the ram direction long enough to have received an atomic oxygen dose 
about 6.5 percent that of the ram oriented side.  Estimates of the UV radiation exposure in equivalent sun 
hours (ESH) were 2600 ESH for the ram sides of 6A and 6B and 1950 ESH for the wake sides of 6A and 
6B (Ref. 7). Temperature, thermal cycling, and ionizing radiation estimates were not available at this 
time. 

Exposure to atomic oxygen for the ground based tests was conducted in an AXIC LF-5 plasma 
system pumped with a Varian SH110 Scroll Pump. Air was used as the feed gas and a radio frequency 
power of about 36 W was applied to the internal electrodes to form the thermal energy (~0.04 eV) atomic 
oxygen plasma that was used to expose samples placed inside the chamber. The effective atomic oxygen 
fluence for these tests was about a factor of 6 higher than for the flight samples. 

Experiment Design for Application of Tensile Stress 

The flight experiment was designed to allow some of the polymer dog-bone type samples to be 
exposed under a tensile load typical of expected conditions for the James Webb Space Telescope 
sunshield. The tensile load of approximately ~2.22 N (0.5 lb) was applied by mounting the sample in a 
holder similar to that shown on the left side of the photo in Figure 1 and then compressing a spring with a 
spring constant of ~385 N/m (2.2 lb/in.) by approximately ~0.0058 m (0.227 in.) to put the sample under 
an approximately constant tensile load. The drawing in Figure 1 shows a double sample holder where the 
sample on the left did not have an applied tensile stress and the one on the right did. For the samples 
exposed under stress, the resulting stress was dependent on the polymer film thickness per Equation (1) 
with an average gage width of approximately 0.0032 m (0.126 in.). For the Black Kapton XC samples, 
the applied stress was ~2.76×107 N/m2 (~4000 psi) as the films were 2.54×10–5 m (0.001 in.) in thickness. 

 Stress = (Force/Area) = (Force)/(Gage width) * (Thickness)  (1) 

For the ground based testing, the same sample holders were used but slightly modified to allow other 
spring compression lengths to achieve a wider variety of tensile stress on the samples. This was 
accomplished by modifying the rod underneath to allow greater travel of the spring and through the use of 
copper u-shaped shims to compress the spring and place the sample under a fixed tensile load.  
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Figure 1.—Photo of stressed (left) and unstressed (right) sample 

holders from above, and a side view drawing of a holder showing the 
unstressed sample position on the left and the stressed on the right. 
(Dimensions are in inches.) The stressed sample is fixed on the left 
side and allowed to move to the right by having the mount hole on 
the right slotted. Tension is supplied by compression of the spring. 

 

Sample Description 

All of the samples, both for flight and for ground testing were punched from polymer sheets using a 
die manufactured according to specimen “Type V” under the American Society for Testing and Materials 
(ASTM) Standard D-638 (Ref. 8). The dog-bone shaped die had a gage length of 7.62 mm (0.3 in.) and an 
average gage width of 3.21 ± 0.02 mm (0.126 in.). The Black Kapton XC (100XC10E7), a carbon 
pigmented polyimide, was manufactured by DuPont. It had a vapor deposited aluminum coating on the 
back that was originally intended to provide electrical contact for an active sample break indication but 
due to some wiring issues prior to fight, the flight samples were not wired for active monitoring. The 
unflown extra control samples were used for the ground experiment testing. There were also Kapton HN 
samples flown on MISSE 6 but the ones on the ram side had a SiOx protective coating on the space 
exposed side to prevent erosion by atomic oxygen, and the ones on the wake side were not under stress. 
For ground tests, Kapton HN manufactured by DuPont of 5.08×10–5 m (0.002 in.) in thickness was used 
to obtain atomic oxygen flux maps and for stress erosion comparison for the ground based experiments 
due to the limited supply of Black Kapton XC samples. The Kapton HN samples were punched from the 
same die, but a thin layer of magnetron sputter deposited gold was applied to the back of the sample to 
prevent atomic oxygen erosion of the back side. Thin pieces of aluminum foil were cut to fit and wrapped 
over the grip and transition area on the front side of the Kapton HN and Black Kapton XC samples, so 
that only the gauge length would be exposed to atomic oxygen for more accurate measurement of the 
erosion at a fixed stress level, before they were secured in the holder.   

Analysis 

The mass of the samples before and after exposure was measured using a Sartorius ME5 
microbalance. Samples were dehydrated at a vacuum of approximately 8.67 Pa (65 mTorr) for 48 hr prior 
to weighing to minimize errors due to absorption of moisture from the air. The change in mass of the 
Kapton HN was used to determine the atomic oxygen fluence at the surface according to ASTM E-2089 
(Ref. 9). Change in mass was also used to determine the erosion during flight or in ground tests.  Overall 
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and close up photos were taken of the samples post flight, and before and after ground testing, using a 
Sony Cybershot DSC T-9 camera. Initial observations were recorded and a few selected samples were 
gold coated and mounted for scanning electron microscopy with a JEOL JSM-6390 LV scanning electron 
microscope (10 keV) with energy dispersive analysis by X-rays (EDAX). 

Results and Discussion 
Kapton XC Samples on MISSE 6 

Two unstressed samples of black Kapton (XC) were exposed on the ram side of MISSE 6. Both 
samples appeared to show evidence of texturing of the surface with a darker appearance near each end of 
the dog-bone sample. One of these samples designated AO-S-1 was inadvertently put under stress when 
one end of the sample holder was moved, which changed the overall sample length by ~0.0017 m 
(~0.068 in.). This sample was installed in a sample holder initially designed for putting the sample under 
a tensile load so the holder on the top side of the sample had a slotted mount hole. It appears that the 
sample was inadvertently bumped and the one end of the holder moved putting the sample under a high 
tensile stress even though it was not initially intended to be stressed. There was a cable that was passed up 
between this sample tray (G3) and the neighboring tray very close to AO-S-1 which may have provided 
the opportunity for inadvertent bumping of the one end of the sample holder during experiment 
installation. The movement put a strain on the sample (for an undetermined length of time) of ~0.07. This 
represents approximately 26 percent of the maximum strain for Kapton XC. The resulting stress on the 
sample was 2.32×108 N/m2 (33,600 psi) which is greater than the yield strength of Kapton XC. The 
sample had a silvered appearance on the end that was stretched and distorted which is evident from the 
photograph in Figure 2.  

 
 

 
Figure 2.—Kapton XC flown on ram side of 

MISSE 6 (AO-S-1) showing stretching of the 
sample at the silver area at the top of the 
sample in the photograph 
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The appearance of the sample raises two questions. The first is why the stretched end appears silver 
and the second is why the black Kapton appears to be darker in the region of higher stress? In order to try 
to answer these questions, SEM and EDAX analysis was performed on the sample at selected locations 
shown in Figure 3, SEM images in Figure 3 show a significant change in surface morphology from the 
center to the edge. The center portion has a smooth lumpy appearance typical of black Kapton which 
progresses to an area which looks as if it had a thin film gossamer coating on it with many cracks 
perpendicular to the pull direction. There are fine cone-like peaks in areas where there is cracking which 
progresses to almost all peaks with thin wisps of film on the surface nearer to the silver area. At the edge 
where the sample separated, there are only a few short peaks remaining. EDAX scans indicate mostly 
carbon and oxygen signals in the central region progressing to a high concentration of aluminum near the 
stretched end. This sample was originally intended to be put under stress and wired so there was a vapor 
deposited aluminum coating on the back side. It appears that as the stress on the sample is increased, the 
erosion rate of the black Kapton increases which results in first development of surface texture cones and 
a thin film of ash from oxidation of the black Kapton. This progresses to loss of ash and erosion of the 
mostly carbon cones to the point at which the vapor deposited aluminum is predominantly what is left 
looking like a blanket of snow at the base of the remaining carbon peaks. If erosion of the Kapton XC is 
dependent on the level of stress, then there should be an observable difference between the stressed and 
unstressed samples of Kapton XC that were flown on the wake side of MISSE 6.  

The stressed and unstressed samples of Kapton XC flown on the wake side did appear very different 
from each other. The two unstressed samples appeared slightly textured while the two stressed samples 
were very dark matte black in appearance. A photo of the two sample pairs is shown in Figure 1. The 
stress level during exposure was ~2.76×107 N/m2 (~4000 psi) and the strain was ~0.008 which represents 
about 3 percent of the maximum strain.  The stress on the sample was about 24 percent of the tensile 
strength. This does not appear to be a significant amount of strain on the material but is enough to cause a 
difference in the appearance of the erosion of the material due to oxidation by atomic oxygen. Figure 4 
shows side-by-side SEM images at 45° tilt of the stressed (UV-S-2) sample of Kapton XC on the left and 
the unstressed (UV-U-2) sample of Kapton XC on the right. There is more surface texturing occurring on 
the stressed sample than the unstressed sample as can be seen in the top 2/3rds of the image. The bottom 
1/3 was under the sample mount and protected from erosion by atomic oxygen. The unstressed sample is 
only slightly different in appearance to the unexposed surface, while the surface of the stressed sample 
has undergone very noticeable erosion. 

 
Figure 3.—SEM images of selected positions on sample AO-S-1 exposed on the ram side of MISSE 6. 
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Figure 4.—Scanning electron microscope images of stressed (left) and 

unstressed (right) Kapton XC at 45° tilt. Top approximately 2/3 was 
exposed to the space environment on the wake side of MISSE 6 while 
the bottom ~1/3 was protected by the clamp holding the sample in place. 

 
To better quantify the erosion, both the stressed and unstressed flight samples (UV-S-1 and UV-U-1) 

were dehydrated and weighed. The samples had not been weighed prior to flight, so a pre-flight mass 
estimate was made by taking four measurements on each of six control specimens and using the average 
mass as the pre-flight mass for both samples. The resulting erosion yield for each sample (cm3/atom) was 
7.01×10–25 ± 9.94×10–25 for the unstressed sample and 2.93×10–24 ± 1.84×10–24 for the stressed sample. 
The error is large due to the very low change in mass and the error in the pre-flight mass estimate. In spite 
of this, the erosion yield for the stressed sample was still greater than the error. A rough estimate from 
this data is that the erosion yield for Black Kapton XC at a tensile stress of ~2.76×107 N/m2 (~4000 psi) is 
about a factor of 4 higher than for the same material not under stress. In order to obtain a better 
measurement and determine if there is a stress level dependence on erosion of Kapton and Black Kapton, 
ground tests were conducted with the samples at different stress levels. 

Ground Testing Using Thermal Energy Atomic Oxygen 

Dehydrated and weighed unstressed Kapton HN tensile samples were mounted in each of eight 
sample positions of the four modified flight sample holders sitting on an aluminum plate. The plate was 
placed in the vacuum chamber and the samples exposed to the RF atomic oxygen plasma. The mass 
change of each sample was used to determine the atomic oxygen flux at each position and the data from 
the flux map was used to correct the erosion data from the exposure tests with Kapton HN and Black 
Kapton XC under stress to account for spatial variation in the atomic oxygen arrival.  

Kapton HN samples were installed in the same sample holders and four of the samples were loaded to 
varying stress levels with two unstressed samples included for fluence witnesses. The atomic oxygen 
arrival ratio for the two unstressed samples was within error of that observed for the flux map so the 
fluence at the locations of the stressed samples was estimated using the flux map and fluence measured at 
the control locations. Figure 5 contains a graph of the resulting erosion yield (cm3 removed per incoming 
atom) as a function of tensile stress for Kapton HN. As can be seen from the graph, at stress levels above 
2×107 Pa, the erosion yield exhibited a slight increase with increasing stress.  

The erosion yield for two stress levels of Kapton HN normalized with respect to the unstressed 
erosion yield for that material was compared with that obtained for two Black Kapton XC samples 
exposed in the ground based atomic oxygen plasma chamber in the same positions and with the same 
spring compression level as that of the Kapton HN. The resulting stressed to unstressed erosion ratios 
shown in Figure 6 were within error of each other but much lower than the erosion ratio for the stressed to 
unstressed Black Kapton XC exposed on MISSE 6. The error in the flight data is not shown but is 
expected to be large in comparison to that for the ground based atomic oxygen exposure data. However, 
there was very little difference in the surface appearance of the ground test data compared with that 
observed on MISSE 6. 
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Figure 5.—Atomic oxygen erosion ratio as a function of stress for Kapton HN 
exposed to ground based thermal energy atomic oxygen. 
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Figure 6.—Ratio of stressed to unstressed erosion yields for Kapton 

HN, and Black Kapton XC exposed to a ground based thermal energy 
atomic oxygen plasma as a function of tensile stress compared to that 
for Black Kapton XC exposed on MISSE 6. 
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Conclusions 
Black Kapton XC exposed on MISSE 6 exhibited statistically a significantly higher erosion rate when 

placed under tensile stress as observed for the highly stressed sample on the ram side and two stress 
loaded samples on the wake side. Although a slight stress dependence was also observed in the ground 
based thermal energy atomic oxygen chamber for Kapton HN, and Black Kapton HN, the magnitude of 
the difference between the stressed and unstressed samples both in appearance and in the erosion yield 
was not the same as that observed in LEO. There are, however, differences between the ground based and 
LEO exposure environments which could cause this difference. There is an energy difference for the 
atomic oxygen (4.5 eV in LEO compared to 0.04 eV in the ground chamber) and different levels of UV 
radiation, temperature, and charged particles. The ground system also lacks energetic protons, electrons, 
and x-rays which are present in LEO. It is possible that two or more environment factors must be present 
to greatly affect the erosion rate of a stressed polymer such as Kapton HN and Black Kapton XC. Further 
testing is needed to isolate the factors which result in increased erosion under stress. 
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