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The main objective of this paper is to construct a turbulence model with a more 
reliable second equation simulating length scale. In the present paper, we assess the 
length scale equation based on Menter’s modification to Rotta’s two-equation model. 
Rotta shows that a reliable second equation can be formed in an exact transport equation 
from the turbulent length scale L and kinetic energy. Rotta’s equation is well suited for a 
term-by-term modeling and shows some interesting features compared to other 
approaches. The most important difference is that the formulation leads to a natural 
inclusion of higher order velocity derivatives into the source terms of the scale equation, 
which has the potential to enhance the capability of Reynolds-averaged Navier-Stokes 
(RANS) to simulate unsteady flows. The model is implemented in the PAB3D solver with 
complete formulation, usage methodology, and validation examples to demonstrate its 
capabilities. The detailed studies include grid convergence. Near-wall and shear flows 
cases are documented and compared with experimental and Large Eddy Simulation 
(LES) data. The results from this formulation are as good or better than the well-known 
SST turbulence model and much better than k-ε  results. Overall, the study provides 
useful insights into the model capability in predicting attached and separated flows.  

Nomenclature 
 
2-D =  two-dimensional 
Cf = skin friction coefficient 
Cp = pressure coefficient 

 = Production coefficient for the second equation 
 = Dissipation coefficient for the second equation 

 = turbulence viscosity coefficient  
Dj = Diameter of nozzle exit 
fc = compressibility function 
k = turbulence kinetic energy 
L = turbulence length scale 

 = von Karman length scale 
 = turbulence production 

U = velocity 
SST = Shear Stress Turbulence model 
u+ = inner wall variable for streamwise velocity 
y+ = inner wall variable for distance 

 = turbulence dissipation 
 = second turbulence equation variable 
 =  diffusion coefficient for first equation 
 =  diffusion coefficient for second equation 

 = von Karman constant 
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 = laminar viscosity 
 = turbulence viscosity 

 = density 
 = constants for the second turbulence equation 

I. Introduction 
 

While two-equation models have been used routinely for the last 50 years, they are based on kinetic energy 
equation and either dissipation or time-scale equation to evaluate length scale. These two scales are obtained 
from the solution of two presumable independent transport equations, like the k-ε or k-ω model or any other 
formulations that uses k equation. The mechanism of the second equation for determining turbulent length scale 
is not fully understood and a number of formulations use a special boundary condition for simulating wall 
boundary condition. Even the more complex model closures like Reynolds Stress models (RSM), or Explicit 
Algebraic Reynolds Stress model (EARSM) are still using length scale equation based on an underlying two-
equation model. Almost all two-equation models use the turbulent kinetic energy, k, and its transport equation as 
one of the primary variables. The exact transport equation for k can be modeled with few relatively 
straightforward assumptions.  

Historically, the modeling of the second equation is therefore purely heuristic, using dimensional arguments 
[1]. These models are only using strain-rate or vorticity derived from the mean flow resulted in only one scale 
from the equilibrium of source terms for both equations. In fact, the second equation is considered, in most 
cases, the weakest link in using turbulence models including much more complex approaches such as full 
Reynolds stress and hybrid RANS/LES formulations. It is very difficult to justify using any of the complex 
turbulence models without fixing or using a better form for the second equation. The main objective of the 
present paper is to assess a better form of the second equation. One of limited exceptions is the modeling concept 
proposed by Rotta [1], which can be formed in an exact transport equation for the turbulent length scale. L. 
Rotta’s equation is well suited for a term-by-term modeling and shows some interesting features compared to 
other approaches. The most important difference is that the formulation leads to a natural inclusion of higher 
order velocity derivatives into the source terms of the scale equation.  

In the present paper, three turbulence models based on Rotta’s k-kL two-equation model are implemented in 
the Computational Fluid Dynamics (CFD) solver. The formulations, usage methodology, and validation 
examples are presented to demonstrate the enhancement of PAB3Dʼs turbulence modeling capabilities. These 
models are based on the suggestion made by Menter et. al. [3-5] to replace problematic third velocity derivatives 
in the second equation with second velocity derivatives. This provides proper RANS performance in stable flow 
regions and allows the break-up of large turbulent structures for unstable flow regimes (for example, cylinder in 
cross flow, flow in cavities, …). Solutions from these models are compared with other forms of Reynolds-
averaged Navier–Stokes results and experimental data for different flows. We will also investigate the influence 
of some closure terms in the predictions of these models. 

To report the detailed studies including grid convergence, we will only present the results from the two-
equation k-kL. Results for all near-wall and shear flows, which are reported below, have been calculated using 
the structured multiblock grids, resolving the viscous sublayer with y+<1. All simulations have been carried out 
on highly refined grids, avoiding any grid refinement uncertainties. The results are compared with other 
turbulence models and available experimental or theoretical data. Most of the cases are taken from the cases 
compiled in the turbulence modeling resource page [6]. The purpose of this site is to provide a central location 
where RANS turbulence models are documented. Here is the list of validation cases that will be discussed in 
detail in the paper:  

 
A. 2D zero pressure gradient flat plate [6] will be compared with data from [6]. 
B. 2D backward facing step [6] will be compared with data from [7]. 
C. Flow over a hump model [8] will be compared with data from  [8-10]  
D. Axisymmetric subsonic jet [6] will be compared with experimental data from [11]. 
E. 2-D curved backward facing Step [6] will be compared with LES data from [12]. 
F. 2D periodic hill [6] will be compared with LES data from [12]  
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All the results show grid convergence and independent solutions. Only the backward step cases shows unsteady 
behavior at the medium and fine grid level. Some of the results are compared with data for PAB3D [13] and 
CFL3D [14] CFD codes. In all the comparisons, the results from these codes are computed at the fine grid level. 
In general, the results are as good as or better than the SST turbulence model compared with available data. 

II. Turbulence models 

 
 The three turbulence models, listed here, are based on the approach made by Menter [3-5]. For high-speed 

flow, the compressibility correction function has been added.  A complete list of coefficients used by all three 
models has been defined. The first model is based on Rotta’s k-kL (Φ =kL) with modification made by Menter 
by replacing velocity third derivative with a second derivative.  The second model is based on transforming the 

kL equation to a  formulation, which represents turbulent viscosity.  The third model is based on one-
equation, solving only the second equation and evaluates k with the assumption that production equals 
dissipation. The three models are casted in k-Φ form as follows: 

   (1)
 

   

   (2)
 

Where, 

         (3) 
 

The kinetic energy production is modeled as: 

 

          (4) 
The von Karman length scale, , is defined as: 

           (5)
 

 
Where, 
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To avoid overly large or small values of the length scale ratio, L/ , we set , where 

d is the distance from the nearest wall and Cl1 =10 and Cl2 =1.3. The upper limit in von Karman length scale is 
based on attached flow assumption that it is directly proportion to distance from the wall. This assumption is not 
true for separated flow.  We are proposing to reduce the upper limit in the separation region using production (P) 
to dissipation (ε) ratio as: 
 

        (6) 

The length scale, L, is calculated from the following equation:

 
           

         
 

To integrate the model through the viscous sub-layer, additional near wall damping terms are required. The 
following VSM terms are added to the right hand sides of the k and the φ equation, respectively (VSM): 
 

 

          

            (7) 

        

 
Where, 

 
To close the turbulence model, reference [3] used the following logarithmic requirements: 
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           (8) 

The final set of constants and coefficients for the  turbulence model as listed from reference [3]: 
 

 

        (9) 
To come up with the present set of constants and coefficients for the present : 
a) using the logarithmic requirements 
b) limit the range for  as suggested by Rotta [2] 
c) Calibrate both coefficients for the best results for cases A and D from the present paper. 

Below is the final list of constants and coefficients used in the present paper for  turbulence 
model: 
 

 

          

(10)

 

 
 
One-equation  
 

The current model k- formulation is well suited for the transformation to a one-equation model 
considering 

   (11) 
 
Where constants for this model are same as (9) above. Assuming equilibrium between production and 
dissipation, turbulent kinetic energy is calculated as follow: 
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           (12) 

III. Results and Discussions 

 

A. 2D Zero Pressure Gradient Flat Plate Case 
 

Figure 1 shows the sketch of the flat plate test case with boundary conditions used in this analysis. This is a 
subsonic M = 0.2 case at Re = 5 million based on unit length. The following plot in Figure 2 shows the 
convergence of the wall skin friction coefficient at x=0.97 using five levels of grid size with k-kL turbulence 
model. Each coarser grid is exactly every-other-point of the next finer grid, ranging from the super fine grid of 
544x384 cells to the very coarse grid of 34x24 cells. In the plot, the x-axis is plotting (1/N)1/2, which is 
proportional to grid spacing (h). At the left of the plot, h=0 represents an infinitely fine grid. The difference 
between the coarsest and finest grid is less than 0.0003 in skin friction. Only, the very coarse grid is out of order 
from the other levels. The surface skin friction coefficient, using the k-kL turbulence model on the finest 544 x 
384 grid cells over the entire plate, varies with respect to momentum thickness Reynolds Number, as shown in 
Figure 3. The k-kL results are in good comparisons with the SST solution computed using CFL3D code [6]. 

 Figure 4 shows the grid effects in predicting u+ using coarse, medium, fine and super fine grids. All the grid 
levels predict similar u+ variations with y+ except for the coarse grid that slightly under predicted these 
variations. Using the finest grid results, the variation of u+ velocity with respect to y+ predicted using k-kL, 
SST, and k-ε turbulence models is shown in Figure 5. The k-kL results are in very good comparisons with SST 
and Coles data taken from Ref. [6].  The k-ε results, as expected, largely under predicted the u+ levels through 
the entire y+ range that is caused by predicting much higher surface skin friction than k-kL or SST models.  

Turbulence kinetic energy and viscosity are other quantities used to validate the quality of turbulence model 
predictions. Figure 6 shows the grid convergence in the prediction of the kinetic energy values at x=0.97.  Only 
the coarse grid shows larger values of turbulence kinetic energy up to Z=0.01. The medium, fine, and superfine 
grid levels predicted very similar turbulence kinetic energy distribution.  Figure 7 shows comparisons between of 
the predicted turbulence kinetic energy using k-kL, SST, and k-ε turbulence models. The k-kL and SST results 
are in very good agreement, however, the k-ε results show much higher turbulence kinetic energy than either of 
the other two models. Figure 8 shows the grid convergence in the prediction of turbulence viscosity. Similar to 
the observation made for the kinetic energy, the coarse grid predicted much higher turbulence viscosity than 
other grids. This is caused by the fact that the coarse grid has less than 50 cells in the normal direction and less 
than 25 cells to capture the entire boundary layer.  
 

B. 2D Backward Facing Step Case 
 

The 2D backward facing step case is a backward step flow case with a sharp corner. A series of 2-D grids, 
nondimensionalized by the step height H, are used in this analysis taken from Ref. 6. As structured grids, these 
are comprised of 4 zones, connected in a one-to-one fashion. Each coarser grid is exactly every-other-point of 
the next finer grid, ranging from the finest of 256 x 256, 96 x 256, 384 x 448, and 128x448 cells to the coarsest 
64 x 64, 24 x 64, 96 x 112, and 32 x 112 cells. Figure 9 shows a portion of the coarse grid distribution. In this 
case, a turbulent boundary layer encounters a sudden back step, causing flow separation. The flow then 
reattaches and recovers downstream of the step. The Reynolds number based on boundary layer momentum 
thickness prior to the step is 5000. This corresponds to a Reynolds number of approximately 36,000 based on 
step height H. The boundary layer thickness prior to the step is approximately 1.5H.  The flow conditions for this 
case are: 

 
 M=0.128, Re= 36,000 (based on step height H), T=537 °R 
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One of the key measures of success for this flowfield of turbulence models is the prediction of separation and 

reattachment points downstream of the step. In the experiment [7], this was determined by laser oil-flow 
interferometer measurements of skin-friction and interpolation of the zero skin-friction location. The 
experimental reattachment point is around 6.26 +/- 0.1.  The Uref is the reference velocity at the center-channel 
near x/H=-4 (where H=1 grid unit). The coarse grid solution using the k-kL model is steady, where the other two 
grid levels are showing unsteady behavior as shown later in Figure 12. The time-average of the unsteady data for 
all cases is used to compare with experimental data.  Next, we evaluate the correction made for the upper limit of 
von Karmen length scale (equation 6), referred to as the modified k-kL model. Figure 10 shows the comparison 
in predicting the velocity distribution at different x/H locations using the original and modified k-kL models. 
There is no significant difference between the prediction using both models with exception of the velocity 
distribution at x/H=1. The skin friction results in Figure 11 shows more significant differences between the 
predictions from both models. In the region of attached flow up to x/H=2, there is no difference between both 
models as production to dissipation ratio is around 1.0 in the attached flow region. In the separated flow region, 
the ratio is much smaller than 1, which causes significant difference in prediction of skin friction. The original 
model is clearly under predicting the skin friction in the separated flow region and over predicts the skin friction 
in the region downstream the reattachment point. The modified k-kL model results are in very good agreement 
with experimental data.  

Figure 12 (a, b and c) shows the time-averaged streamline results from the coarse, medium, and fine grid 
solutions.  All solutions show two bubbles, one close to the corner of the step where the flow starts to separate 
and the other that contains the large separation bubble. The coarse grid produces a smaller first bubble and larger 
second bubble with reattachment location around x/H=6.78. The medium and fine grids produce very similar 
bubbles sizes and reattachment location is predicted at x/H=6.3 as shown in Figure 13.  

Figure 13 shows the comparisons between skin friction predictions using coarse, medium and fine grids.  The 
medium and fine grid simulations are in good agreement with experimental data in predicting the separation and 
reattachment locations. Figure 14 shows the skin friction comparisons between experimental data and k-kL, SST 
and k-ε simulations. The k-ε simulation predicts early separation and re-attachment location around x/H=5.4 
compared with experimental data of 6.26. The k-kL is slightly better than SST in predicting skin friction and re-
attachment point prediction. Figure 15 shows the velocity distribution comparisons between experimental data, 
and k-kL and SST simulations. The SST match the experimental data better at x/H=1 comparing with k-kL 
simulation. However, the k-kL is in closer agreement with experimental data for x/H= 6 and 10 locations.  

 

C. 2D Hump Case 
 

This is case 3 from the CFD 2004 validation workshop for Synthetic Jets and Turbulent Separation Control  
[8]. Case 3 is a Wall-mounted Glauert-Goldschmied type body, geometrically similar to that employed by Seifert 
& Pack [8]. The model itself is 23 inches wide between the endplates at both sides (each endplate is 
approximately 9.25 inches high, 34 inches long, and 0.5 inches thick with an elliptical-shaped leading edge). The 
model is 2.116 inches high at its maximum thickness point. In the present paper, we simulate the (baseline) case 
with flow conditions of M = 0.1 and Reynolds number approximately 1 million per chord. Only surface pressure 
and skin friction are compared with results from turbulence model simulations. Three grid levels are utilized to 
assist grid convergence with finest grid consisted of two zones 416x216 and 416x216 cells and the coarsest have 
104x54 and 104x54 cells.  This is based on structured 2D grid #5 from ref [8] as it is built with the top wall 
shape adjusted to approximately account for side plate blockage. Figure 16 shows a portion of the coarse grid 
distribution. In this case, the boundary layer is subjected to a favorable pressure gradient over the front convex 
portion of the body and separates over a relatively short concave section in the aft part of the body.  The flow 
then reattaches and recovers downstream of the hump.  

Surface pressure results from the modified and original k-kL turbulence models are compared with 
experimental data from surface mounted pressure tap [9 & 10] as shown in Figure 17. Both models compared 
well with experimental data with a slight improvement using the original model at x=0.8.  However, the skin 
friction prediction from the modified model is in pretty good agreement with experimental data as compared 
with original model, as seen in Figure 18.  There are very large differences between the original model 
prediction and experimental data in the separation region. The original model predicted the correct size of the 
separation bubble as compared with the modified model.  
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Figure 19 shows that there is very small effect of grid resolution on the surface pressure distribution. The 
turbulence model comparisons in Figure 20 show the k-kL turbulence model is slightly better than SST and k-ε 
turbulence models as compared with experimental data. Figure 21 shows that there is no effect of grid resolution 
on the skin friction results. The turbulence model comparisons in Figure 22 show the k-kL turbulence model is 
better than the k-ε and SST turbulence models from the pressure recovery region aft as compared with 
experimental data. 

 

D. Axisymmetric Subsonic Jet Case 
 

The axisymmetric subsonic jet case is to validate the quality of the turbulence models prediction of 
experimental data for shear flows. The experiment yielded measured velocities as well as turbulence quantities 
downstream of the jet exit using Particle Image Velocimetry (PIV) [11]. Velocity and turbulence profiles of 
interest are measured at the centerline (y=0) as well as other x-locations. In the present paper, we are comparing 
the turbulence model results with the centerline values for velocity and turbulence data. The grid used is taken 
from [6] and a snapshot is shown in Figure 23. The grid is made of 3 blocks of 96x96, 60x96, and 256x224 cells. 
Block 1 is the interior of the nozzle, block 2 is the external flow up to the nozzle and block 3 extends from the 
exit of the nozzle to x/Dj=40. Dj is the diameter of the nozzle exit.  Coarse, medium, and fine grid levels are 
used in the simulation where the coarser grid is exactly every-other-point of the next finer grid. It is important to 
note that this axisymmetric case is not a 2-D computation; it uses a 5o sector with one cell and symmetric 
boundary conditions on each side.  Mjet=ujet/ajet=0.51, whereas the "acoustic Mach number" ujet/aref is 
approximately 0.5. In the experiment, the axisymmetric jet exits into quiescent (non-moving) air. However, 
because flow into quiescent air is difficult to achieve for some CFD codes, here the solution is computed with a 
very low background ambient conditions (Mref=0.01, moving left-to-right, in the same direction as the jet). 

First, we are comparing the three grid levels with the experimental data to validate the grids. Figure 24 shows 
the comparisons between the different grid levels using k-kL turbulence model and experimental data for the 
normalized centerline axial velocity.  The nozzle centerline exit velocity is used to normalize the data.  There is a 
very small difference between all grid level results. The prediction of the model is in good agreement with 
experimental data, however, the jet core was predicted at around 7 diameters comparing with experimental data 
of around 6.  Also, the centerline velocity results show a slightly faster decay rate than the experimental data.  

The ability of the k-kLmodel in predicting shear flow with other turbulence models is shown in Figures [25-
26]. The jet core length is better predicted with the k-kL model as compared with the k-ε model as shown in 
Figure 25. In Figure 26, both the SST and k-ε models predicted a long core length around 10 as compared with a 
value of 7 predicted by the k-kL model and the experimental data of around 6. The rate of decay predicted with 
the SST model is clearly the fastest as compared with the other models and k-kL predicted most closely with the 
experimental data in comparisons. The turbulence kinetic energy comparisons between turbulence models and 
experimental data are shown in Figure 27.  The maximum value of kinetic energy is better predicted with the k-
kL model as compared with the other models. The SST model overpredicted the turbulence kinetic energy level 
in comparisons with the other models. All models failed to replicate the slow increase of turbulence kinetic 
energy for x/Dj < 6.  
 

 

E. 2-D Curved Backward Facing Step Case 
 

In this paper, we are also comparing turbulence models predictions with LES CFD data provided by Ref. [6]. 
This LES case is for 2-D separating flow over a curved backward facing step. The LES was run using an 
incompressible code, and has been documented in several publications listed in  [15]. Some relevant information 
is given here, but the interested reader is referred to reference [6] for complete details.  

 
- Upstream duct height = 8.52 H (where H = step height).  
- Reynolds number (based on Uin and H) = 13700, where Uin is the center-channel inlet velocity.  
- At x/H=-7.34 data is extracted from LES solution [6]. 
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The grid used in the present study is from [6]. This a two-dimensional grid of 768x160 cells extracted from 
the LES 23.6 million grid cells. The grid and boundary conditions is shown in Figure 32. The purpose of this 
comparison is to validate the ability of the k-kL model to reproduce the LES data by enforce LES boundary 
condition for the inflow. The inflow boundary condition was extracted from the LES data. Skin friction 
comparisons between the experimental data and the coarse, medium, and fine grid simulations using the k-kL 
model are shown in Figure 29. The skin friction variation is small between the coarse grid and the finest grid 
levels. The difference is very small between the medium and fine grid. . Figure 30 shows the skin friction 
comparisons between experimental data, and k-kL, SST and k-ε simulations. The level of skin friction predicted 
using k-kL is in better agreement with LES as compared with either SST or k-e prediction.  Figure 31 shows the 
comparison between LES and RANS turbulence model data separation and reattachment locations. In 
comparisons with LES data, the k-kL model predicted better separation and reattachment locations as shown in 
Figures 30 and 31. Separation Location, XS/H, for LES is 0.82, for k-kL is 0.86, for SST is 0.73 and for k-ε is 
1.38.  Reattachment Location, XR/H, for LES is 4.35, for k-kL is 4.73, for SST is 6.31and for k-ε is 4.08.  

  

F. 2D Periodic Hill Case 
 
The periodic hill data in this paper compared with the CFD data were provided by Ref. [6]. This LES case is 

for 2-D separating flow over periodic hills. The LES was run using an incompressible code, and has been 
documented in several publications listed in  [16]. Some relevant information is given here, but the interested 
reader is referred to the above publications (ERCOFTAC website) for complete details:  

- Hill crest, h = 28 mm  
- Hill crests are separated by Lx = 9h  
- Channel height Ly = 3.035h  
- Reynolds number (based on Ub and h) = 10595  
- Ub is the bulk velocity at the crest of the first hill  
- The flow is periodic in the streamwise direction  
 
The finest grid resolution used in this paper is 418x194 cells and generated by ref [6]. The grid and boundary 

conditions are shown in Figure 32. The purpose of this comparison is to validate the ability of the k-kL model to 
reproduce the LES data by enforce the LES boundary condition for the inflow. The inflow boundary condition 
was extracted from the LES data. Skin friction comparisons between experimental data and the coarse, medium, 
and fine grid simulations using the k-kL model are shown in Figure 33. The variation is quite large between the 
coarse grid and the finest grid levels. The difference is much smaller between the results using medium and fine 
grid. The separation bubble produced by the recent family of RANS models in better agreement with LES data 
as shown in Figures 34 and 35 as compared with k-ε results. 
 

 

IV. Concluding Remarks 
 

Most turbulence models use turbulence kinetic energy, which is well-behaved equation. The second equation 
is considered the weakest link in using turbulence models including full Reynolds stress and hybrid RANS/LES 
formulations. The main objective of this paper is to find a better turbulence model with a more reliable second 
equation. Rotta shows that a reliable second equation can be formed in an exact transport equation for the 
turbulent length scale, L. Rotta’s equation is well suited for a term-by-term modeling and shows some interesting 
features compared to other approaches. The most important difference is that the formulation leads to a natural 
inclusion of higher order velocity derivatives into the source terms of the scale equation. The present paper 
assesses the results from a two-equation turbulence model, referred to as k-kL, and based on Menter’s 
modification to Rotta’s two-equation turbulence model.  

Six test cases computed with these turbulence models have been presented, which cover an attached flow flat 
plat case, four separated flow cases and shear flow case. The separated flow cases are the hump, the backward 
facing step, the curved backward facing step and the periodic hill. The flat plat case is compared with theoretical 
data. The hump and backward facing step cases are compared with experimental data. The last two cases are 
compared with LES data. The results are compared with other turbulence models such as SST and k-ε, and 
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theoretical as well as experimental data. They demonstrate that the k-kL model has the ability to give results 
similar or better than SST results. In general, the k-kL model gives much better results than k-ε turbulence 
model. The size of the separation bubble (separation and re-attachment locations) is better predicted by k-kL 
model for the hump case and the two backward facing step cases. The skin friction is better predicted by k-kL 
model for these cases than other SST or k-ε turbulence models. The k-kL model also gives good agreement with 
the experimental data for the subsonic cold jet case as compared with the other turbulence models. For all six 
cases, the k-kL model gives good results as compared with other turbulence models. The next step is to evaluate 
the ability of this model to predict unsteady flow cases, which are a critical issue with most RANS models, and 
allow the extension of the present formulation to be used with hybrid RANS models. Future work will extend 
some of the present backward facing cases to three-dimensional as well as other simple three-dimensional cases. 
 

References 
 

1 Launder B.E. and Spalding, D.B., (1972), Mathematical Models of Turbulence, Academic Press, 
London. 

2 Rotta, J. C., (1951), Statistische Theorie Nichthomogener Turbulenz, Zeitschrift für Physik, Vol. 129, pp. 
547-572. 

3 Menter, F. R. and Egorov, Y., “The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow 
Predictions. Part 1:Theory and Model Description”, Flow Turbulence Combust 85:113-138, 2010. 

4 Menter, F. R. and Egorov, Y., “The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow 
Predictions. Part 2:Application to Complex Flows”, Flow Turbulence Combust 85:139-165, 2010. 

5 Menter, F. R.; Egorov, Y; and Rusch, D.,  “Steady and Unsteady Flow Modeling Using the 
Model”. Turbulence, Heat and Mass Transfer, Vol. 5. 

6 http://turbmodels.larc.nasa.gov/ 
7 Driver, D. M. and Seegmiller, H. L., "Features of Reattaching Turbulent Shear Layer in Divergent 

Channel Flow," AIAA Journal, Vol. 23, No. 2, Feb 1985, pp. 163-171 
8 http://cfdval2004.larc.nasa.gov/ 
9 Seifert, A. and Pack, L. G., "Active Flow Separation Control on Wall-Mounted Hump at High Reynolds 

Numbers," AIAA Journal, Vol. 40, No. 7, July 2002. 
10 Greenblatt, D., Paschal, K. B., Yao, C.-S., Harris, J., Schaeffler, N. W., Washburn, A. E., "A Separation 

Control CFD Validation Test Case, Part 1: Baseline and Steady Suction," AIAA Journal, Vol. 44, No. 
12, 2006, pp. 2820-2830. 

11 Greenblatt, D., Paschal, K. B., Yao, C.-S., Harris, J., "A Separation Control CFD Validation Test Case, 
Part 2: Zero Efflux Oscillatory Blowing," AIAA Journal, Vol. 44, No. 12, 2006, pp. 2831-2845. 

12 Bridges, J. and Brown, C., “Parametic Testing on Single Flow Hot Jet,” AIAA 2004-2824, 2004. 
13 http://www.asm-usa.com/PAB3D/ 
14 http://cfl3d.larc.nasa.gov/ 
15 Bentaleb, Y., Lardeau, S., and Leschziner, M. A., 2012. Large-eddy simulation of turbulent boundary 

layer separation from a rounded step. Journal of Turbulence 13(4), pp. 1-28.  
16 http://cfd.mace.manchester.ac.uk/ercoftac/



 
American Institute of Aeronautics and Astronautics 

 

11 

 
 

 
Figure 1 Sketch of M=0.2, Re=5 million flat plate test case. 

 
 

 

Figure 2 Skin friction coefficient variation with grid refinement using the k-kL turbulence 
model (PAB3D) at x=0.97. 
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Figure 3 Flat plate skin friction coefficient variations with ReΘ showing comparisons 
between k-kL (PAB3D), SST (CFL3D) and K-S theory. 

 

 

Figure 4 Flat plate u+ - y+ variations with comparisons using k-kL (PAB3D) with 
different grid levels and Cole’s Theory at x=0.97. 
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Figure 5 Flat plate u+ - y+ variations with comparisons between k-kL (PAB3D), k-ε  
(PAB3D), SST (CFL3D), and Cole’s theory at x=0.97. 

 

Figure 6 Flat plate k/a2 - Z variations with comparisons between k-kL (PAB3D) with 
different grid levels at x=0.97.
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Figure 7 Flat plate k/a2 - Z variations with comparisons between k-kL (PAB3D), k-ε  
(PAB3D), and SST (CFL3D) at x=0.97. 

 

Figure 8 Flat plate turbulence viscosity  - Z variations with comparisons between k-kL 
(PAB3D), k-ε  (PAB3D), and SST (CFL3D) at x=0.97.
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Figure 9 Grid distribution for the backward facing step grid. 

 
Figure 10 Velocity distribution comparisons between experimental data, and original 
(dashed line) and modified k-kL (solid line) predictions for backward facing step case. 
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Figure 11 Skin friction comparisons between experimental data, and original and 
modified k-kL predictions for backward facing step case. 

 

Figure 12 Streamlines predictions using k-kL turbulence model at different grid levels for 
backward facing step case.
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Figure 13 Skin friction comparisons between experimental data and coarse, medium, and 
fine grid simulations for backward facing step case. 

 

 

Figure 14 Skin friction comparisons between experimental data and k-kL, SST, and k-ε  
simulations for backward facing step case.
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Figure 15 Velocity distribution comparisons between experimental data, and k-kL and 
SST simulations for backward facing step case. 

 

Figure 16 Grid distribution for the subsonic hump model case. 



 
American Institute of Aeronautics and Astronautics 

 

19 

 

Figure 17 Surface pressure comparisons between experimental data and original and 
modified k-kL simulations for the hump model case. 

 

Figure 18 Skin friction comparisons between experimental data and original and modified 
k-kL simulations for the hump model case. 
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Figure 19 Surface pressure comparisons between experimental data and coarse, 
medium, and fine grid simulations for the hump model case. 

 

 

Figure 20 Surface pressure comparisons between experimental data and k-kL, SST, and 
k-e simulations for the hump model case.
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Figure 21 Skin friction comparisons between experimental data and coarse, medium, and 
fine grid simulations using k-kL model for the hump model case. 
 

 

Figure 22 Skin friction comparisons between experimental data and k-kL, SST, and k-ε  
simulations for the hump model case. 
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Figure 23 Grid distribution and flow conditions for subsonic jet flow case. 

 

Figure 24 Grid effect on varations of centerline axial velocity using k-kL turbulence model 
for the jet flow case. 



 
American Institute of Aeronautics and Astronautics 

 

23 

 

 
 

Figure 25 Normalized axial velocity comparisons between experimenal data and k-kL and 
k-ε  turbulence models for the jet flow case.  

 

Figure 26 Axial centerline velocity comparisons between experimenal data and k-kL and 
k-ε  turbulence models for the jet flow case. 
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Figure 27 Turbulence kinetic energy comparisons between experimenal data and k-kL 
and k-ε  turbulence models for the jet flow case.  

 

 
Figure 28 Grid distribution and flow conditions for 2D curved backward facing step. 
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Figure 29 Skin friction comparisons between experimental data and coarse, medium, and 
fine grid simulations using k-kL model for the 2D curved backward facing step case. 

 
Figure 30 Skin friction comparisons between experimental data, and k-kL and k-e 
simulations for the 2D curved backward facing step case. 
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Figure 31 Comparison between LES and RANS turbulence models data separation and 
reattachment locations for the 2D curved backward facing step case.  

 

 
Figure 32 Grid distribution and boundary conditions for 2D periodic hill.  
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Figure 33 Skin friction comparisons between experimental data and coarse, medium, and 
fine grid simulations using k-kL model for the 2D periodic hill case. 

 

Figure 34 Skin friction comparisons between experimental data and k-kL, and k-ε  
simulations for the 2D periodic hill case. 
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Figure 35 Comparison between LES and RANS turbulence model data separation and 
reattachment locations for the 2D periodic hill case. 

 


