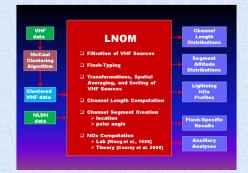
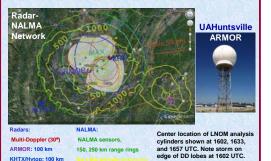
The Kinematic and Microphysical Control of Storm Integrated Lightning Flash Extent AE23B-0326

Lawrence D. Carey¹, William J. Koshak², Harold S. Peterson³, Elise V. Schultz¹, Retha Matthee¹, Christopher J. Schultz^{1,2}, Walter A. Petersen⁴, Lamont Bain¹

¹ University of Alabama in Huntsville, Department of Atmospheric Science, Huntsville, AL ² Earth Science Office, NASA, Marshall Space Flight Center (MSFC), Huntsville, AL ³ Universities Space Research Association (USRA), Huntsville, AL ⁴ NASA GSFC/Wallops Flight Facility, Wallops Island, VA

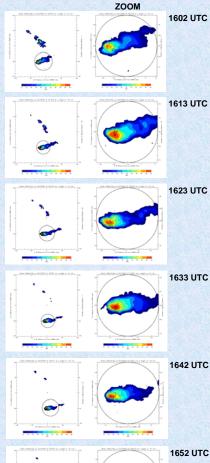

Objective

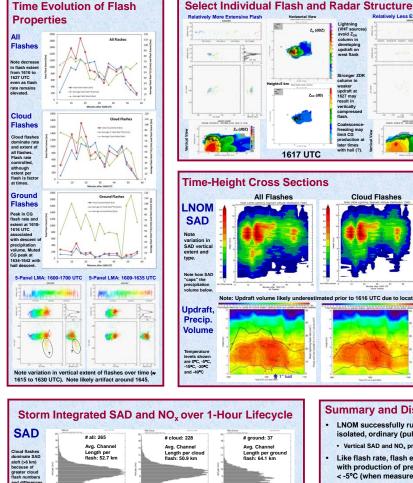
To investigate the kinematic and microphysical control of lightning properties, particularly those that may govern the production of nitrogen oxides (NO.) in thunderstorms, such as flash rate, type (intracloud [IC] vs. cloud-toground [CG]) and extent.

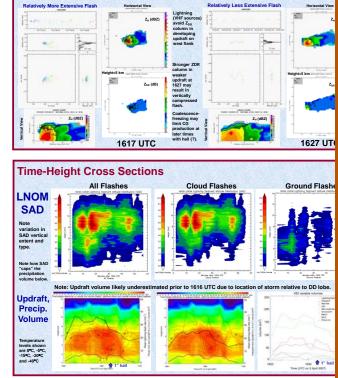

NASA

Data and Methodology

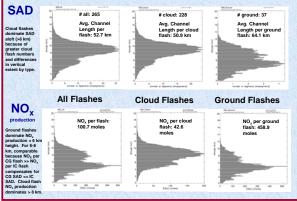
- NASA MSFC Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection Network[™] (NLDN) observations following ordinary convective cells through their lifecycle.
- LNOM provides estimates of flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NO, production profiles (Koshak et al. 2012).




· LNOM lightning characteristics are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler (DD) and polarimetric radar analyses of UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR, Cband, polarimetric) and KHTX (S-band, Doppler).



- 3 April 2007: Ordinary Convective Cell
- · LNOM is applied in a Lagrangian sense (i.e., storm following) to well isolated thunderstorm cell on 3 April 2007 over Northern Alabama. Pulse severe (1" hail) at 1637 UTC.


LNOM Analysis Cylinders (LAC's), ARMOR Reflectivity (4 km), NALMA Flash Origins

Storm Integrated SAD and NO_x over 1-Hour Lifecycle

Summary and Discussion

- LNOM successfully run in Lagrangian mode for isolated, ordinary (pulse severe) thunderstorm
- Vertical SAD and NO_x production similar to long term
- Like flash rate, flash extent is generally correla with production of precipitation ice and updraft < -5°C (when measured well by Doppler networ
- Descent of precipitation ice mass (graupel and small h associated with peak in CG rate and extent (1610-1616
- Similar descent of hail core associated with lower CG rates and extent, especially at low levels (1634-1642 U
- Updraft volume, precipitation type and process (coalescence-freezing) at T < -5°C modulated fl (and charging) vertical extent.
- Lofting of supercooled drops to -10°C and colder com even when > 5 m s⁻¹ updrafts less widespread (e.g., 16 UTC). Z_{DR} columns were typically lightning minimum
- Large reflectivity gradient at heights above -10°C (lim vertical extent of precip. ice) resulted in narrow (yet a charging and lightning zones at later times (e.g., 1627
- 1" hail reported at 1637 UTC with relatively suppress activity. Efficient wet growth of frozen drops?

brought to