

28th Annual Meeting of the American Society for Gravitational and Space Research (ASGSR) November 28th – December 2nd, 2012 New Orleans, Louisiana, USA

MICROGRAVITY SCIENCE GLOVEBOX (MSG) SPACE SCIENCE'S PAST, PRESENT, AND FUTURE ON THE INTERNATIONAL SPACE STATION (ISS)

Reggie A. Spivey

Teledyne Brown Engineering Huntsville, Alabama

Scott F. Spearing

Geocent Huntsville, Alabama Lee P. Jordan

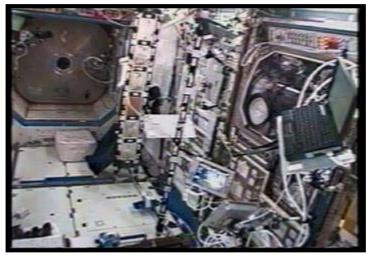
NASA Marshall Space Flight Center, Huntsville, Alabama

S. Greg McDaniel

NASA Marshall Space Flight Center, Huntsville, Alabama

Agenda

- Introduction
- Payload Interfaces and Resources Provided by MSG
- Overview of the Research Accomplished in the MSG Facility to Date
- MSG Operations Planned for 2013
- Life Science Ancillary Hardware (LSAH) Upgrades
- Video Upgrade Equipment (VUE)
- Conclusion



Introduction

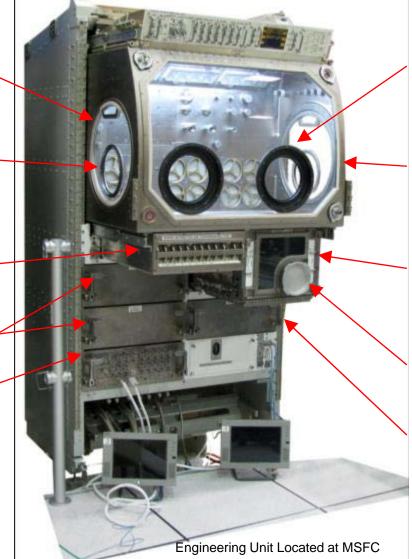
- The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS).
- The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment

- MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration.
- The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas.

Microgravity Science Glovebox (MSG)

MSG Facility Hardware Overview

Removable Side Ports


16" diameter on both Left and Right sides for setting up hardware in Work Volume

Glove Ports Four identical glove ports are located on the left and right side loading ports and the front window

DC Power Switching And Circuit Breakers

Stowage Drawers

Video System Drawer

Front Window Glove Ports

Four 6" diameter glove ports can be fitted with any of three different sized gloves or blanks

Core Facility

Retractable Core Facility includes the Work Volume, Airlock, Power Distribution & Switching Box, and the Command and **Monitoring Panel**

Airlock

Provides a "Pass Through" for hardware to enter the Work Volume without breaking Containment. The lid of the Air Lock opens up into the floor of the Work Volume

Airlock Glove Port with Blank

A Single 4" diameter glove port can also be fitted with any of three different sized gloves or a blank

Stowage Drawers

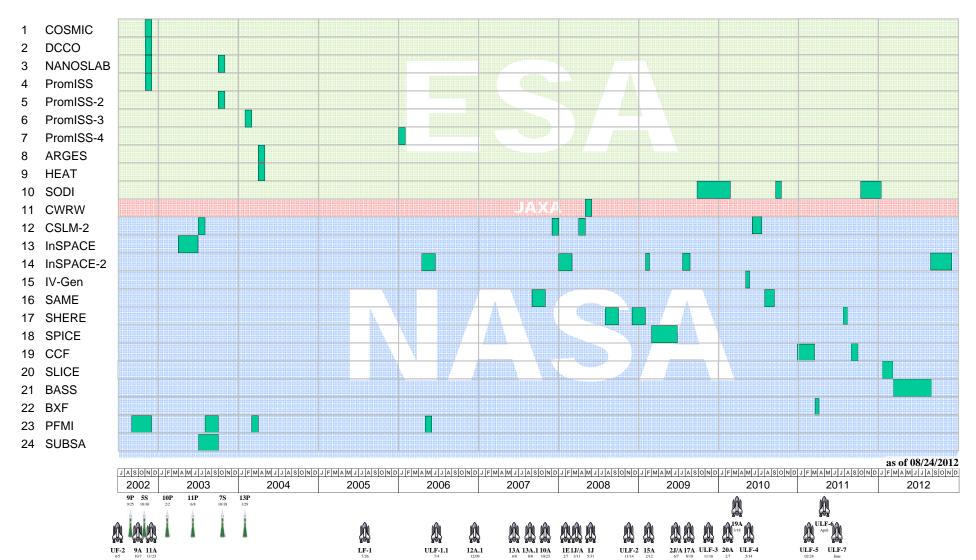
Current MSG-Provided Payload Interfaces/Resources

- Work Volume(WV) Volume
 - 0.255 m³ = 255 liters
- Work Volume Dimensions
 - 906mm wide x 637mm high
 - 500mm deep (at the floor)
 - 385mm deep (at the top)
- Maximum size of single piece of equipment in WV (via side access ports)
 - 406mm diameter
- Payload Attachment
 - M6 threaded fasteners in floor, ceiling, & sides
- Power available to investigation
 - +28V DC at useable 7 amps
 - +12V DC at useable 2 amps
 - -12V DC at useable 2 amps
 - +5V DC at useable 4 amps
 - +120V DC at useable 8.3 amps
- Maximum heat dissipation
 - 1000W Total
 - 800W from coldplate
 - 200W from air flow

- General illumination
 - 1000 lux @ 200mm above WV floor
- Video
 - 4 color Hitachi HV-C20 cameras
 - 2 Sony DSRV10 Digital Recorders
 - 2 Sony GV-A500 Analog 8mm Recorders
- Data handling connections
 - Two RS422-to-MSG for investigations
 - One MIL-BUS-1553B-to-MSG for communication via MLC
 - Ethernet LAN 1 and LAN 2 (in US LAB)
 - MSG Laptop Computer (MLC) IBM T61P
- Filtration
 - 12 HEPA/charcoal/catalyst WV filters
- 1 HEPA/charcoal/catalyst Airlock filter
- Up to Two Levels of Containment
 - Physical barrier of MSG structures, gloves, etc.
 - Negative pressure generated by MSG fans.
- Other resources available
 - Gaseous Nitrogen
 - Vacuum (VRS & VES)

MSG Flight Unit Cumulative Hours of Operation

14000 2005 2009 2003 2004 2006 2007 2008 2011 SPACE RASS SLICE 12000 Total Operational Hours = 12,798 ESEM exchan Seal Assess Yearly Cert SHERE 10000 EXP CCF 8000 ANE-E COL A Total Investigation Hours = 12,450 N-Gen Foam Proc 6000 INSPACE-2 SPICE -Yearly Cert CSLM-2 INSPACE CSLN-2 -4000 Yearly Cert InSPACE to Columbus Facility Hours = 348 Leak Test ARGES / HEAT Yearly Cert Leak Test Leak Test / MLC 29 2000 Yearly Ce PF Yearly Cert / NLC Update CSLM-2 SPACE PFMI^{B1} SUBSA Based on RPC Close and RPC Open Time as of 10/01/2012 E-Box Troubleshooting 0 A NO SAU UMANI TO MO SAU UMANI UD ANU UMANI 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 9P 5S 10P 11P 75 13P A.A.A 四四 四 四四 4 44 200 ASA AN LF-1 ULF-11 12A.1 IEIJ/A IJ ULF-2 15A 2J/A 17A ULF-3 20A""ULF-4 ULF-5 ""ULF-7 13A 13A 1 10A


Microgravity Science Glovebox

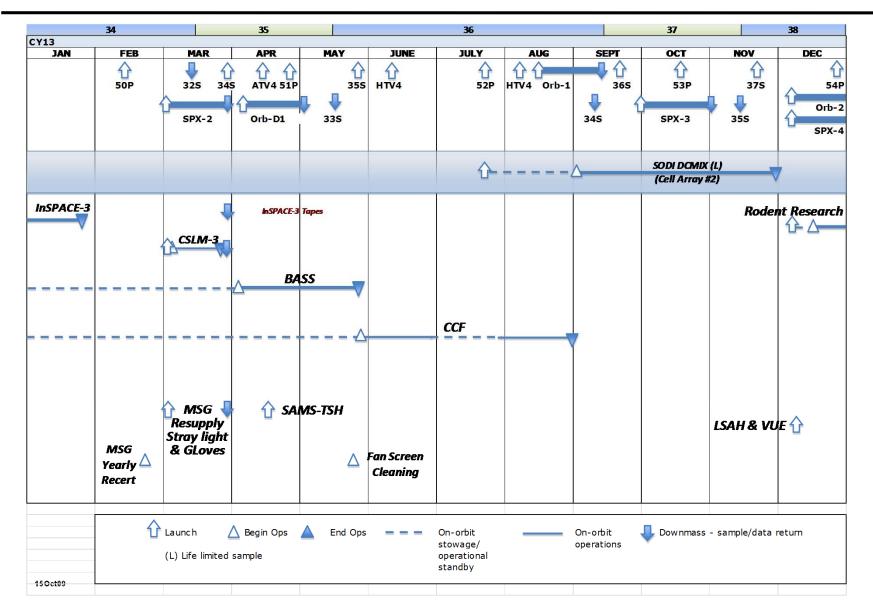
Microgravity Science Glovebox (MSG)

International Utilization of the MSG Facility

MSG Investigations

Microgravity Science Glovebox

NASA


Payload Name & Acronym	Sponsoring Organization	Type of Investigation		
	- gamzation			
Combustion Synthesis under Microgravity Conditions (COSMIC)	ESA	Combustion		
Microgravity Experiment for the Measurement of Diffusion				
Coefficients in Crude Oil (DCCO)	ESA	Diffusion		
NANOSLAB	ESA	Zeolite Crystal Growth		
Protein Microscope for the International Space Station (PromISS-				
1,2,3, & 4)	ESA	Protein Crystal Growth		
ARGES	ESA	Light Bulb Technology		
HEAT	ESA	Heat Pipe Technology		
Selectable Optical Diagnostics Instrument (SODI)	ESA	Diffusion and Soret Phenomena		
Cell Wall/Resist Wall (CWRW)	JAXA	Plant Growth		
Coarsening in Solid Liquid Mixtures-2 (CSLM-2)	NASA	Material Science		
Investigating the Structure of Paramagnetic Aggregates from				
Colloidal Emulsions (InSPACE-1,2, & 3)	NASA	Magnetorheological (MR) Fluids		
IntraVenous Fluids GENeration and mixing (IV-Gen)	NASA	Human Health		
Smoke Aerosol Measurement Experiment (SAME)	NASA	Spacecraft Smoke Detection		
Shear History Extensional Rheology Experiment (SHERE)	NASA	Polymer		
Smoke Point Coflow Experiment (SPICE)	NASA	Combustion		
Critical Velocities in Open Capillary Channels (CCF)	NASA	Fluids		
Structure and Liftoff in Combustion Experiment (SLICE)	NASA	Combustion		
Burning and Suppression of Solids (BASS)	NASA	Combustion		
Boiling eXperiment Facility (BXF)	NASA	Heat Transfer		
Pore Formation and Mobility Investigation (PFMI)	NASA	Material Science		
Solidification Using a Baffle in Sealed Ampoules (SUBSA)	NASA	Material Science		

NASA

MSG Operations Planned for 2013

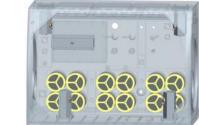
Microgravity Science Glovebox

Microgravity Science Glovebox (MSG)

Life Science Ancillary Hardware (LSAH) Upgrades Available in 2014

Microgravity Science Glovebox (MSG)

MSG LSAH Upgrades



- Materials utilized by Life Science/Biological Research payloads will require additional capabilities for handling and clean up:
 - Filtration System: a capability added to the existing MSG Work Volume air circulation system that scrubs typical life science biological and chemical contaminants from the MSG Work Volume air.
 - Decontamination System: a capability to reduce released biological contaminants (Bio Safety Levels (BSL) 1 and 2) to levels safe for crew exposure and a capability to remove released contaminants from surfaces within the Work Volume.
 - Exchangeable Glove System this is more suited for various life science activities.

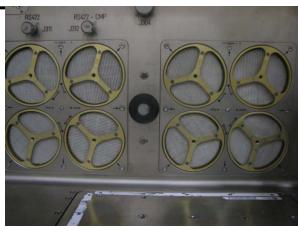
MSG Life Science Filters

Decontamination System

Glove & Gauntlet Configuration

Iris & Gauntlet w/Disposable Glove

Biological Filters

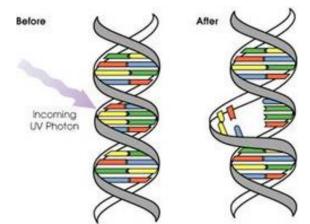

- MSG's Air Handling Unit creates negative pressure in the Work Volume to provide one means of containment
 - Filter banks trap contaminants when air passes once through the filters
 - Current filter components trap typical material-science and combustions contaminants
- New filters will be added to the existing MSG filters
- New filters will trap typical life/biological science contaminant/materials
 - Such as preservatives, fixatives, and other byproducts

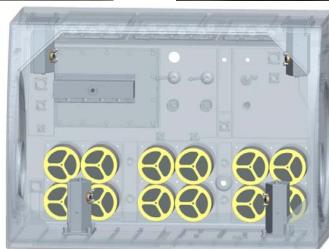
MSG Life Science Filters

Sundstrom SR 299-2 ABEK1HgP3R Combination Filter

In MSG's current design, each of the thirteen front filters is easily exchangeable on orbit by the crew.


Decontamination System


- New Decontamination Capability within MSG Work Volume
 - Decontaminate before experiment to prevent contamination of biological samples
 - Decontaminate after experiment to disinfect any released biological materials
- Ground-based labs typically use UV Light or Ozone



Ultraviolet germicidal irradiation is a sterilization method that uses ultraviolet light at sufficiently short wavelength to break down microorganisms. It is used in a variety of applications, such as food, air and water purification.

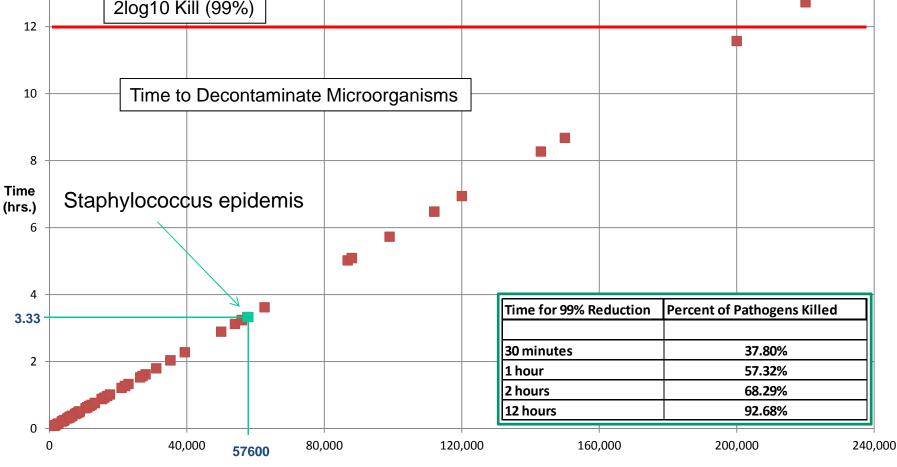
MSG Decontamination System

Decontamination System

Marshall Space Flight Center

List of Microorganisms and Associated UV-C Kill Dosage (99%)

PATHOGEN	BIOSAFET Y LEVEL	UV Dose 99% (µW-s/cm²)	PATHOGEN	BIOSAFETY LEVEL	UV Dose 99% (µW-s/cm²)	PATHOGEN	BIOSAFETY LEVEL	UV Dose 99% (µW-s/cm²)
						Proteus mirabilis	2	1,600
Acinetobacter	2	3,600	Ebertelia typhosa	1	4,100	Pseudomonas aeruginosa	1	10,500
Adenovirus	2	11,800	Echovirus	2	1,600	Reovirus	2	54,000
Aeromonas	2	2,300	Eurotium (rubrum)	1	86,800	Rhizopus	2	34,600 - 896,000
Aspergillus	2	19,200 - 896,000	Fusarium (solani)	1	62,600	Rhodoturula (spp.)	1	224,000
Bacillus anthracis	2	8,700	Haemophilus influenzae	2	7,700	Sarcina lutea	1	39,400
Bacillus magaterium sp. (spores)	1	5,200	Influenza A virus	2	6,600	Scopulariopsis	2	578,000
Bacillus magaterium sp. (veg)	1	2,500	Klebsiella pneumoniae	2	8,400	Serratia marcescens	1	21,000
Bacillus paratyphusus	1	6,100	Legionella pneumophila	2	2,600	Spirillum rubrum	1	8,800
Bacillus subtilis spores	2	11,000	Leptospiracanicola - infectious Jau	1	6,000	Sporothrix schenckii	2	56,000
Blastomyces dermatitidis	2	28,000	Listeria monocytogenes	2	31,100	Staphylococcus albus	1	5,720
Botrytis cinerea	1	50,000	Measles virus	2	4,400	Staphylococcus aureus	2	6,600
Burkholderia cenocepacia	1	11,600	Microccocus candidus	1	12,300	Staphylococcus epidermis	1	57,600
Candida albicans	1	150,000	Microccocus sphaeroides	1	15,400	Staphylococcus hemolyticus	1	5,500
Cladosporium	2	37,800 - 896,000	Mucor (mucedo)	1	120,000	Staphylococcus lactis	1	8,800
Clostridium perfringens	2	27,100	Mycobacterium avium	2	16,800	Streptococcus pyogenes	2	7,500
Coronavirus	2	1,400	Mycobacterium kansasii	2	16,000	Streptococcus viridans	2	3,800
Corynebacterium diphtheriae	2	6,500	Mycoplasma pneumoniae	2	1,700	Trichophyton	2	112,000
Coxsackievirus	2	23,000	Neisseria catarrhalis	2	8,500	Ustilago (Zeae)	1	224,000
Cryptococcus neoformans	2	56,000	Nocardia asteroides	2	56,000	Vaccinia virus	2	143,000
Curvularia lunata	1	112,000	Phytomonas tumefaciens	1	8,500			
Molds			BIOLOGICAL AGENTS			Protozoa		
Aspergillius flavus	2	99,000	Hepatitus A	2	8,000	Chlorella Vulgaris	1	22,000
Aspergillius glaucus	2	88,000	Salmonella typhi	2	15,200	Paramecium	1	200,000
Aspergillius niger	2	330,000	Shigella	2	4,200			
Mucor racemosus A	2	35,200	Vibrio cholerae	2	6,500	Virus		
Mucor racemosus B	2	35,200				Bacteriopfage - E. Coli	1	6,600
Oospora lactis	1	11,000	Yeast			Poliovirus - Poliomyelitis	2	6,000
Penicillium expansum	2	22,000	Brewers yeast	1	8,800	Tobacco mosaic	1	440,000
Penicillium roqueforti	2	26,400	Common yeast cake	1	13,200			
Penicillium digitatum	2	88,000	Saccharomyces carevisiae	1	13,200			


14

Microgravity Science Glovebox (MSG)

Decontamination System

Microorganisms That Can Be Decontaminated Within 12 Hours

Microbial 99% Kill Level Energy (µW-s/cm²)

Dexterous/Tactile Gloves

- Biotech Gloves
 - Thinner Gloves that provide more dexterity and sense of touch
 - 7 mil Hypalon Glove
 - Typical exam gloves are ~6 mils
- Will adapt existing MSG design

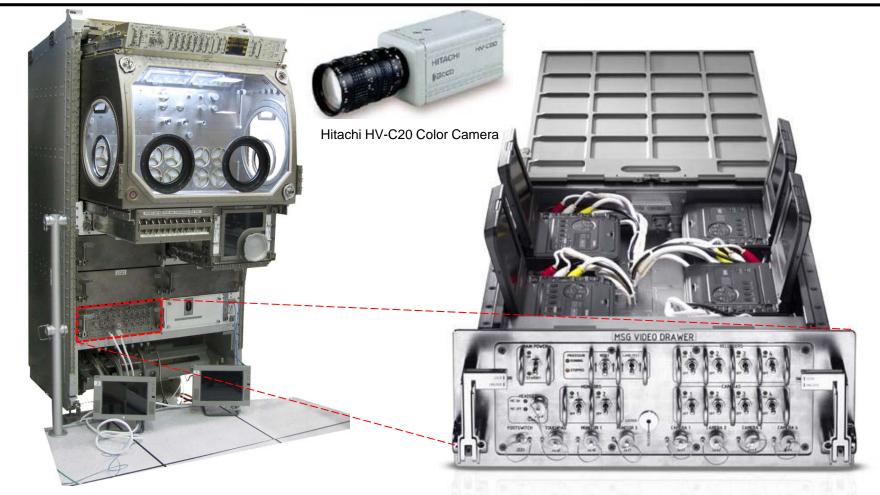
MSG has four glove ports; two on the front window and one on each side port. Glove ring assemblies can be installed in any glove ports as required by an investigation.

Gloves will be provided in three sizes 7,9, & 10.

MSG Glove & Gauntlet Configuration (7 mil Hypalon Glove, 15 mil Gauntlet)

MSG Iris & Gauntlet Configuration

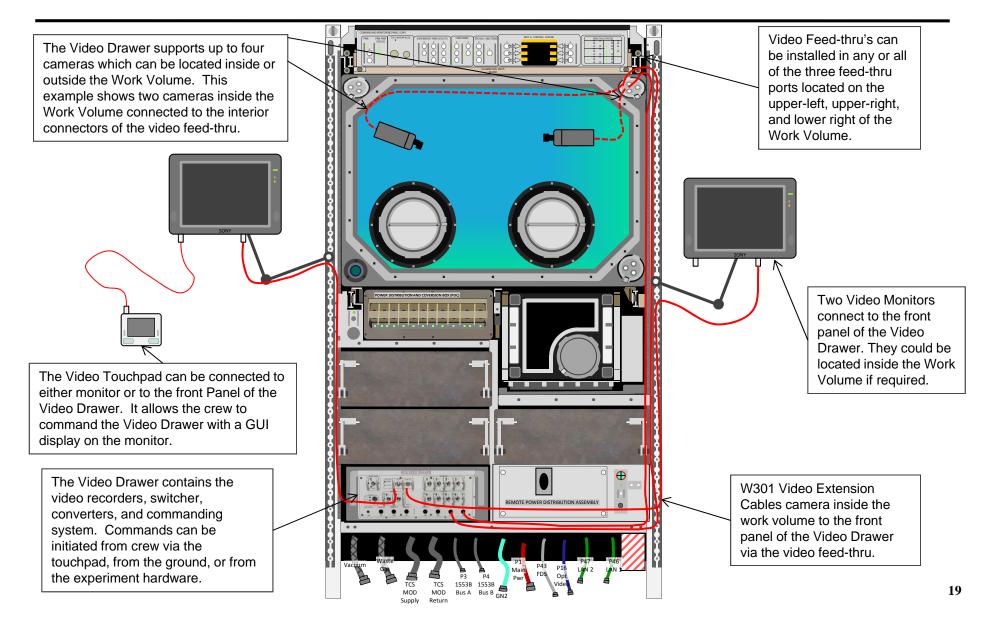
Microgravity Science Glovebox (MSG)


Video Upgrade Equipment (VUE) Available in 2014

Current MSG Video System

Pictured above in the bottom left drawer location of the MSG Engineering Unit, the MSG Video Drawer is shown connected to two video monitors. The Video Drawer is the main component of the MSG Video System.

In additional to accommodating 4 exchangeable video recorders, the Video Drawer contains power, communications, and remote control systems. The front panel allows for the crew to switch power to individual cameras, recorders, and monitors and to connect the various external components, including cameras and monitors.



Typical MSG Video System Setup

Microgravity Science Glovebox

Marshall Space Flight Center

Video System Overview

•The MSG Video Upgrade Equipment (VUE) will be capable of recording, storing, and transferring high definition/high resolution/high speed, color digital video data to ISS for downlinking.

• The VUE will utilize significantly higher video resolution and speeds than the existing MSG video system thereby enhancing research observation activities

- The MSG VUE consist of the following enhancements:
 - Powered ISIS drawer containing computer control and supporting electronics
 - High speed/high resolution cameras
 - High definition video cameras
 - GigE compatibility
 - Four terabytes of data storage via two 2 Tb Solid State RAID drives.
 - Digital video data output capabilities for ISS to ground downlink. Downlink rates up to 6 Mbps or higher depending on available bandwidth of the ISS LAN.

VUE Camera Summary

Name	Туре	Resolution	Sensor Size	Max Output
Prosilica 1050C	GigE	1024H x 1024V	1/2" Type CCD	1024 x 1024 w/ 8/12 Bit Color up to 109 fps
Prosilica 1910C	GigE	1920H x 1080V	2/3" Type CCD	1920 x 1080 w/ 8/12 Bit Color up to 55 fps
Flare 2KSDI	HD-SDI	2048H x 1088V (1920H x 1080V)	2/3" Type CMOS	2048 x 1088 w/ 10 Bit Color up to 30 fps
Hitachi HV C20 (Existing – to be replaced)	Analog RGB	768H x 494V	1/2" CCD	768 x 494 @30fps

VUE Cameras

Shown with Non-VUE Lenses

Size w/o lens (inches) 1.7 L x 2.5 W x 2.5 H (w/o connectors)

Microgravity Science Glovebox

- Conclusion
- The MSG is a very versatile and capable research facility on the ISS.
- The Microgravity Science Glovebox (MSG) on the International Space Station (ISS) has been used for a large body or research in material science, heat transfer, crystal growth, life sciences, smoke detection, combustion, plant growth, human health, and technology demonstration.
- MSG is an ideal platform for gravity-dependent phenomena related research. Moreover, the MSG provides engineers and scientists a platform for research in an environment similar to the one that spacecraft and crew members will actually experience during space travel and exploration.
- The MSG facility is ideally suited to provide quick, relatively inexpensive access to space for National Lab type investigations.

23

Microgravity Science Glovebox (MSG)

Acknowledgements

The authors would like to thank the members of the MSG Integration Team for their assistance, and review of this paper. Specifically, Andrew Tygielski, Phillip Bryant, Chris Butler, Jeff Smith, Sharon Manley, and Mark Shelton provided invaluable information and assistance.