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A baseline load schedule for the manual calibration of a force balance was
developed that takes current capabilities at the NASA Ames Balance Calibration
Laboratory into account. The load schedule consists of 18 load series with a total
of 194 data points. It was designed to satisfy six requirements: (i) positive and
negative loadings should be applied for each load component; (ii) at least three
loadings should be applied between 0 % and 100 % load capacity; (iii) normal
and side force loadings should be applied at the forward gage location, the
aft gage location, and the balance moment center; (iv) the balance should be
used in UP and DOWN orientation to get axial force loadings; (v) the constant
normal and side force approaches should be used to get the rolling moment
loadings; (vi) rolling moment loadings should be obtained for 0, 90, 180, and
270 degrees balance orientation. Three different approaches are also reviewed
that may be used to independently estimate the natural zeros of the balance.
These three approaches provide gage output differences that may be used to
estimate the weight of both the metric and non–metric part of the balance.
Manual calibration data of NASA’s MK29A balance and machine calibration
data of NASA’s MC60D balance are used to illustrate and evaluate different
aspects of the proposed baseline load schedule design.

Nomenclature

AF = axial force
c0 = x–coordinate of the center of the rolling moment arm
c1 = x–coordinate of the center of the forward gage
c2 = x–coordinate of the center of the aft gage
d = distance between forward and aft gage
d0 = coordinate difference between µ and c0

d1 = coordinate difference between µ and c1

d2 = coordinate difference between µ and c2

F = total normal or side force caused by rolling moment weights
F1 = normal or side force component at the forward gage of the balance
F2 = normal or side force component at the aft gage of the balance−→g = gravitational acceleration
M = total pitching or yawing moment caused by rolling moment weights
NF = total normal force
N1 = normal force component at the forward normal force gage of the balance
N2 = normal force component at the aft normal force gage of the balance
RM = rolling moment
SF = total side force
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S1 = side force component at the forward side force gage of the balance
S2 = side force component at the aft side force gage of the balance
x = coordinate along the roll axis of the balance

µ = x–coordinate of the balance moment center

I. Introduction

A baseline load schedule for the manual calibration of a force balance was developed at the NASA Ames
Balance Calibration Laboratory. The proposed load schedule was designed to best capture the physical
behavior of a force balance while taking limitations of (i) the manual calibration process and of (ii) the
calibration hardware at the Ames Balance Calibration Laboratory into account.

The baseline load schedule consists of 18 load series with a total of 194 data points. The load schedule
assumes that gravity weights are used to apply the loadings. Therefore, the balance orientation for each load
series must be specified. The balance orientation essentially describes the location of the roll, pitch, and yaw
axes of the balance relative to the gravitational acceleration. Figure 1a shows the six distinct orientations
that the baseline load schedule uses.

In general, the baseline load schedule satisfies six requirements: (1) Positive and negative loads are
applied for each load component so that the symmetry/asymmetry of the balance behavior and its “bi–
directionality”characteristics are captured. (2) At least three loadings are applied between 0 % and 100 %
load capacity so that a better definition of the quadratic terms in the regression model of the balance
calibration data is achieved. (3) Normal and side forces are applied at the forward gage location, the aft
gage location, and the balance moment center so that relationships between the location of the applied forces
and the location of the strain–gage measurements are described. (4) The UP and DOWN balance orientation
is used to apply positive and negative axial force loadings as the direction of the gravitational acceleration
may be used for the alignment of axial forces. (5) The “constant” normal and side force approaches are used
to get rolling moment loadings as the balance may not have to be re–leveled whenever a rolling moment
loading is changed by shifting gravity weights from weight pan to weight pan. (6) Rolling moment loadings are
performed for 0, 90, 180, and 270 degrees balance orientation in order to capture the symmetry/asymmetry
of the balance behavior. The table in Fig. 1b summarizes features of the baseline load schedule.

The natural zeros, i.e., the gage outputs of the absolute load datum of the balance, also have to be
obtained during the calibration. These outputs are an important “universal” reference of a strain–gage
balance. In addition, the natural zeros are needed whenever a balance calibration data analysis requires a
tare load iteration (see Refs. [1] and [2] for a discussion of the tare load iteration process). The Ames Balance
Calibration Laboratory supports three independent methods to determine the natural zeros. These three
approaches do not just provide outputs for the calculation of the absolute load datum of the balance. They
can also be used to numerically assess the weight of both the metric and non–metric part of the balance. This
information may be used to validate results of the tare load iteration process as the sum of the estimated
weights of the metric and non–metric parts may be compared with the known total weight of the balance.

Key elements of the proposed load schedule are discussed in the next part of the paper. Then, the three
independent methods are reviewed that may be used to determine the natural zeros. Finally, data from a
manual calibration of the NASA’s MK29A balance and data from a machine calibration of NASA’s MC60D
balance are used to evaluate the proposed baseline load schedule.

II. Baseline Load Schedule

A. General Remarks
The baseline load schedule defined in Fig. 1b assumes that the gravity weight inventory of a balance

calibration laboratory will allow for the application of at least three loadings between 0 % and 100 % load
capacity. For simplicity, “ideal” load levels are used in Fig. 1b to describe sets of loadings that fulfill this
requirement (i.e., 0 %, ±25 %, ±50 %, · · ·). Individual loads should be applied in a gradually increas-
ing/decreasing fashion using more or less equally spaced increments from 0 % to 100 % capacity. A balance
calibration laboratory may only have specific sets of gravity weights in its inventory that may not allow for
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an even spacing between 0 % and ±100 % load capacity. Then, the “ideal” load levels listed in Fig. 1b
should be approximated as closely as possible by the available weights.

Calibration load series 3, 6, 9, and 12 of the baseline load schedule apply loadings at the balance
moment center (BMC). In those four cases a loading of ±100 % of capacity means that the corresponding
load components at the forward and aft gages of the balance are simultaneously loaded to ±100 % of capacity.

Repeat points are also a part of each load series that is listed in Fig. 1b. Repeat points approach an
already existing load of a load series by removing instead of adding weights (or vice versa). Therefore, repeat
points help characterize the hysteresis behavior of the balance.

B. Normal Force Components
Six load series with a total of 54 calibration points are needed to apply the normal force loadings. The

54 calibration points consist of 30 unique data points and 24 repeat points. Figures 2a and 2b show a
typical setup of a force balance before and during the application of gravity weights whenever normal force
components are applied. Load series 1, 2, and 3 apply gravity weights such that the positive normal force
is in the direction of the gravitational acceleration (orientation ≡ 0). Load series 4, 5, and 6 apply gravity
weights such that the negative normal force is in the direction of the gravitational acceleration (orientation
≡ 180). The individual loadings are applied at three locations on the calibration body: forward gage, aft
gage, and BMC.

C. Side Force Components
The application of side force loadings is very similar to the application of normal force loadings. Again,

six load series with a total of 54 calibration points are needed to apply the side force loadings. The 54
calibration points consist of 30 unique data points and 24 repeat points.

Figures 2a and 2b show a typical setup of a force balance before and during the application of gravity
weights whenever side force components are applied. Load series 7, 8, and 9 apply gravity weights such that
the positive side force is in the direction of the gravitational acceleration (orientation ≡ 90). Load series
10, 11, and 12 apply gravity weights such that the negative side force is in the direction of the gravitational
acceleration (orientation ≡ 270). Again, as it was the case with the normal force loadings, the individual
loads are applied at three locations on the calibration body: forward gage, aft gage, and BMC.

D. Rolling Moment with Constant Normal and Side Force
Four load series with a total of 68 calibration points are needed to apply the rolling moment loadings

at constant total normal and side force. These 68 calibration points consist of 36 unique data points and 32
repeat points.

The application of rolling moment loadings starts by first attaching the rolling moment hardware to the
calibration body such that the rolling moment arm is perpendicular to (i) the direction of the normal force
and (ii) the direction of the roll axis of the balance. Then, the balance is aligned such that the positive
total normal force NF points in the direction of the gravitational acceleration (orientation ≡ 0). In the
next step, loadings at constant total normal force NF are applied. This approach has the advantage that
a single independent variable, i.e., the rolling moment, is changed during the calibration experiment while
simultaneously keeping all other balance forces and moments constant. In addition, the balance needs to be
leveled only once during the entire load series assuming that small alignment corrections are ignored. This
is possible because balance deflections remain more or less constant as long as (i) the total normal force does
not change and (ii) the balance support is symmetric relative to the plane that is defined by the roll axis of
the balance and the direction of the gravitational acceleration. An equal number of gravity weights is placed
on each of the two weight pans at the ends of the rolling moment arm to establish a zero rolling moment at
constant normal force. Weights are then simply shifted from one weight pan to another to get the desired
rolling moment loadings. This situation is described in load series 13 (see Fig. 1b).

In the next step, the balance is rotated such that the negative total normal force NF is in the direction
of the gravitational acceleration (orientation ≡ 180). Then, the balance is leveled and the loadings of load
series 14 are applied (see Fig. 1b). Load series 14 is the mirror image of load series 13 for negative total
normal force NF .

The rolling moments for constant total side force SF need to be applied next. Now, the rolling moment
hardware is attached to the calibration body such that the rolling moment arm is perpendicular to (i) the

3
American Institute of Aeronautics and Astronautics



direction of the side force and (ii) the direction of the roll axis of the balance. Then, the balance is aligned
such that the positive total side force SF points in the direction of the gravitational acceleration (orientation
≡ 90). In the next step, the loadings at constant total side force SF are applied. An equal number of weights
is placed on each of the two weight pans at the ends of the rolling moment arm to establish a zero rolling
moment at constant side force. Weights are then shifted from one weight pan to another and back to get
the desired rolling moment loadings. This situation is described in load series 15 (see Fig. 1b).

Now, the balance is rotated such that the negative total side force SF is in the direction of the gravi-
tational acceleration (orientation ≡ 270). Then, the balance is leveled and the loadings of load series 16 are
applied (see Fig. 1b). Load series 16 is the mirror image of load series 15 for negative total side force SF .

It is important to point out that all rolling moment loadings of load series 13, 14, 15, and 16 are
“combined” loadings as the forward and aft normal (or side force) components are loaded at the same time.
The total normal force NF (or the total side force SF ) is the force F that is caused by the gravity weights.
Therefore, relationships between the “known” total force F and the “unknown” force components F1 and
F2 at the forward and aft gages have been derived in the appendix of the paper so that the final balance
calibration load table can be prepared in the correct format (see Eqs. (11a) and (11b) in the appendix).

Calibration hardware limitations or other practical constraints may not always allow for the application
of all four sets of rolling moment loadings that the baseline load schedule suggests (i.e., load series 13, 14, 15,
and 16). It may also be sufficient for some balances to only use the normal (or side) force components for the
description of the electrical outputs caused by an applied rolling moment. In these cases an attempt should
be made at least to apply the rolling moment loadings for ±NF (or ±SF ) so that the symmetry/asymmetry
between rolling moment gage outputs and rolling moment loadings can be characterized.

E. Axial Force
Two load series with a total of 18 calibration points are needed to apply the axial force loadings. The

18 calibration points consist of 10 actual data points and 8 repeat points.
Figures 3a and 3b show a typical setup of a force balance before and during the application of gravity

weights whenever axial force loadings are applied at the Ames Balance Calibration Laboratory. The axial
force and the gravitational acceleration are parallel to each other. This situation greatly simplifies the
alignment of the axial force relative to the balance roll axis (x–axis). In addition, knife edges are used to
establish a contact line between calibration body and yoke assembly.

Load series 17 applies gravity weights such that the positive axial force points in the direction of the
gravitational acceleration (orientation ≡ UP). Load series 18 applies gravity weights such that the negative
axial force points in the direction of the gravitational acceleration (orientation ≡ DOWN).

It may not always be possible to align the balance roll axis parallel to the direction of the gravitational
acceleration. Some balances may require the application of axial loadings while the balance roll axis is
perpendicular to the gravitational acceleration. This often complicates the alignment of the axial loadings
because the direction of the gravitational acceleration can no longer directly be used for the alignment.

The natural zeros of the balance also need to be determined so that the balance behavior can be described
correctly. Different options exist in order to determine the natural zeros. They are explained in detail in the
next section of the paper.

III. Natural Zeros

Data points need to be recorded during the manual calibration of a force balance that make it possible
to determine the gage outputs of the absolute load datum of the balance. These gage outputs are called the
“natural zeros” of the balance. “Natural zeros” are also measured as a part of the standard electrical checks
on the balance. An unexpected shift of the “natural zeros” may indicate a possible damage of the balance
since it was last used.

The absolute load datum is assumed to be a zero load condition of the balance. Corresponding gage
outputs, i.e., the “natural zeros,” would be obtained if the balance is in a “weightless” condition (see Fig. 4a).
Unfortunately, it is not directly possible to put a balance into “weightless” state in a balance calibration
laboratory. Instead, outputs of a “weightless” balance have to be approximated by using the arithmetic
mean of outputs that are measured for different orientations of the balance.
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In principle, three independent methods are available to determine the natural zeros of a balance
(Method A, Method B, Method C). The table in Fig. 4b compares characteristics of these three methods.
All methods determine the natural zeros by averaging gage outputs that are measured for sets of specific
balance orientation combinations. The orientation combinations are subsets of the six basic orientations that
are defined in Fig. 1a.

Orientations listed in Fig. 4b are slightly modified versions of the original orientation identifiers that
are defined in Fig. 1a. They have an extension that is either –S or –C. The extension –S indicates that the
acting balance load is caused by the weight of the balance shell (metric part). Similarly, the extension –C
indicates that the acting balance load is caused by the weight of the balance core (non–metric part).

Figure 5a shows the setup of a balance assuming that Method A is applied. In this case, the roll axis of
the balance is perpendicular to the gravity vector. The balance is rotated four times (0, 90, 180, 270 degrees)
and corresponding gage outputs are recorded. These gage outputs are caused by the weight of the shell of
the balance, i.e., by the weight of the metric part, because the non–metric part of the balance is supported.
Then, the arithmetic mean of the outputs is computed for each gage. These values are the first estimate of
the natural zeros of the balance.

Sometimes, a better horizontal alignment of the balance can be achieved by keeping the calibration
body attached to the balance (see Fig. 5b). In that case, the rotation of the balance and the calculation of
the natural zeros is still performed as outlined in the previous paragraph. The influence of the calibration
body weight on the natural zeros is removed by the averaging of the gage outputs of the four orientations.
However, the gage outputs for each balance orientation are now caused by the shell assembly weight, i.e.,
the combined weight of the calibration body and the metric part, assuming that the weight of attached
alignment sensors is considered to be a part of the weight of the calibration body.

Figure 6a shows the setup of a balance assuming that Method B is applied. In this case, the roll axis of
the balance is parallel to the gravity vector. The balance is rotated two times (orientations UP and DOWN)
and corresponding gage outputs are recorded. Again, gage outputs are caused by the weight of the shell of
the balance, i.e., by the weight of the metric part. Then, the arithmetic mean of the outputs is computed
for each gage. These values are the second independent estimate of the natural zeros of the balance.

A better vertical alignment of the balance can often be achieved by keeping the calibration body attached
to the balance (see Fig. 6b). In that case, the rotation of the balance and the calculation of the natural zeros
is still performed as outlined in the previous paragraph as the influence of the calibration body weight on
the gage outputs is removed by the averaging of the outputs of each gage.

Figure 7a shows the setup of a balance assuming that Method C is applied. In this case, the roll axis of
the balance is perpendicular to the gravity vector as the balance is assumed to be placed on a leveling table
using a vee block. Again, the balance is rotated four times (0, 90, 180, 270 degrees) and corresponding gage
outputs are recorded. Now, the gage outputs of each orientation are caused by the weight of the core of the
balance, i.e., by the weight of the non–metric part, because the metric part of the balance is support. Then,
the arithmetic mean of the outputs is computed for each gage. These values are the third estimate of the
natural zeros of the balance. Method C may also be repeated with the calibration body left attached to the
balance (see Fig. 7b). In theory, the gage outputs measured for the situations depicted in Figs. 7a and 7b
should be very close as the gages only see loads caused by the balance core (non–metric part).

Experience at the Ames Balance Calibration Laboratory has shown that Method A, Method B, and
Method C will lead to virtually the same natural zero estimates as long as small balance alignment and
gage output measurement errors are neglected. Ultimately, the choice of methods is determined in part by
the equipment available at the time of the calibration. The preferred method at Ames is Method C with
calibration body attached to insure accurate horizontal/vertical alignment and rotations.

IV. Discussion of Example

Data from the manual calibration of NASA’s MK29A balance is used in this section to illustrate and
evaluate different characteristics of the proposed baseline load schedule. The Ames MK29A balance was
manufactured by the Task Corporation. It is a six–component force balance that measures five forces and
one moment (N1, N2, S1, S2, AF , RM). It has a diameter of 2.0 inches and a total length of 11.25 inches.
Table 1 below shows the capacity of each load component of the MK29A balance.
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Table 1: Load capacities of the MK29A balance.

N1, lbs N2, lbs S1, lbs S2, lbs RM, in–lbs AF, lbs

Capacity 2100 2100 700 700 3800 350

The balance calibration was performed using a total of 157 manual loadings. The loadings were applied
in 16 load series that tried to best follow the proposed baseline load schedule. Load series 15 and 16 of the
baseline load schedule were removed from the calibration data set because of data quality issues. In addition,
due to calibration hardware limitations, the normal and side force loadings at the BMC were only performed
up to about half of gage capacity.

Figure 8 shows the final set of loadings that were performed after tare corrections for the weight of
the calibration equipment were applied to the original load set using a tare load iteration scheme that is
described in Ref. [2]. It can be seen in Fig. 8 that most load series were performed as a series of single gage
loadings, i.e., as a series of loadings that primarily caused outputs on a single gage. The loadings of series
3, 6, 9, 12, 13, and 14, on the other hand, are combined loadings. The loadings of series 3, 6, 9, and 12 are
normal or side force loadings that were applied at the BMC of the balance. The loadings of series 13 and
14, on the other hand, are rolling moment loadings. In those cases, positive and negative rolling moments
were applied while keeping the total normal force constant.

Figure 9a shows the gage outputs of the natural zero points that were used to compute the natural zeros
of the balance. Data for Method A, Method B, and Method C was available. The first red region in Fig. 9a,
for example, shows the outputs of the natural zero points that Method A needs. The second red region
shows the corresponding averaged outputs. They are a first estimate of the natural zeros of the balance.
Similar estimates may be obtained by using the data for Method B and Method C. Finally, the green region
in Fig. 9a shows the natural zeros that are obtained after averaging the independent natural zero estimates
of Method A, Method B, and Method C.

The weights of the balance shell (metric part) and core (non–metric part) may be obtained by processing
the gage outputs of the 10 natural zero points that are listed in Fig. 9a. First, the difference between these
gage outputs and the final natural zeros of the balance, i.e., the values of the green region in Fig. 9a, are
computed (these differences are listed in the first table of Fig. 9b). Then, the differences are used as input
for the load iteration scheme that may be used in combination with the Iterative Method for the calculation
of balance loads (see Ref. [1] for a description of the Iterative Method). The result of these load calculations
are the loads that are given in the second table of Fig. 9b. The loads highlighted in blue color are forces
that are related to the balance shell and core weights. Table 2 below lists corresponding balance component
weights that can be obtained from forces highlighted in blue color in Fig. 9b.

Table 2: Summary of estimated balance component weights of the MK29A balance.

Index Ident. Orient. Acting Balance Load Weight, lbs

(shell ≡ metric part ; core ≡ non–metric part)

1 NZ–0001 0–S shell weight = | N1 + N2 | 2.75

2 NZ–0002 90–S shell weight = | S1 + S2 | 2.68

3 NZ–0003 180–S shell weight = | N1 + N2 | 2.10

4 NZ–0004 270–S shell weight = | S1 + S2 | 2.67

5 NZ–0005 UP–S shell weight = |AF | 2.92

6 NZ–0006 DOWN–S shell weight = |AF | 2.79

7 NZ–0007 0–C core weight = | N1 + N2 | 4.23

8 NZ–0008 90–C core weight = | S1 + S2 | 3.98

9 NZ–0009 180–C core weight = | N1 + N2 | 3.45

10 NZ–0010 270–C core weight = | S1 + S2 | 3.55
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The weights of indices 1 to 6 in Table 2 are the individual shell weight estimates. The mean of the
estimated values is 2.65 [lbs]. Similarly, the weights of indices 7 to 10 in Table 2 are the individual core weight
estimates. The mean of the estimated values is 3.80 [lbs]. The sum of the estimated shell and core weights
is a numerical approximation of the total weight of the balance. It is estimated to be 6.45 [lbs].

A precision scale was used to weigh the balance so that the accuracy of the numerical approximation
of the balance weight could be assessed. The direct measurement of the balance weight was performed such
that the weight of the balance cable would be excluded. The precision scale determined the weight of the
balance to be 6.74 [lbs] (±0.05 [lbs]). This value is very close to the numerical approximation of 6.45 [lbs] that
was obtained above from the gage outputs measurements of the 10 natural zero points (the actual difference
between measured and approximated value is ≈ 0.29 [lbs]). The excellent agreement between measured and
approximated value validates the approach that is used at the Ames Balance Calibration Laboratory for the
indirect determination of the weight of the balance shell. This information is needed whenever results of
the tare load iteration process have to be tested for accuracy as the weight of the balance shell is the only
significant part of the tare load estimate that cannot directly be measured (see, e.g., Ref. [1] for a description
of basic elements of the tare load iteration process that is used at the Ames Balance Calibration Laboratory).

Figure 10 show the symmetry in the combined load plot of N1 and RM that results from applying load
series 13 and 14. The small constant positive/negative offsets of the N1 load component in the N1 axis
direction are the tare weights that are caused by the calibration fixtures and the gravity weights.

Figure 11 shows where the side force loads at the BMC appear in the combined load plot of the two
side force components S1 and S2. They are on the principle diagonals of the first and third quadrant. The
loadings of the MK29A balance at the BMC did only extend to about half of the capacity of the side force
gages (the missing loadings are highlighted using green dashed lines in Fig. 11). Therefore, not all loads
of the baseline load schedule were applied that may be needed for a good mathematical description of the
balance behavior.

V. Assessment of Predictive Capability

Data from a machine calibration of NASA’s MC60D balance is used in this section for a preliminary
assessment of the accuracy of regression models and data reduction matrices that are derived from the
proposed baseline load schedule. The use of this 1906–point machine calibration data set for the accuracy
study became possible because it contained a 142–point subset of calibration points that closely matched
the proposed baseline load schedule.

The MC60D balance used for the accuracy assessment needs to be described in more detail. It is a
six–component force balance that was manufactured by Triumph Aerospace in San Diego. It measures five
forces and one moment (N1, N2, S1, S2, AF , RM) and has a diameter of 2.0 inches. Table 3 below lists
load capacities of the balance:

Table 3: Load capacities of the MC60D balance.

N1, lbs N2, lbs S1, lbs S2, lbs RM, in–lbs AF, lbs

Capacity 2500 2500 1250 1250 5000 700

Data from the machine calibration of the MC60D balance was made available for the current study. The
original machine calibration consists of 1906 data points that were obtained in Triumph’s ABCS balance
calibration machine. During a detailed inspection of the machine calibration data of the MC60D it was
noticed that a subset of 142 data points could be extracted from the original data set that closely matches
the baseline load schedule proposed in the present paper. Consequently, this 142–point subset of the machine
calibration is equivalent to a manual calibration data set of the balance. Then, a data reduction matrix could
be derived from the 142–point subset that could be tested for accuracy by using the original 1906–point
machine calibration data set as precision check loads.

Figure 12 shows the load schedule of the 142–point subset of the original 1906–point machine calibration
data of the MC60D balance. The following observations can be made after comparing the load schedule of
the MC60D (Fig. 12) with the corresponding load schedule of the MK29A (Fig. 8): (i) The loadings at the
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forward and aft normal/side force gages, i.e., series 1, 2, 4, 5, 7, 8, 10, 11, for the MK29A and the MC60D
are very similar; (ii) the normal/side forces at the BMC, i.e., series 3, 6, 9, 12, are significantly larger than
50 % of capacity for the MC60D balance; (iii) The rolling moment series of the MC60D data set, i.e., series
13, is not a combined loading as both the normal and side force components are zero; (iv) The axial force
series of the MC60D balance, i.e., series 17 and 18, are symmetric.

It was decided to derive two data reduction matrices in order to perform the evaluation of the baseline
load schedule approximation that is defined by the 142–point subset. The first matrix, i.e., matrix 1, was
computed by using the 142–point subset as input. The second matrix, i.e., matrix 2, was computed by using
the original 1906–point data set as input. Regression models required for the calculation of the two matrices
were obtained by applying a regression model optimization algorithm to the corresponding data sets that
was developed at NASA Ames Research Center (see Ref. [3] for a description of an earlier version of the
optimization algorithm).

Figure 13a shows the load residuals of the 142–point subset after the data reduction matrix derived from
the 142–point subset, i.e., matrix 1, was used for the prediction of loads. Figure 13b shows the load residuals
of the original 1906–point data set after the data reduction matrix derived from the original 1906–point data
set, i.e., matrix 2, was used for the prediction of loads. Figure 13c shows the load residuals of the original
1906–point data set after the data reduction matrix derived from the 142–point subset, i.e., matrix 1, was
used for the prediction of loads. Table 4 below summarizes standard deviations of the load residuals for the
three cases that are depicted in Figs. 13a, 13b, and 13c.

Table 4: Standard deviation of load residuals in percent of load capacity.

Load Residual Set Description N1, % N2, % S1, % S2, % RM, % AF, %

Figure 13a: residuals of 142–point subset of machine calibration 0.0497 0.0741 0.1466 0.1240 0.0588 0.0431

after applying matrix of 142–point subset (matrix 1)

Figure 13b: residuals of 1906–point machine calibration after 0.0658 0.0942 0.1944 0.1814 0.1439 0.0621

applying matrix of 1906–point machine calibration (matrix 2)

Figure 13c: residuals of 1906–point machine calibration 0.1257 0.3511 0.3297 0.4822 0.1990 0.3591

after applying matrix of 142–point subset (matrix 1)

The green regions in Fig. 13c mark the residual range that was obtained by using matrix 2, i.e., the
matrix obtained from the original 1906–point data set (see also Fig. 13b). The red regions in Fig. 13c mark
the residual increases caused by applying matrix 1, i.e., the matrix obtained from the 142–point subset, to
the original 1906–point data set. It can be seen that the use of matrix 1, i.e., the matrix obtained from the
142–point subset, greatly increases the load residuals whenever complex loadings are applied to the balance
that cause noticable interactions between the gages.

The comparison of the three cases listed in Table 4 clearly shows limitations of the baseline load schedule
as far as the prediction of balance loads is concerned. The matrix derived from the baseline load schedule
performs well as long as a balance experiences loadings that are similar to the ones applied during the
execution of the baseline load schedule (cf. Fig. 13a). The matrix, however, does not perform well if
the balance experiences combined loadings and gage interactions that the balance did not see during the
application of the baseline load schedule (cf. Fig. 13c).

VI. Summary and Conclusions

A baseline load schedule for the manual calibration of a force balance was defined and evaluated. The
load schedule consists of both single gage and combined loadings. The load schedule tries to best capture the
physical behavior of a strain–gage balance while using equipment that is typically available for the manual
calibration of a force balance.

During the evaluation of the load schedule the impact of using symmetry during the application of
rolling moment loadings was demonstrated by discussing the combined load plot of the forward normal force
and the rolling moment. Side force loadings at the BMC were studied to a certain degree. The determination

8
American Institute of Aeronautics and Astronautics



of the natural zeros is also an important part of the calibration of a strain–gage balance. Therefore, three
independent approaches were discussed that may be used to determine the natural zeros of a strain–gage
balance. The numerical prediction of the weight of a balance from the outputs of the natural zero points
was reviewed as well. This analysis may be used as an optional check of the load prediction accuracy of a
data reduction matrix that is derived from a balance calibration data set.

Finally, machine calibration data was used to better understand limitations of a data reduction matrix
that is derived from the proposed baseline load schedule. This evaluation showed that a matrix derived
from the baseline load schedule may not perform well if a balance experiences complex combined loadings or
large gage interactions during a wind tunnel test. Consequently, the authors recommend to use data from a
balance calibration machine like NASA ARC’s Sandberg Serell or Triumph’s ABCS for the development of a
data reduction matrix whenever the influence of gage interactions on the accuracy of balance load predictions
needs to be minimized. This requirement becomes very important, for example, if a strain–gage balance is
used for stability & control tests.
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Appendix: Force Components of Rolling Moment Weights

The application of the rolling moment loadings during the manual calibration of a balance is always
associated with force components that act on the forward and aft gages whenever gravity weights and a
simple rolling moment arm are used to apply the loadings. Therefore, it is necessary to determine the
normal or side force components at the forward and aft gages that are caused by the gravity weights at the
location of the rolling moment arm on the calibration body.

The derivation of the normal and side force components leads to similar relationships as long as the
correct coordinates of the gages and of the balance moment center are used. Therefore, in order to simplify
the derivation, the normal and side force components N1 and S1 at the forward gages are replaced by the
variable F1. Similarly, the normal and side force components N2 and S2 at the aft gages are replaced by
the variable F2.

Relationships between the force components F1 and F2 at the forward and aft gages, the total force
F caused by the gravity weights, and the rolling moment arm coordinate c0 can easily be derived with the
help of Fig. 14. First, the total force F and the total moment M at the balance moment center (BMC) are
replaced by two forces F1 and F2 at the location of the gages. The sum of these two forces equals the total
force caused by the gravity weights. We get:

F = F1 + F2 (1)

Similarly, we know that the total moment at the BMC equals the sum of the moment contributions
from the two forces that replace the force and moment at the BMC. It is assumed that the location of both
the BMC and of the gages is described in a one–dimensional coordinate system. This coordinate system
is placed on the line that is defined by the roll axis of the balance (see Fig. 14). Then, the BMC has the
coordinate µ, the center of the rolling moment arm the coordinate c0, the center of the forward gage the
coordinate c1, and the center of the aft gage the coordinate c2. Now, three coordinate differences d0, d1, and
d2 may be defined that describe distances between the BMC and the forces F , F1, and F2. We get:

d0 = µ − c0 (2a)

d1 = µ − c1 (2b)

d2 = µ − c2 (2c)

In the next step, using the sign definitions of (i) the balance loads and of (ii) the coordinates that are
depicted in Fig. 14, the total moment at the BMC can be expressed as follows:

M = F1 · d1 − F2 · (−d2) (3)

From Eq. (1) we know that:

F2 = F − F1 (4)

The right hand side of Eq. (4) may be used to replace the force F2 in Eq. (3). We get:

M = F1 · d1 − (F − F1) · (−d2) (5)

Rearranging terms in Eq. (5) and after some algebra we get:

F1 = F · (−d2)
d1 − d2

+ M · 1
d1 − d2

(6)

Similarly, using Eq. (6) to replace force F1 in Eq. (4) and after some algebra, we get:

F2 = F · d1

d1 − d2
− M · 1

d1 − d2
(7)

We also know that the moment at the BMC is exclusively caused by the gravity weights that are used
to apply the rolling moment loadings. Therefore, we can write:
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M = F · d0 (8)

Then, using Eq. (8) to replace the moment M in (6) & (7), we get:

F1 = F · (−d2)
d1 − d2

+ F · d0

d1 − d2
(9a)

F2 = F · d1

d1 − d2
− F · d0

d1 − d2
(9b)

In the next step, after simplifying Eqs. (9a) and (9b) further, we get the equations:

F1 = F · d0 − d2

d1 − d2
(10a)

F2 = F · d1 − d0

d1 − d2
(10b)

Now, using Eqs. (2a), (2b), (2c) to replace the moment arms in Eqs. (10a) and (10b) and after some
algebra, we get the relationships between the force components F1 and F2, the total force F caused by the
gravity weights, and the rolling moment arm coordinate c0:

F1 = F ·
[

c2 − c0

c2 − c1

]
(11a)

F2 = F ·
[

c0 − c1

c2 − c1

]
(11b)

The validity of Eqs. (11a) and (11b) may be examined by looking at three limiting cases and comparing
the calculated force components F1 and F2 with corresponding expected values.

Limiting Case 1: It is assumed that the coordinate c0 of the center of the rolling moment arm is at the
forward gage location. Then, we get the relationship:

c0 = c1 (12a)

Now, after using Eq. (12a) to replace c0 in Eqs. (11a) and (11b), we get:

F1 = F (12b)

F2 = 0 (12c)

Limiting Case 2: It is assumed that the coordinate c0 of the center of the rolling moment arm is at the
aft gage location. Then, we get the relationship:

c0 = c2 (13a)

Now, after using Eq. (13a) to replace c0 in Eqs. (11a) and (11b), we get:

F1 = 0 (13b)

F2 = F (13c)
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Limiting Case 3: It is assumed that (i) the coordinate c0 of the center of the rolling moment arm is at
the BMC of the balance and that (ii) the BMC is located halfway between the forward and aft gage. Then,
we get the relationship:

c0 =
c1 + c2

2
(14a)

Now, after using Eq. (14a) to replace c0 in Eqs. (11a) and (11b), we get:

F1 =
F

2
(14b)

F2 =
F

2
(14c)

Results for the three limiting cases, i.e., Eqs. (12b), (12c), (13b), (13c), (14b), (14c), meet expectations
as (i) the total force has to equal the corresponding force at a gage location whenever the coordinate of the
center of the rolling moment arm matches the coordinate of a gage and (ii) the total force is equally divided
between the forces at the gage locations whenever the coordinate of the center of the rolling moment arm is
halfway between the coordinates of the forward and aft gages.

The sign of F , i.e., of the total normal or side force caused by the gravity weights, is determined
by the orientation that the balance has during the calibration (see again Fig. 1a for the definition of the
orientations). Four cases have to be distinguished. Case 1 assumes that the balance orientation is 0. In that
case, F has a positive sign as the gravitational acceleration −→g points in the direction of positive NF . Case 2
assumes that the balance orientation of the balance is 180. Then, F has a negative sign as the gravitational
acceleration −→g points in the direction of negative NF . Case 3 assumes that the balance orientation is 90.
In that case, F has a positive sign as the gravitational acceleration −→g points in the direction of positive
SF . Case 4 assumes that the balance orientation of the balance is 270. Then, F has a negative sign as the
gravitational acceleration −→g points in the direction of negative SF .
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(0)
+

(facing the front end of the balance)

(UP) (DOWN)

GRAVITY 
VECTOR  

+ -
(270)
-

(180)
-

(90)
+

Fig. 1a Definition of balance orientations relative to the direction of the gravitational acceleration.

Series Orient. Type Position† List of Applied Loads in % of Capacity‡

1 0 +N1 ; N2 = 0 FWD 0 %, +25 %, +50 %, +75 %, +100 %, +75 %, +50 %, +25 %, 0 %

2 0 +N2 ; N1 = 0 AFT 0 %, +25 %, +50 %, +75 %, +100 %, +75 %, +50 %, +25 %, 0 %

3 0 +N1 ; +N2 BMC 0 %, +25 %, +50 %, +75 %, +100 %, +75 %, +50 %, +25 %, 0 %

4 180 −N1 ; N2 = 0 FWD 0 %, –25 %, –50 %, –75 %, –100 %, –75 %, –50 %, –25 %, 0 %

5 180 −N2 ; N1 = 0 AFT 0 %, –25 %, –50 %, –75 %, –100 %, –75 %, –50 %, –25 %, 0 %

6 180 −N1 ; −N2 BMC 0 %, –25 %, –50 %, –75 %, –100 %, –75 %, –50 %, –25 %, 0 %

7 90 +S1 ; S2 = 0 FWD 0 %, +25 %, +50 %, +75 %, +100 %, +75 %, +50 %, +25 %, 0 %

8 90 +S2 ; S1 = 0 AFT 0 %, +25 %, +50 %, +75 %, +100 %, +75 %, +50 %, +25 %, 0 %

9 90 +S1 ; +S2 BMC 0 %, +25 %, +50 %, +75 %, +100 %, +75 %, +50 %, +25 %, 0 %

10 270 −S1 ; S2 = 0 FWD 0 %, –25 %, –50 %, –75 %, –100 %, –75 %, –50 %, –25 %, 0 %

11 270 −S2 ; S1 = 0 AFT 0 %, –25 %, –50 %, –75 %, –100 %, –75 %, –50 %, –25 %, 0 %

12 270 −S1 ; −S2 BMC 0 %, –25 %, –50 %, –75 %, –100 %, –75 %, –50 %, –25 %, 0 %

13 0 ±RM c0 0 %, +25 %, +50 %, +75 %, +100 %, +75 %, +50 %, +25 %, 0 %,

(+NF = const.) (see Fig. 14) –25 %, –50 %, –75 %, –100 %, –75 %, –50 %, –25 %, 0 %

14 180 ±RM c0 0 %, +25 %, +50 %, +75 %, +100 %, +75 %, +50 %, +25 %, 0 %,

(−NF = const.) (see Fig. 14) –25 %, –50 %, –75 %, –100 %, –75 %, –50 %, –25 %, 0 %

15 90 ±RM c0 0 %, +25 %, +50 %, +75 %, +100 %, +75 %, +50 %, +25 %, 0 %,

(+SF = const.) (see Fig. 14) –25 %, –50 %, –75 %, –100 %, –75 %, –50 %, –25 %, 0 %

16 270 ±RM c0 0 %, +25 %, +50 %, +75 %, +100 %, +75 %, +50 %, +25 %, 0 %,

(−SF = const.) (see Fig. 14) –25 %, –50 %, –75 %, –100 %, –75 %, –50 %, –25 %, 0 %

17 UP +AF – 0 %, +25 %, +50 %, +75 %, +100 %, +75 %, +50 %, +25 %, 0 %

18 DOWN −AF – 0 %, –25 %, –50 %, –75 %, –100 %, –75 %, –50 %, –25 %, 0 %

†FWD = load acts at the forward gage ; AFT = load acts at the aft gage ; BMC = load acts at the balance moment center.
‡The spacing of 25 % is used to indicate that at least three loads should be applied between 0 % and 100 % of capacity; a load

of ±100 % of capacity at the BMC means that loads at the forward and aft gages are simultaneously at ±100 % of capacity.

Fig. 1b Baseline load schedule for the manual calibration of a six–component force balance.
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AFT 
GAGE  FORWARD 

GAGE  

CALIBRATION 
BODY  

FLEXURE  

BALANCE SHELL 
(metric part)  

BALANCE CORE 
(non-metric part)  

BALANCE 
SUPPORT 
(movable)  

BMC  

BALANCE 
SUPPORT 
(fixed)  

WEIGHT PAN  

GRAVITY 
VECTOR  

Fig. 2a Setup of balance, calibration hardware, and support for normal or side force loadings.

CALIBRATION LOADS 
(GRAVITY WEIGHTS)  

GRAVITY 
VECTOR  

Fig. 2b Application of normal or side force loadings using gravity weights.
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AFT GAGE  

FORWARD 
GAGE  

CALIBRATION 
BODY  

CALIBRATION 
FIXTURE 

(YOKE ASSEMBLY)  

BALANCE SHELL 
(metric part)  

BALANCE CORE 
(non-metric part)  

BALANCE 
SUPPORT 
(movable)  

BMC  

BALANCE 
SUPPORT 
(fixed)  

GRAVITY 
VECTOR  

WEIGHT PAN  

Fig. 3a Setup of balance, calibration hardware, and support for positive axial force loadings.
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GRAVITY 
VECTOR  

CALIBRATION LOADS 
(GRAVITY WEIGHTS)  

Fig. 3b Application of positive axial force loadings using gravity weights.
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Fig. 4a Definition of the absolute load datum of a strain–gage balance.

Method Orientations Acting Balance Load Mounted/Supported Balance Assembly

A 0–S, 90–S, weight of shell (metric part), or, weight of core

180–S, 270–S shell assembly (calibration body and metric part) (non–metric part)

B UP–S, weight of shell (metric part), or, weight of core

DOWN–S shell assembly (calibration body and metric part) (non–metric part)

C 0–C, 90–C, weight of core shell (metric part), or, shell assembly

180–C, 270–C (non–metric part) (calibration body and metric part)

Fig. 4b Comparison of three methods for the determination of the natural zeros.

BALANCE SHELL WEIGHT 
(caused by metric part)  

GRAVITY 
VECTOR  

Fig. 5a Method A: Setup of balance without use of calibration body for horizontal alignment.
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BALANCE SHELL ASSEMBLY WEIGHT 
(caused by calibration body and metric part)  

GRAVITY 
VECTOR  

Fig. 5b Method A: Setup of balance with use of calibration body for horizontal alignment.

BALANCE SHELL WEIGHT 
(caused by metric part)  

GRAVITY 
VECTOR  

UP DOWN

Fig. 6a Method B: Setup of balance without use of calibration body for vertical alignment.
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GRAVITY 
VECTOR  

BALANCE SHELL ASSEMBLY WEIGHT 
(caused by calibration body and metric part)  

UP

Fig. 6b Method B: Setup of balance with use of calibration body for vertical alignment.
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BALANCE CORE WEIGHT 
(caused by non-metric part)  

GRAVITY 
VECTOR  

LEVELING 
TABLE  

BALANCE SHELL 
(metric part)  

Fig. 7a Method C: Setup of balance on a leveling table (vee block not shown).

BALANCE CORE WEIGHT 
(caused by non-metric part)  

GRAVITY 
VECTOR  

LEVELING 
TABLE  

BALANCE SHELL ASSEMBLY 
(metric part and calibration body)  

Fig. 7b Method C: Setup of balance and calibration body on a leveling table.
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Fig. 8 MK29A: Load schedule of the 157–point manual calibration of the balance.
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TABLE OF GAGE OUTPUTS OF NATURAL ZERO POINTS

NATURAL ZEROS OF ORIENTATION GROUPS (METHODS A, B, C)

GLOBAL NATURAL ZEROS (MEAN OF METHODS A, B, C)

Fig. 9a MK29A: Natural zero points for Method A, Method B, and Method C.
(red region =⇒ Method A ; green region =⇒ final natural zeros)

GAGE OUTPUT DIFFERENCES CAUSED BY BALANCE SHELL OR CORE

COMPONENT WEIGHTS CAUSED BY BALANCE SHELL OR CORE

Fig. 9b MK29A: Theoretically computed balance shell (metric part) and balance core (non–metric part) weights.
(blue color =⇒ force components that are related to balance shell or core weights)
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SYMMETRIC APPLICATION OF ROLLING MOMENT
USING POSITIVE AND NEGATIVE NORMAL FORCE

Fig. 10 MK29A: Example of “symmetry” of rolling moment load schedule.

MISSING LOADS
AT THE BMC 

REGION OF LOADS
AT THE BMC 

MISSING LOADS
AT THE BMC 

REGION OF LOADS
AT THE BMC 

Fig. 11 MK29A: Application of side force components at the balance moment center (BMC).
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Fig. 12 MC60D: 142–point subset of original 1906–point machine calibration data set.
(142–point subset of machine calibration ≡ assumed manual calibration data)
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Fig. 13a MC60D: Load residuals of 142–point subset after application of matrix of 142–point subset (matrix 1).
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Fig. 13b MC60D: Load residuals of 1906–point data set after application of matrix of 1906–point data set (matrix 2).
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Fig. 13c MC60D: Load residuals of 1906–point data set after application of matrix of 142–point subset (matrix 1).
(green region ≡ residuals after use of matrix 2 ; red region ≡ residual increase after use of matrix 1)
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FORWARD
GAGE

AFT
GAGE

BMC

  = COORDINATE OF THE CENTER OF THE ROLLING MOMENT ARM

+

+

+

Fig. 14 Calculation of gage load components F1 and F2 as a function of the total force F .
(balance orientations defined in Fig. 1a determine if the total force F equals ±NF or ±SF )
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