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Abstract-This paper describes an application of data mining 
technology called Distributed Fleet Monitoring (DFM) to Flight 
Operational Quality Assurance (FOQA) data coUected from a 
fleet of commercial aircraft. DFM transforms the data into a 
list of abnormaly performing aircraft, abnormal flight-to-flight 
trends, and individual flight anomalies by fitting a large scale 
multi-level regression model to the entire data set. The model 
takes into account fixed ellects: f1ight-to-flight and vehicle- to­
vehicle variabili ty. The regression parameters include aerody­
namic coefficients and other aircraft performance parameters 
that are usually identified by aircraft manufacturers in flight 
tests. Using DFM, a mUlti-terabyte airline data set with a half 
million flights was processed in a few hours. The anomalies found 
include wrong values of computed variables such as aircraft 
weight and angle of attack as well as fa ilures, biases, and trends 
in flight sensors and actuators. These anomalies were missed by 
the FOQA data exceedance monitoring currently used by the 
airline. 

1. INTRODUCTION 

Flight Operations Quality Assurance (FOQA) programs 
collect high-rate aircraft data from each fl ight of hundreds of 
aircraft. This paper demonstrates a data processing approach 
for finding subtle anomalies in aircraft performance from 
very large FOQA data sets, automati cal ly, accurately, and 
quickly. The anomal ies are not characterized in advance of 
the processing, in tead, they are detected as deviations from 
the performance observed for most aircraft in the fleet. As 
an interim step, a physically meaningful model of aircraft 
performance is built from the data. The anomalies are then 
detected as excessively large deviations from this model. 

A. FOQA monitoring 

A FOQA dataset for a single flight includes the same 
parameters that are usually collected by the crash-protected 
aircraft recorder and some additional data channels. Some 
1000 channels are sampled at 1 sec interval through the flight 
durati on and logged to yield tens of megabytes of data per 
flight. After the flight, the airborne data collected by a Digital 
Flight Data Acquisition Unit is transferred from the aircraft 
to a "ground computing system. Most airlines process the 
collected FOQA data in a centralized way. For a medium 
size airline, data for all flights of all aircraft add up to a few 
terabytes per year. 
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Airlines typically employ just a few FOQA analysts who do 
not have time to look at the data for hundreds of thousands 
of fligbts. This calls fOf automated FOQA data processing. A 
FOQA sys tem must find a small number of anomalous flights 
and allow the analyst to focus on more detailed review of the 
anomalous data sets. 

In the currently deployed FOQA systems, the automated 
processing first detects when the selected parameters exceed 
predefined thresholds. The thresholds have to be sufficiently 
large so that a small number of the exceedance events is 
generated. FAA Advisory Circular No 120-82 [1], which intro­
duced FOQA, recommends establishing a Routine Operational 
Measurement - a sample of a chosen parameter at predefined 
poin ts in time or space during every flight being analyzed. 
The baselines for normal operation are determined as mean, 
minimum, and maximum statistics of such data. 

B. Anomaly detection 

The simplest form of monitoring, known as Statistical 
Process Control (SPC), has been used in practice for several 
decades. SPC has been introduced for quality a surance of 
manufacturing processes. The cia sical SPC methods are uni­
variate: a time series for a selected measured or computed 
process parameter is compared against control limits. The 
exceedances of the control limits are reported as anomalies . 
The FOQA exceedance monitoring approach closely resembles 
the classical univariate SPC. 

Multivariate Sta tistical Process Control (MSPC) methods 
monitor many data channels simultaneously. MSPC can pro­
vide significant improvement over univariate SPC monitoring 
when the moni tored channels are strongly correlated, as is 
often the case in practice. In the MSPC framework, the 
anomalies are commonl y detected by computing HotelJing T2 
statistics for the multi vari able data [2]. 

MSPC i well established in industrial proces areas such 
as refin eries and semiconductor manufac nJring. These are sta­
tionary processes operating around fixed setpoints. In contrast, 
aircraft data is nonstati onary and has to be sampled at pre­
defined conditions or preprocessed before MSPC can be used. 
One type of such preprocessing is computing the deviations 
from an aircraft performance model. 

Some large airlines use proprietary performance models 
provided by aircraft manufacturers and monitor mismatches 
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between these model s and the aircraft data sampled in crui se 
regime. The model mismatches found are used to drive fuel 
performance improvements and to support aircraft mainte­
nance. To use such models consistently, the airlines introduce 
focused programs in flight performance model maintenance 
to make sure they reflect actual aircraft performance. Such 
perfoOTl ance model maintenance programs can be afforded by 
large airlines only. There is no indication in the literature 
that they use multivariate approaches, such as MSPC, for 
monitoring the performance model deviations. 

An alternative to using the proprietary models is presented 
by data driven models trai ned using massive amounts of 
historical data. Regression models of FOQA data [3] and clus­
tering models [4] , [5] have been considered in earlier NASA 
work. Use of clustering models for aircraft operation anomaly 
detection was considered in MIT work [6] . Regression models 
for aircraft perfonnance were considered in a Stanford paper 
[7]. 

C. Distributed Fleet Monitoring 

This paper demonstrates an applicati on of a data driven 
monitoring approach called Distributed Fleet Monitoring 
(DFM) to FOQA data. DFM analytical software was developed 
by Mitek Analytics LLC under a series of NASA-funded 
projects . DFM has been verified using realistic simulated 
FOQA data in an earlier unpublished study [8]. 

DFM builds performance models of aircraft as a regression 
fit of the FOQA data. The nonlinear regressors used for aircraft 
perfornlance modeling have well understood structure - the 
same as for proprietary aircraft perfomlance models developed 
by aircraft manufacturers. The standard approach is to fit the 
aircraft performance models to flight test data. DFM differs 
by fitting the models to the historical operational data. 

The data-driven performance models in DFM are used to 
remove the bulk of the data variability by computing the 
model prediction residuals. MSPC methods are then applied to 
the residuals. Determjning a linear regression model and then 
applying MSPC to the model prediction residuals is related to 
the Partial Least Squares (PLS) method of MSPC. 

DFM is a fleet-wide muW-level MSPC methOd. It extends 
the known approache of data-driven regression modeling of 
performance, model-based calculation of the residua ls, and 
MSPC monitOring of the residuals to include fixed effects 
in the model. DFM uses a three-level regres ion model for 
aircraft performance. The first level deSCIibes time inside the 
flight, the second level described tlight-to-tlight variability 
and trends, and the third level describes the vehicle-to-vehicle 
variability. 

Multi-level regression models have been earlier used in 
social science, drug testing and other applications, see [9] , 
[10]. Much smaller data sets were used and no scalable exact 
solution methods proposed. The processing of aircraft fleet 
data is considered in [11] using a two-level regression model , 
which is related to the three-level model used by DFM. 

D. Contributions 

This paper demonstrates an application of DFM to an airli ne 
FOQA data set of half million flights. DFM was able to detect 
a number of anomalies of interest that were missed by existing 
airline FOQA data analysis methods. 

The demon tTated approach complies with the FAA recom­
mendations [1] in how it handles the secured raw data. As 
the initial step, the raw FOQA data is preprocessed into de­
identified compressed data that does not contain the details of 
the flight. The subsequent post-processing of the compressed 
data yields a report of anomalies in aircraft performance. As 
required by [1], the data is analyzed in relation to existing 
aggregate information (the fleet performance model). The 
reported approach emphasizes support of airline Engineering 
Maintenance and Flight Safety fu nctions. 

The demonstrated DFM approach extends the existing 
FOQA practices. A data-driven performance model is estab­
lished as the normal operation baseline. The anomalies are 
detected as deviations from the baseline. DFM novelty com­
pared to the existing FOQA practices is in using a nonlinear 
model with physics-based structure that is multivari ate and 
multi-level. The existing FOQA systems watch for univariate 
exceedances. DFM looks at cross-fleet multivariate statistics 
for abnormal models, model prediction residuals, and trends. 
Similar to the existing FOQA systems, DFM reporting is 
au tomated so that the analyst can focus on a small number 
of important anomalies. 

DFM algorithms can work in a grid computing environment 
where the data are distributed over multiple nodes and the 
bulk of the computing is collocated with the data. The grid 
computing aspect of DFM was outside of the scope of this 
study. In this study, the DFM algorithms were implemented 
on a NASA ARC Unix cluster with substantial shared disk 
storage capacity. The entire 5 Tb data set was stored on the 
disk and accessible through the cluster file system. 
. The contributions of this paper are as follows. (i) The 
paper demonstrates practical efficacy of regression modeling 
of airframe perfonnance using a large set of FOQA data. 
(jj) It shows that computational implementation of multilevel 
regression modeling can be scalable. FOQA data for half 
million flights is processed in a few hours. (iii) The approach 
is demonstrated to detect several classes of real life FOQA 
data anomalies missed by the standard FOQA analysis. 

II. R EGRESSION M ODELI NG 

This section describes the regress ion modeling in the center 
of the DFM data processing approach. 

A. Simple regression 

In this work a regression model of the nominal aircraft flight 
performance is trained using the FOQA data. As a starting 
point consider a simple linear regression model of the aircraft 
dynamics relating the FOQA record data and the performance 
data derived from the FOQA data at a given instant (time 
sample) t. The model has the form 

y(t) = B x(t) + v(t), (I ) 



where Y is the vector of performance variables (nonlinear com­
binations of the data channels), x is the vector of regressors 
variables, B is the matrix of regression parameters encoding 
the performance model , and v is the vector of residuals (noise) . 
The regression parameters include aerodynamic coefficien ts, 
engine thrust coefficient, etc. A cruise fli ght model with similar 
structure is considered in [7]. 

In this paper we consider aircraft flight performance in 
emoute flight including climb, cruise, level turns, and descent. 
We extract the segment of the FOQA data limited by the 
altitude and the range of the Mach number. The enroute 
flight can be described using models of the aircraft steady 
flight performance discussed in [12]. It is well known that the 
aerodynamic forces acting on the aircraft can be represented 
in the form 

Faero = qGa,Q + qGa ,la + ijGa,2ul + ... + gGa ,n+l Un , (2) 

where a is angle of attack (AOA) , Ul, . .. , Un are control 
surface deflections, and Ga ,a, Ga,l, ... , Ga,n+ l are the model 
coefficien ts (aerodynamic coefficients times the cross section 
area). The dynamic pressure q = ~PairV2, where Pair is 
the air density and V is the airspeed. The engine thrust was 
modeled to be proportional to air density and fan (propeUer) 
speed, see [12l 

Regression parameters in B include the aerodynamic coef­
ficients G in (2), aircraft mass model parameters, and thrust 
model parameters. The results of this work demonstrate that a 
fixed regression model B can describe the entire emoute flight 
segment with aircraft in the clean aerodynamic configuration. 

The columns of matrix B can be computed by least squares 
regression fit of the actual FOQA data. One possible approach 
is to fit the model for a single flight data set. This will not 
be very accurate because such data insuffiCiently covers the 
operation of the ai.rcraft fleet. As solutions to ill-conditioned 
problems wi th noisy data, lie models fitted to dilierent flight 
data sets might differ substantially. Another possible approach 
is to fit the model to the pooled data for the entire fleet. Such 
model will be much more stable but would completely miss the 
fixed effects, lie fact that all individual aircraft have slightly 
different perfOlmance. The pooled model would also mis the 
flight-to-flight trends in lie aircraft performance. The problem 
fOlmulation in the next section addresses these issues. 

B. Three-level regression 

We consider a three-level regression model for a fleet 
of aircraft. The FOQA data are used to compute response 
variables Y E 3tm and explanatory variables x E 3tn (re­
gressors) as discussed in the previous subsection. Computing 
these variables (e.g., the dynamic pressure) is a nonlinear 
transformation of the raw FOQA data. 

The three-level model considers the response (output) vari-
ables Yi ,kj (t) that depend on 

t - a sample number inside a given flight record 
i - a vector component number, 
k - a tail nwnber 
f - a flight number 

The three-level model has similar indexing for the explanatory 
(regression) variables Xj,kj(t), and model residuals Vi ,k!(t). 
The model can be written in the form 

Ykj(t) = BkXkj (t) + akjz(t) + Vkj(t), (3) 

where Xkj(t) E lRm is the regressor vector, Ykj(t) E 3tm is 
the response variable vector, Bk E 3tm ,n is the model for tail 
k, each flight has a bias akj E 3tm , and z(t) = 1 describes 
the bias that is fixed inside the flight. 

The regression fit problem could be posed as minimization 
of the least-squares loss index L 

K Fk TkJ 

L = L L L IIYkj(t) - BkXkj(t) - akjz(t)11 2 

k=l!=lt=l 

K ~ K 

+p L L Ilakj - ak,J_1112 + fJ, L IIBk - B. II~ , (4) 
k=lj=2 k=l 

where Fk is lie number of flights for tail k in the data set, 
Tkj is the number of the samples in the flight data collected 
in flight f of tail k, and B. is the unknown central model for 
the fleet. 

The problem of minimizing (4) can be interpreted as optimal 
Bayesian estimation of the three-level regression parameters 
from the pooled fleet data. Loss index (4) describes three levels 
of lie regression fit and includes three main components cor­
responding to posterior and prior probabilities in the Bayesian 
model 

1) The data for each flight f of each tail k is described 
by the model fit residuals Ykj(t) - Bk Xk j(t ) - akjz(t). 
The first sum in (4) describes lie accuracy of lie three 
level regression fit pooled across all flights of all tails. 
Thi s tem1 corresponds to the negative log posterior 
probability of the observation noise. 

2) The prior for fligbt-to-flight trend (bias change) is de­
fined by the quadratic penalties in lie flight-to-flight 
trend increments lIakf - ak.! _1112 This second sum in 
(4) corresponds to the negative log priors in independent 
random walk models for trends akj. 

3) Tail-to-tail model prior is defined by the quadratic 
penal ty IIBk - B.II}, where B . is an unknown fl eet 
average model. The third sum in (4) corresponds to the 
negative log prior for normal distribution of the models 
Bk with the mean B • . 

Computing parameters akj, Bko and B. of the three-level 
regression (3) by minimi zing (4) is a batch problem. The 
solution is cliscussed in the next section. The solution could 
be also implemented incrementally as an extension of the well 
known recursive least squares meiliod. 

III. DFM ALGORITHM 

Figure 1 illustrates a functional decomposition of the Dis­
tributed Fleet Monitoring (DFM) logic described in [8]. The 
overall monitoring data fu nction takes the aircraft data (raw 
FOQA data) and reports monitoring results, such as anomalies . 
The collection of liese functions fits a tllree-Ievel regression 



to the fleet data and reports anomalous deviations from this 
model as described in more detai l below. The word Distributed 
is in the DFM name because the preprocessing is done for one 
flight at a time and can be implemented as distributed and 
parallel computations. 

Score Monitoring 

Ai rborne Data 
Compute Data · Flights Monitoring · Tail Trends 
Scores · Fleet 

FOQA 
Model Data Anomal y 
Data Data r ---~ --,.. Secured Raw 

Post -process 
Anomaly 

FOQAData Reporting 

Data De- identified t 
0 

Records Compressed 0 

0 
Data Detailed: 0 

0 

Preprocess Anomaly: 0 
0 
0 

Data: 0 

Fig. 1. Computational logic flow of the DFM algorithm. 

A. Regression model training 

The regression fit problem is to minimize loss index (4) with 
respect to akj, Ek , and E • . To do that, consider quadratic form 
reduction for the first term in (4). By expanding the norms in 
(4) one can see that the contribution of all data fo r the entire 
flight into the loss index L can be described through the scatter 
mauices 

Tk, Tk, 

L Ykj(t)yfj(t) , L Xk/(t)xfj(t), (5) 
t=1 t=1 

Tk' Tk, T k, 

L Xkj (t)yfj(t), L Xk/(t)Z(t), L Ykj(t)Z(t). 
t=1 t=1 t=1 

The dimensions of these matrices are n, m, or l. 
The solution of the regression problem now looks as fol­

lows: first, compute the scatter maUices for all flight records, 
then, minimize the loss index L with respect to akj, Ek, and 
E • . The FOQA data collected in one fligh t might con tain some 
1000 channels sampled at 12,000 instances to yield some 100 
MB of the data. For a coupl e dozen regressor and outputs, 
the scatter matrices would take about a KB of memory. Thus, 

computing these matrices provides data reduction on the order 
of 100,000: 1. The originalS TB of raw FOQA data are reduced 
to about 50 MB of the scatter mauices. The scatter matrix 
data fit into computer memory, which allows solving the 
minimization problem effiCiently. A version of the algorithm 
described in [11J could be used for solving the problem of 
minimizing (4). 

Computing the scatter matrix data corresponds to the Pre­
process step in Figure 1. Solving the minimization problem to 
obtain the trends akj, and models Ek , E., from the scatter 
matrix data is shown as Po t-process in Figure 1. 

B. Monitoring 

M onitoring of the anomalies relies on the knowl edge that 
the majority of the aircraft in the fleet and data sets for each 
aircraft are nominal. A small percentage of the aircraft and 
of the flights might be abnorma l and need to be reponed as 
such. The DFM automated moni toring system processes the 
data without hlUTIan intervention and provides anomaly reports 
in the end. These reports provide decision support and can be 
reviewed or acted upon by a human operator. 

Minimizing index (4) yields estimates of the regression 

models Bk, and trends akj for all vehicles in the fleet. 
These estimates and the data Ykj(t) allow computing model 
prediction residuals Vkj(t) = Ykj(t) - EkXkj(t) - akj z(t). 

The processing results are used to compute three types of the 
monitOling scores as Hotelli ng T2 stati stics for the respective 
multi variable data. 

T; ,kj 

T;,kf 

T~ ,k 

1 Tk, 

T 'L. T2 (Vk j (t)), 
kj t=1 

T 2(akj ), 

T2(Ek) ' 

(6) 

(7) 

(8) 

These T2 statistics are based on the empirical means and 
empirical covariances of the data. The score T;,kf (6) for 
the model prediction residual is the Hotelling T2 statistics 
for the residuals Vkj (t) averaged across all data points in a 
flight. Using tile score T;,kj (7) for the u-end cOITesponds 
to the Multi variate Exponentially Weighted Moving Average 
(MEWMA) method of MSPC [2]. The use of residual statistics 
T;,kj con-esponds to MEWMA Wanderi ng Mean prediction 
error used for detecting an abrupt change in conjunction with 
the MEWMA method , see [2). The score T~ k (8) is the 
Hotelling T2 statistic describing the deviation of the tai l model 
from the population average. Figure I shows the calculati on 
of the T2 statistics (6) , (7), (8) for the residual s, trends, and 
model (Score Data) as Compute MonitOling Scores block. 

C. Anomaly reporting 

Computing Hotelling T2 stausucs (7) for the estimated 
trends ak/ for al l aircraft tail and comparing it wi th a threshold 
allows detecting trend anomalies . The abrupt change anoma­
lies can be similarly detected through Hotelling T2 statistics 
(6) for the regression model residuals Vkj (t). The model 
anomali es can be computed by thresholding T2 statistics (8) 
fo r the models E computed for all aircraft tails. 

The anomalies are detected when the 1'2 statisti cs (Score 
Data) exceed the respecti ve threshold. The thresholds are 
established from the false positive/false negative alarm u-ade­
off. The Monitoring block in Figure 1 detects three types 
of anomalies from the Score Data: (i) anomalous ingle 
flight residuals, (ii) anomalous tail trends, and (iii) aircraft 
performance models that are anomalous compared to other 
tails in the fleet. 

The Anomaly Reporting block in Figure 1 takes the 
Anomaly data produced by the Moni toring block and gen­

erates more detailed anomaly reports in a form accessible to 
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human operators . The report includes summary conclusions 
for operators and maintenance personnel. The report can also 
include detailed engineering information in the form of de­
tai led graphs, charts, and tables for the engineering personnel. 

The Anomaly Reporting block could also produce detailed 
anomaly reports. For a particular anomalous FOQA flight 
record, detailed charts of the monitored variables Yk/(t) (flight 
f for tail k), of the regression model fit, and of raw FOQA 
data variables could be displayed to help with establishing the 
root cause of the anomaly. This requires fetching the selected 
Detailed Anomaly Data - a raw FOQA data record - from the 
Secured Raw FOQA Data set as illustrated in Figure I . Only 
a small number of the raw data records generally need to be 
fetched to investigate the anomalies. 

IV. FOQA DATASET 

This section provides an overview of DFM application to 
commercial airline data for a fleet of aircraft. 

A. Data set description 

We used DFM to proces data for a medium-size airline 
fleet that included Airbus A319 and A320 aircraft. The fleet 
included 188 aircraft (tai l numbers). The data was collected 
over two years: 2010 and 2011. In this period each aircraft 
has made between 200 and 3000 flights. The overall data set 
included about half million flights. 

The A3 19 and A320 aircraft have the same body and wing 
shape, but differ in length (123ft for A320 vs III ft for A319). 
The weight ranges and engine thnl t ranges of the two aircraft 
types mostly overlap, but are some 5% higher for A320. 

The data channels used for proces ing and monitoring 
included: time stamps, aileron left and right, elevator left and 
right, rudder, stabilizer, angle of attack, lateral, longitudinal 
and normal accelerations, aircraft weight, pitch, roll , fan 
speeds for two engines, mass fuel flow for two engines, total 
temperature, altitude, and airspeed. 

In addition to the described raw data, derived parameter 
were used. These included dynanlic pressure, Mach, and air 
den ity computed based on atmosphere model. 

B. Implementation overview 

DFM algorithms are implemented using a pipeline computa­
tional architecture. The architecture consists of data pipes each 
reading inputs from a buffer (disk files) and writing outputs 
into another buffer. Each pipe implements a stage of the data 
processing. By going through the input data files sequentiall y, 
the pipe can process large amounts of data that do not fit into 
memory. The DFM data pipes roughly correspond to what is 
shown in Figure 1. The first datapipe ingests the raw FOQA 
data, the last datapipe outputs the Anomaly Reports. 

In this work, DFM software was inlplemented on a Unix 
cluster. Embarrassingly parallel implementation of the algo­
ri thm was used. The parallel and sequential implementation 
allowed multi-Terabyte data processing with the standard lim­
ited memory of a few Gb at each processor. The computational 
logic implementing the datapipes was programmed in Matlab 

and deployed as Matlab-generated Unix binaries. The parallel 
execution of 16 threads on as many cores allowed to complete 
the DFM processing of the 5 TB data set in about 10 how-so 

C. Processing results overview 

The anomaly detection thresholds were initially calculated 
based on 5% p-values for the T2 tatistics. Later, it was found 
that the outlier distribution in the data is, in fact, heavy tailed 
and the thresholds were empirical ly increased by an order of 
magnitude to limit the nwnber of the flagged anomalies such 
that they can be surveyed in detail. 

No model anomal ies were fl agged. A possible reason is 
that the fleet was a mixture of A319 and A320 aircraft. The 
differences between these two types of aircraft established the 
large range of the normal model variabi lity. No vehicle in the 
fleet differed from the rest by much more than this variability. 

For reporting, the monitoring scores were scaled by 5% p­
val ues of the T2 statistics. For the estimated trends, the bulk 
of the scaled monitoring cores was less than 0.1. The 15 
tails flagged for the trend anomalies had monitoring scores 
exceeding 10. 

The bulk of the scaled monitoring scores for the residual 
anomalies was less than 0.2. The 20 tai ls flagged for the 
residual anomalies had scores exceeding 6. Most of the flight.s 
with residual anomalies were also flagged as trend anomalies. 

Many intermediate- ized anomalies have maUer magnitude. 
They clearly stand out compared to the bulk of the data, 
but were left out in this study. These anomalies could be 
of interest to aircraft operator once all larger anomalies are 
addressed. The flagged anomal ies with large trend and residual 
monitoring scores involve 24 tails. These anomalies were 
analyzed in more depth and are described in more detail below. 

Y. ANOMALIES FOUND 

The following large anomalies were uncovered as a result 
of the DFM processing of the described FOQA dataset. 

A. Angle of Attack 

Wrong value of Corrected Angle of Attack (AOA) was 
recorcled for three tails. In these cases the Indicated AOA 
value looks nomlal. The cOlTected AOA value i stuck at 
zero for one aircraft. The corrected AOA val ues are stuck at 
43 and at 42 for two other aircraft. For each of the e tJu'ee 
aircraft, the anomalies persis ted for several sequential flights 
then disappeared . The problem is illustrated in Figure 2 that 
plots scaled flight anomaly score (6) for sequential flights 
of one of the three aircraft The amplitude of anomaly (the 
monitoring score) is very large for three flights. Note that 
the score is above the variation (though below the selected 
threshold) for several flights around the event. The Corrected 
AOA and the Indicated AOA at the peak amplitude of the 
anomaly are included as an insert plot in the figure. 
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Fig. 2. Corrected AOA anomaly 

B. Accelerations 

Problems with three accelerometer readings were found for 
two tails. In one flight, the acceleration signal dropped to 
an unreasonably low value mid-flight. This is a single event. 
For another aircraft, the deterioration evolved over 18 flights. 
Scaled trend anomaly score (7) in Figure 3 shows the ampli­
tude of the anomaly increasing from one flight to another. The 
three-channel acceleration oscillations at the peak amplitude 
are included as the insert plot in the figure. It is assumed 
that after reaching the peak the accelerometer problem was 
resolved. If the anomalous accelerations were caused by an 
Inertial Navigation System failure, this could potentially have 
safety implications. The accelerations i.nfluence the aircraft 
Air Data system through Air Data Inertial Reference System 
(ADIRS) . It is assumed that the oscillating accelerations did 
not trigger the exceedance event until the amplitude reached 
its peak. Despite the highly abnormal pattern , the accelerations 
did not reach unusually high or low values earlj er. 
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Fig. 3. Acceleration sensor anomaly 

C. Aircraft gross weight 

In multiple flights, the aircraft gross weight is indicated as 
l00x larger than normal during first 20-60 min of flight. At the 
end of this period, the weight suddenly drops to a normal value 
consistent with the model. For 16 aircraft in the fleet, there are 
multiple occurrences of th.is happeni ng. The abnormal gross 
weight indication is not correlated with any observed changes 
in the aircraft fuel capacity or other related channels. It does 
not seem to influence operation of aircraft flight control. This 
appears to be a problem with FOQA data collection, rather 
than an actual aircraft related problem. 

D. Elevator oscillations 

In a single flight of one tail , the left elevator starts oscillating 
from -26 to 11 deg some 20 min into a flight. No flight 
attitude disturbance is visible. A possible culprit is an electrical 
failure in the actuator control circuit that is disconnected 
from the actuator. In this case, the airline does not have a 
record of elevator maintenance performed on this tail between 
the anomalous flight and the next flight when the anomaly 
disappeared. 

£. Elevator bias 
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Fig. 4. Elevator bias: persistent bias in the right elevatqr 

For one tail , a 1.5 deg right elevator bias was fo und. The 
anomaly persisted for about 400 sequential fli ghts and was 
absent in the fligh ts before and after that period. This anomaly 
is illustrated in Figure 4 showing scaled flight anomaly score 
(6) . The upper inselt plot in Figure 4 shows two elevator traces 
in the flight with the largest monitoring score. The lower insert 
plot shows the elevator traces for normal data, before the 400-
flight elevator bias event s tarted. 

F Aileron bias 

The anomaly shown in Figure 5 is related to a bias of one 
of the ai lerons. The plot shows a trend anomaly score (7) that 
increases in a series of 20 flights . After reaching its peak, the 
anomaly disappears. No maintenance actions rel ated to these 
anomalies were confirmed by the airline. 



The upper insert plot in Figure 5 shows the sum of aileron 
positions in the flight with one of the largest mOnitoring scores. 
The lower insert plot shows the aileron sum for normal data, 
before the start of the increasing anomaly trend . 

An interesting observation is that the ailerons sum is -2 deg 
in the normal condition , which is the condition maintained in 
the vast majority of flights for this tail. Near the anomaly peak, 
the sum of the aileron position is close to zero. This differs 
from the described normal condition. 
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Fig. 5. Ai leron bias: trend in the sum of aileron positions 

G. Smaller biases 

Reducing the anomaly reporting threshold uncovers many 
additi onal anomalies that are smaller in magnitude but sti ll 
well outs ide of the varia tion range for most of the data. Many 
of these anomalies are re lated to biases in flight actuators or 
sensors. The limited space of this paper does not allow us to 
provide a more detailed survey of these smaller an omalies. 
The actuator bias anomalies might be impoltant because th ey 
could lead to changes in aircraft trim and, as a result, might 
increase the fuel burn compared to an optimized trim flight. 
They might also indicate an incipient actuator problem. 
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