National Aeronautics and Space Administration

ww.nasa.dov

Skeletal Health Risks Due to Spaceflight: Recommended Research Directions by a Clinical Advisory Panel

Northeast Ohio Medical University, Dept. of Anatomy and Neurobiology 2012 Spring Seminar Series

> Jean D. Sibonga, Ph.D. Lead, Bone Discipline Human Research Program [HRP] Johnson Space Center, Houston, TX May 17, 2012

ww.nasa.gov

Skeletal Health Risks Due to Spaceflight: Recommended Research Directions by a Clinical Advisory Panel

Center for Space Medicine, Cleveland Clinic

Jean D. Sibonga, Ph.D. Lead, Bone Discipline Human Research Program [HRP] Johnson Space Center, Houston, TX May 16, 2012

Overview

- Defining the risks in atypical conditions (The 3 C's)
- Novel skeletal adaptation
- Directions for Bone Research

Overview

- Defining the risks in atypical conditions
- Novel skeletal adaptation
- Directions for Bone Research

Not a health care institution.

NASA CULTURE

NASA Human Research Program:

Mitigating Risk for the Human System

Adapted HRP 2012

Identified HRP "Bone" health risks due to space exploration.

- 1. Early Onset Osteoporosis Long-term health issue
- 2. Bone Fracture
- 3. Formation of Renal Stones
- Intervertebral Disc Injury (or Damage) #2-4 Greater risk to mission operations.

Two Risks Associated with Fracture*

Risk of Early Onset Osteoporosis Due to Spaceflight

Osteoporosis: Condition of *low bone mass* and *severe structural disruption* <u>leading</u> to fractures under *normal* physical activities -- "fragility or atraumatic" fractures (fracture with fall from standing height)

Osteoporosis is the INTERMEDIATE condition.

Risk of Bone Fracture
Factor of Risk = Ratio of Applied Load/Bone Failure Load ("Bone Strength")

Includes TRAUMATIC FRACTURE - Biomechanics

Premature Osteoporosis fractures in astronauts?

Does spaceflight result in irreversible changes to bone that combine with age-related losses?

Oxford Textbook of Geriatric Medicine ADAPTED SLIDE COURTESY OF Dr. S. AMIN, Mayo Clinic

Given that osteoporosis is not a geriatric condition...

WHAT SHOULD NASA MEASURE NOW TO ADDRESS AN OCCUPATIONAL HEALTH RISK THAT MAY MANIFEST LATER?

Requirement for Evaluating Bone Strength

- "Osteoporosis is a skeletal disorder characterized by compromised bone strength predisposing to an increased risk of fracture. <u>Bone strength reflects the integration of two</u> <u>main features: bone density and bone quality</u>." JAMA 2001
- What is an index of Bone Quality? any bone parameter that can influence bone strength independent of DXA BMD. Supplement BMD as a predictor of fracture.

Dual-energy X-ray Absorptiometry [DXA] BMD @ Johnson Space Center

- Monitor astronaut skeletal health
- Characterize skeletal effects of long-duration spaceflight
- Evaluate efficacy of bone loss countermeasures
- Verify restored health status

Dual-energy X-ray Absorptiometry-DXA

DXA measurement of areal BMD [BMD_a] – a 3d measure in 2d units

- Improved precision
- Low radiation
- Shorter scan times
- BMD measures over multiple skeletal sites
- Used in large prospective studies for fracture prediction
- Long established, widely-applied surrogate for bone strength

Limitation of DXA: cannot distinguish different geometries of bone and thus cannot reflect different levels of bone strength.

Mary Bouxsein, Ph.D. Bone Geometry and Skeletal Fragility, May 2005

DXA-based T-scores <u>not</u> appropriate, informative or predictive for fracture in astronaut population.

BMD T-Score Values* Expeditions 1-25 (n=33) *Comparison to Population Normals

Understudied population for osteoporosis/novel risk factors

ASTRONAUT COHORT

The Long-duration Astronaut

- Typical space mission duration 164 ± 33d (range 58-215d)
- Average Age 46.9 ± 4.2 y (range 36.8 55.3)
- Male to Female Ratio 3.9 : 1
- Current total # per astronauts in corps 44 of 331
- # repeat fliers 4
- BMI Male BMI 26.4 ± 2.0 (range 22.3 to 30.7); Female BMI 21.7 ± 1.9 (range 20.1 to 25.8)
- Wt and Ht- Males: Males: 82 ± 9 kg (range 63 to 101 kg), 177 ± 6 cm (range 163 to 188 cm);
- Wt and Ht Females: 61 ± 6 kg (52 to 72 kg), 168 ± 3 cm (range 163 to 173 cm)

ASTRONAUTS EXPOSED TO UNIQUE SET OF RISK FACTORS DURING SPACEFLIGHT

Subject Numbers/Scheduling/Budget/Platform Availability/ Therapeutic Windows

NASA CONSTRAINTS

The long-duration astronaut – Constraints to clinical practice guidelines

- Current total # per astronauts in corps 44 of 331
- # repeat fliers 4
- Male to Female Ratio ~4:1
- Restricted presentation of sex-specific data Medical privacy
- Limited Medical Assessment Tests DXA, Biochemical bone turnover markers
- Limited expeditions/yr 3 to 4
- Limited platform availability 2020

Overview

- Defining the risks in atypical conditions
- Novel Skeletal Adaptation
- New Directions for Research

DXA BMD reveals changes that are unique & complex. Drives requirement for research.

Rapid (1-1.5%/mo) and site-specific BMD loss (means local regulation occurring).

BMD Site	Mean Immediate Post Flight BMD (% change/month)			Mean Three Year Post Flight BMD (% change/month)		
	Predicted	Observed	p-value	Predicted	Observed	p-value
Total Hip	1.063	0.994	< 0.001	1.066	1.047	< 0.001
	(0.05)	(-0.76)		(0.02)	(-0.03)	
Lumbar	1.081	1.016	<0.001	1.085	1.069	0.11
Spine	(0.11)	(-0.58)		(0.03)	(-0.00)	
Ultra-Distal	0.558	0.550	0.12	0.541	0.551	0.005
Radius	(-0.05)	(-0.20)		(-0.08)	(-0.04)	
Mid-Shaft	0.755	0.741	0.04	0.749	0.741	0.28
Radius	(0.19)	(-0.00)		(0.02)	(0.00)	
Total Body	1.288	1.262	0.009	1.284	1.261	0.19
	(-0.04)	(-0.26)		(-0.01)	(-0.05)	

Total BMD **loss** <u>greater</u> and <u>persist</u> compared to BMD changes predicted from algorithms derived from earth-based population

Loss is variable. Recovery is variable. Recovery is prolonged. Indicates: Multiple Risk Factors at play.

More informative. – but how do we translate to fracture risk in astronauts?

Change in DXA BMD after Long-Duration Mir and ISS Space Missions: %Change Normalized to 6-Month Mission Length n = 40 (7 Mir, 33 ISS)

Bone Turnover Markers suggest a net loss in bone mass in the skeleton

Slide Courtesy of Dr. SM Smith; Adapted by Sibonga