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ABSTRACT

The aerodynamic design of a propeller for the trajectory control of a high-altitude, sci-
entific balloon has been performed using theoretical methods developed especially for such
applications. The methods are described. Optimum, nonlinear chord and twist distributions
have been developed in conjunction with the design of a family of airfoils, the SE403, SE404,
and SE405, for the propeller. The very low Reynolds numbers along the propeller blade fall
in a range that has yet to be rigorously investigated, either experimentally or theoretically.

INTRODUCTION

Scientific balloons, including future Ultra Long Duration Balloons (ULDB), require a
system for the control of flight trajectory. One such trajectory-control system employs a pro-
peller. The design of the propeller represents a challenge, however, because of the very low
Reynolds numbers (< 50,000) characteristic of the high operational altitudes. Accordingly,
the aerodynamic design of the propeller has been performed using theoretical methods devel-
oped especially for such applications. The propeller design includes not only the optimum
planform of the blades (i.e., chord and twist distributions) but also the airfoil shapes along the
radius of the blade.

Propeller theory, as it has commonly been applied to date, is based on a method devel-
oped in 1919 (refs. 1 and 2). This theory assumes a low, propeller loading and neglects vis-
cous drag. It has been successfully applied to many lowly loaded propeller designs, including
those for man-powered and solar-powered aircraft. A theory for more highly loaded, opti-
mum propellers, still ignoring viscous drag, was developed recently (“Propellers and Fans,”
seminar by R. Eppler at Siegen University, Germany, 15 April 1999). One result from the
application of this theory is that the lift is shifted considerably outboard if the propeller is
more highly loaded, which is understandable because the lift outboard produces less torque.
Lately, it has been concluded empirically that viscous drag too influences the optimum lift dis-
tribution along the propeller blade because overcoming the drag outboard requires much more
power than inboard.

The design of an optimum, solar-powered propeller for a high-altitude balloon can not
be performed adequately without accounting for the viscous drag because the Reynolds num-
bers are so low. Accordingly, the recent theory has been extended to include viscous drag.
The first application of the extended theory is presented. The effect of the viscous drag is
much greater than previously suspected. The lift is shifted back inboard but in a different way
than it is shifted outboard in the case of high loading.

Because the airfoil performance is the key to the propeller performance and because
current theoretical airfoil methods (e.g., refs. 3—5) have not been validated for such low Reyn-
olds numbers, it is imperative that an appropriate airfoil from the propeller design (e.g., 75-
percent radius) be experimentally verified.
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SYMBOLS
number of blades
power coefficient; pressure coefficient
thrust coefficient
chord, m
section profile-drag coefficient
section lift coefficient
section pitching-moment coefficient about quarter-chord point
drag, N
function
lift, N
Mach number
shaft power, W
static pressure, Pa

radius to blade element, m; Reynolds number based on free-stream conditions
and chord

nondimensional radius to blade element, —

thrust, N

airfoil thickness, m

time after which influence of vortex elements on blade forces is neglected, s
maximum lifetime of vortex elements, s

induced velocity parallel to rotational direction, m/s; blade rotational velocity,
R, m/s

nondimensional induced velocity parallel to rotational direction, LR
®
t



V forward velocity of propeller, m/s

/4 induced velocity parallel to propeller axis, m/s
w nondimensional induced velocity parallel to propeller axis, —
t

X airfoil abscissa, m
y blade abscissa, perpendicular to propeller axis and propeller radius, m; airfoil

ordinate, m
z blade ordinate, parallel to propeller axis, m
o angle of attack relative to x-axis, deg
r circulation, m%/s
Y velocity jump across vorticity layer, AU, m/s; lift distribution
A incremental change in quantity
) — atanZ2

L

_D

8 = —
L
n efficiency
0 rotational angle, deg
A Lagrange multiplier
A nondimensional forward velocity of propeller, —%
® t

p air density, kg/m>
() Lagrange function
) angle between local flow velocity and rotational direction, deg; twist angle,

deg
b4 function for # and w
® angular velocity, rad/s
o0 infinity



Subscripts:

Betz Betz solution (see ref. 1)

L at blade

max maximum

min minimum

mn near minimum

n normalized

S separation

t tip

0 far upstream of propeller; index of function H for u = 0 and w = 0; zero
lift

1 upstream of cylinder; at propeller; index of partial function ®

2 downstream of cylinder; far downstream of propeller; index of partial function
d

0 free-stream conditions

Abbreviations:

L. lower surface

S. boundary-layer separation location, xg/c

U. upper surface

PLANFORM

THEORY
Blade-Element Theory
The blade elements of the propeller are located on concentric cylinders around the pro-

peller axis at a radius R and have a radial length of dR. One such cylinder, unrolled into a
plane, is shown in figure 1. The pressure upstream of the cylinder is p; and downstream, p,.



The velocities induced by the propeller are U; and W; upstream of the cylinder, U, and
W, downstream, and U; and W; at the propeller blade. The velocity at a blade section is
composed of the downstream velocity V_+ W, and the rotational velocity oR-U,,
where V_ is the forward velocity of the propeller (i.e., the velocity of advance) and o is the
angular velocity of the blade. The velocities U, W;, U,, and W, and the pressure differ-
ence Ap = p,—p, depend on theradius R of the cylinder and the rotational angle 0. The
propeller has B blades. The direction of the local velocity is determined by the angle ¢ for
which
Voo + WL
tangp = ———
oR-U,
The lift L of the section is perpendicular to the local velocity and the drag D is per-
pendicular to the lift. The resulting force forms an angle to the lift vector defined by
tand = D/L = ¢.

(1)

Blade-element theory works with averaged velocities such as
2w

U\(B) = 5= [ U\(R, 0)d0
0

and the corresponding averaged pressure differences Ap(R). This introduces several difficul-
ties. For example, for continuity reasons, W, mustequal W,. This is not true for W7 and
W3, which are difficult to evaluate. Also, the contraction of the propeller jet over the finite
height of the cylinder is neglected.

The only simple and clear averaging that can be performed is to replace the finite num-
ber of propeller blades by an infinite number of infinitesimal blades, as illustrated in figure 2.
On the left side of figure 2, several small vortices are shown along with their directions of
rotation. If weaker and weaker vortices are supposed, they approach a vorticity surface,
which is represented on the right side of figure 2 by a broken line that moves to the right with
the velocity ®R. Such a vorticity layer is merely a discontinuity in the velocity field. The
velocity jumps across the vorticity layer by AU = y, which is the strength, of the vorticity
layer. The direction of AU is perpendicular to the direction of the vector y, which, in the
present case, is the radial direction. The height of the previously considered cylinder becomes
infinitesimal and the induced velocities become

U,-U, = v U, = (U +U,)/2 w,=Ww,=Ww,
If the flow upstream of the propeller is irrotational, U; = 0. Then, as shown in figure 2,
W,=Ww,=Ww,=W U,=U-=y U, =U/2
can be set. Upstream of the propeller, the Bernoulli equation

2
Pt BV, = py+ B+ ) @)



is valid. Downstream of the propeller, the jet rotates, contracts, and becomes turbulent. It is
assumed that the Bernoulli equation along the streamlines is valid until the pressure has
reached free-stream static p_ . Thus,

Pyt BV, + W)+ V) = p + BV, + W)+ U) )

where U, = U due to the conservation of momentum. Thus, the pressure difference across
the propeller disk is

2
Ap = py=py = EQV WL W) (4)
An infinitesimal blade element of the rotating propeller extends over a sector of the

propeller disk having the angle dB. The circulation on that blade element is y(R)Rd0. The
direction of the flow at this element is given by

and V,+Ww 5)
anp = ———
oR—-U/2
The lift on this blade element is perpendicular to the direction of the flow and its magnitude is
ddL = pyRARAO,(oR — U/2)* + (V. + W)* = pdeRdGQ—R—_—%z ©6)
cos
The corresponding thrust element is
ddT = 9L o059 +5)
cosd
and the thrust element for the entire “ring” is, with y = U,
dT = 2mp URdRM(cosd) — tandsing)
or, using equation (5) and tand = ¢,
dT = 2npU(0wR-U/2-¢e(V+ W))RdR (7)

The same thrust element results from the pressure difference Ap, which yields, using
equation (4),

dT = Ap2nRdR = np(2V W, + W-)RdR (8)

Another formula follows from the total flow through the ring. The flow is contained in
a tube having variable radius R and radial length dR. Its cross section is shown in figure 3.
The radius far upstream of the propeller is R(; far downstream, R,; and at the propeller, R;.
The corresponding widths of the tube are dR,, dR, and dR,, which are determined by the
continuity condition

RydRyV, = R AR (V,+ W) = RydR,(V + W) 9)



where the factor 2t has been omitted. The pressure integral around this tube vanishes due to
the properties of the flow about an infinite half body. The external force Ap2nR,dR; acts at
the propeller disk. The momentum equation in the direction of the propeller axis yields then
pV2RydR,+ ApRdR, — p(V, + W,)’R,dR, = 0
again without the factor 2n. Together with equation (9), it follows that
Ap = p(Vy, + MW,
Comparing this equation with equation (4) yields immediately
w,=2w
This simple equation results in momentum theory as well. Half the downstream veloc-

ity produced by the propeller is already present at the propeller. With this equation, it follows
from equation (8) that

dT = 4np(V, W+ W' )RAR

and, by comparing this equation with equation (7),

2W(V,+ W) = UR-U2—e(V,+ W) (10)
The total thrust can thus be evaluated by two formulas
R,
T = 4xp [ W(V,,+ W)RAR (11)
0
Rl
T = 2nij(mR— U/2— (V. + W))RdR (12)

0
where R; is the radius of the propeller. The power required to move a ring element is

ddP = 4L Gn (6 + 5)oR
cosd

with ddL from equation (6). This yields the total power required
RI
P = 27po [ U(V, + W+e(oR - U/2))R*dR (13)
0

Nondimensional Variables

To nondimensionalize the variables, all lengths are divided by the propeller radius R,
and all velocities, by the rotational velocity at the propeller tip U, (= ®R,). The pressures are



divided by p Uf and the forces, by p UtzRf . In this report, to the extent possible, the dimen-
sional variables are designated by upper-case letters and the nondimensional variables, by the
corresponding lower-case letters. For example,

_ U _w _ R
u=— W= — r= =
OR, OR, R,
The nondimensional forward velocity of the propeller is
VOO
1 ==
®R

which is proportional to the advance ratio.

The nondimensionalized ®R is merely ». Accordingly, equation (5) becomes

V +W
tan(b — o0 _ Atw (14)
oR-U/2 r—ul/2

and equation (10),
Y(u,w) = 2w(A+w)—u(r—u/2—-e(A+w)) =0 (15)

The thrust 7 and the power required P are given in terms of their corresponding
coefficients

1

c, - 2T - T2 = = [2w(u+ wyrdr (16)
2npR,(wR)"  2mpRU;
1
c, - P = — L= [uQ+w e ui2))dr (17)

27cpcoRf(coRt)2 2npR, U, 0

Optimum Propeller Design

Formulation of problem.- The thrust and power coefficients depend, according to
equations (16) and (17), on the given parameters A and ¢, 7, and the functions w(r) and
u(r). The two functions are not independent, however. Using equation (15), one function can
be evaluated if the other is known. Therefore, only one of the functions is free. This means
that C7 and Cp depend on one of these functions.

The requirements for an optimum propeller can be specified in different ways.
(1) Minimum power for a given thrust
(2) Maximum thrust for a given power

(3) Maximum thrust-to-power ratio



The only function that is free for achieving the optimum is either u(r) or w(r). Such
optimization problems are typical for variational calculus.

From the different formulations of the variational problem, the following has been
selected: for the specified thrust 7, the power required P must be minimum. The free func-
tion is w(r); u(r) = u(w(r)) is given, with w(r) according to equation (15). Mathemati-
cally, this is formulated with a Lagrange multiplier A. The Lagrange function

1

D(w(r)) = I(®1(W)—A®2(W))d7’ (18)

is defined with ’
@, (w) = u(h+w+e(r—ul2))’ (19)
Dy(w) = 2w(h +w)r (20)

and equation (15). The necessary condition for the defined optimum is
d
— (D, -AD,) =0 21
< ()~ A®,) @D

where @, depends on w and u(w) and, therefore,

dw v dudw @2)
where
oY
du _ _ow
dw oY
ou
Using W(u,w) from equation (15),
du _ 2ht+4w+ceu 23)

dw r—u—g(A+w)

The central optimization condition represented by equation (21) is a simple, special
case of the Euler equation of the variational problem because dw/dr does not occur in equa-
tion (18). Equation (21) concerns only the integrand of equation (18) and must be satisfied for
each r.

Properties of function u(w).- Equation (15) is quadratic in # and w. Because both
terms containing u> and w? have the same sign, an ellipse is represented for each r. It is
possible to solve equation (15) with respect to u by

= r—eOvtw)— (r— e+ W) — dw(h +w)



Only the negative sign of the square root is realistic because the positive sign would yield
u values greater than . All solutions go through u = w = 0. A series of the resulting
ellipses is shown in figure 4; the largest, for » = 1, and the others, for monotonically smaller
r values.

The maximum w (= w,__ ) for which a u is defined makes the argument of the
square root zero. This yields

max

DA +e(r—e)) , [(2hte(r—el))?  (r—er)
w, = 8(’”2 gA) J( ( : )) L (r—e 2) (24)
4—c¢ 4—¢ 4—¢
It follows that the maximum u (= u,,,.) is
Umax = r_8(7\‘+wmax) (25)

Obviously, there is also a minimum r, below which equation (15) has no solution. For
r = gk, it follows from equations (24) and (25) immediately that

In equation (23), the denominator is zero for u = u,,,. and w = w,___; there, the
ellipses have their vertical tangents. More difficult is the other singularity at » = e¢A. For w

and u — 0, it follows that du/dw — — .

Optimization details.- The Lagrange multiplier A in equation (21) is normally deter-
mined such that the specified Cr is achieved. To obtain an overview of the possible solu-
tions, it is simpler to vary A, however. Therefore, the range of A values that leads to
solutions must be determined. From equation (19), it follows that

do,

= = (u+(7u+w+sr—8u)§§)r2

and, from equation (20),

d®d,
—= = 21r+4w)r
dw

Both equations, when introduced into equation (21), yield the optimum condition
du) 2 —
(u+(k+w—l—8r—8u)d—)r —AQA+4w)r = 0 (26)
w

which must be satisfied for all values of » considered. All variables u, w, €, and » must be
greater than zero. Moreover, only u less than » makes sense. The opposite would mean that
the induced velocity U is greater than ®R and, thus, the induced velocity would be greater
than the rotational velocity. Accordingly, the term within the inner parentheses of the first
term in equation (26) is not negative and can be zero only for u = w = ¢ = 0. The first
term becomes +o as w — w,,,.. Forany r, a solution exists once there isa w for which the
left side of equation (26) is negative.

10



It has been shown that below 7,. = €A, no solution can exist. Moreover, for
r= rmin’
du _ eu+2)+4w
dw utew

tends toward — oo for u and w — 0. The first term in equation (26) thus has very large values
for » - r,,;,. For these r values, solutions can exist only for very large A values. It is,
therefore, necessary to study the possible solutions in more detail. Once an arbitrary w can
be found for a given » and A, for which the function

(u +(A+w+ sr—su)@)r
dw
H(u(w),w,r) =

2N+ 4w

then a solution w exists because also H — o for w — w,,,.(7), according to equation (24).
In figure 5, H(w) is shown for A = 0.2 and ¢ = 0.05 and a series of » values. From this
figure (and a common property of H), it can be concluded that H always increases with w.
A unique solution is, therefore, guaranteed once
O+ eryr—22
r—en _ (7\.+81’)F<A
2A r—el

Also shown in figure 5 is a diagram of Hy(r) for A = 0.2 and six values of €. All curves
are hyperbolas with a vertical asymptote at » = ¢A and the second asymptote according to

Hy=H(r,u=0,w=0) =

H, = 7\,(1+82)+81’

The Lagrange multiplier A is the same for all ». If

e+ A

l1—¢h

solutions exist, according to the function Hy(r) shown in figure 5, for all » down to the small
7 fOr which

A = Hy(1) =

Hy(r,,) = Hy(l)

This limit is represented in figure 5, for € = 0.01 and & = 0.06, by broken lines connect-
ing the points Hy(1) and Hy(r

mn)-

For A > Hj(1), this range can be slightly extended. In this case, the lower limit of the
solution range is

—-AA

. AR (A—X)Z
mn 28 2s

The range for which no solution exists is very small and, in practical applications, is
covered by the hub.

11



If a specified Cp is to be achieved, the algorithm is slightly different. Instead of
selecting A values, A must be determined iteratively such that the desired Cy is achieved.

Finite number of blades.- As in all “averaged” propeller theories, the discretization of
the infinite number of blades into B blades must be performed by concentrating the B part
of the vorticity surface onto one blade. The total circulation of this blade is

2n
I' = yR=—
"B
The lift due to this circulation on a blade element of length dR results from

equation (6) if d0 is replaced by 2n/B

dL = py%j( V_+ W)+ (oR - U2)’RdR = cl%p((Voo ) + (R — U/2)Y)cdR

where c(R) is the local chord of the blade. This yields, with y = U,
4nUR

CZC =
B.J(V,,+ W) + (oR - U2)

2

or, nondimensionalized,

c dnur 27)

.
R g+ wi+r—un)?

This equation determines the chord distribution c¢(r) once the lift coefficient of the blade ele-
ment is known.

The twist of the blade is determined by the angle ¢. It shows the (average) direction
of the local flow. Relative to this direction, the airfoil must have the angle of attack needed to
generate the lift coefficient that was used to determine the chord according to equation (27).
If the chord is large, the velocities induced by the wake may change along the chord. The
induced velocities along the chord should then be calculated using another method (e.g.,
ref. 6).

RESULTS
Inviscid Solutions

The inviscid case is obtained by setting € to zero in all the formulas. For two values
of A, 0.026 and 0.2, only A was varied; C7 and ur depend on A. For easier comparison
with the Betz solution, ur is shown in figure 6 normalized by dividing all ur values by
Cr/Crper- Thus, the ordinate is

CT, Betz
CT

(ur), = ur

12



The solid lines represent the results of the present theory. The broken line represents the result
from the theory of Betz (ref. 1). The first and last values of C; are written next to the first
and last solid lines.

Several results are significant.
(1) The present theory converges to the Betz solution as Cy— 0.

(2) For the lower A (= 0.026), relatively low values of Cj; already yield curves that
deviate considerably from the Betz solution. The curve for C, = 0.009 is the seventh
one from the Betz solution.

(3) For the higher A (= 0.2), the deviation from the Betz solution is smaller although still
not negligible.

Optimum propellers for finite loadings have lift distributions shifted toward the blade
tip compared to the classical solution. The highest Cr shown in figure 6 yields very large
chords, typical of ship propellers.

Effect of Viscosity

The viscosity is embodied by the parameter &, which is the drag-to-lift ratio of the air-
foil. The design of propellers for low Reynolds numbers must generally consider ¢ values
greater than 0.03. Propellers having rough leading edges may also have an ¢ value of 0.015
at higher Reynolds numbers. The following examples are representative of a two-bladed pro-
peller for a balloon operating at very high altitudes (see table I). At the specified altitude, the
very low air density leads to Reynolds numbers around 12,000, despite the required large
chords. Therefore, € values up to 0.05 have been evaluated. The thrust coefficient C; and
the nondimensional forward velocity A are given in each example.

In figure 7, A corresponds to the specified, low velocity of the balloon. The optimum
propeller, including viscous effects, has reduced lift near the blade tip and increased lift
inboard of about 75-percent radius. The difference from the inviscid solution is not dramatic
but also not negligible.

The effects of a higher A value and different C; values are shown in figure 8. For
the lower Cp value, the effect of viscosity is even greater than for the low A value. Increas-
ing Cyp decreases the effect.

Optimum Propellers
If no parameters are varied, not only c;c/R; but also the twist angle ¢ and the Reyn-

olds number R are plotted, as shown in figure 9 for the two-bladed propeller at the specified
forward speed.

13



The given tip speed U, is a driving parameter. The results are:
(1) The power required for all three tip speeds is within the specified limit.
(2) The power required decreases with decreasing tip speed.
(3) The local blade chords increase with decreasing tip speed.

(4) The Reynolds numbers increase with decreasing tip speed.

The planform of the propeller with the lowest power required (fig. 9(a)) exhibits large
chords inboard (e.g., for ¢;=1, ¢ > 2 m). The incorporation of these large chords inboard
requires careful consideration. In this region, the blade design is determined by structural
requirements, as is typical. Also, although the Reynolds number is extremely low, because
this region contributes little to the total thrust and power required, no aerodynamic concerns
arise.

Propeller Analysis

The optimum propellers have been developed using a propeller theory that does not
consider the velocities induced by the vortices in the jet downstream of the propeller. The
most and the strongest vortices are shed from the trailing edge of the propeller blades near the
tips. By neglecting these vortices, a ducted fan is considered rather than a free propeller. This
is also true for the fundamental method of reference 1, which was corrected by the supplement
in the same reference. The corrected method is widely used today (e.g., ref. 2) and has been
employed to modify the tip of the optimum propeller blade. Accordingly, the method of refer-
ence 6, referred to as the Zerle code in this report, has been used to investigate the develop-
ment of the vortex wake produced by the propeller.

Vortex lattice and vorticity layer.- The wake downstream of a wing or propeller blade
is a layer of vorticity having finite thickness. It would best be described by the Navier-Stokes
equations. A viscous, computational fluid dynamics (CFD) code has yet to accurately treat
the vortex wake downstream of a propeller or helicopter rotor, however. Alternatively, several
methods employ an inviscid idealization in which the vorticity layer of the wake is repre-
sented by a two-dimensional, vortex surface. The movement of this vortex surface is, how-
ever, difficult to compute. Accordingly, the vortex surface is usually discretized by a vortex
lattice, as in the Zerle code.

The representation of the vortex surface by a vortex lattice has several shortcomings.

(1) Mathematically, a single vortex is represented by a potential flow, which is irrota-
tional. The (possibly curved) axis of the vortex represents a strong singularity in this flow.
For example, a vortex of finite strength contains an infinite amount of energy. This singu-
larity is normally eliminated by assuming a vortex core of finite diameter, where the
velocity tends toward zero instead of infinity. Only outside this core is the flow irrota-
tional. The radius of the core influences the results, however.
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(2) A mathematical vortex with no core induces a velocity at any point outside the vortex
according to the well-known Biot-Savart formula. The term “induced velocity” is some-
what misleading, however. This velocity must exist if the flow outside the vortex is irrota-
tional and, therefore, a potential flow. If the vortex is a straight line of infinite length, the
Biot-Savart formula yields the simple, two-dimensional, vortex flow, in which the stream-
lines are circles around the vortex axis and the velocity is inversely proportional to the
radius of the circle.

(3) A curved vortex induces an infinite velocity at any point on itself. The vortex would
then move with this velocity. This is again prevented by the vortex core but the numerical
results may vary greatly with core radius.

(4) If a nonsingular potential flow is superposed on a vortex flow, a force acts on each ele-
ment of the vortex proportional to the strength of the vortex and the local velocity of the
superposed flow. This force is also infinite for a curved vortex with no core.

(5) The vortex surface (or layer) downstream of a wing or propeller blade rolls up aft of
the tips and, thereby, no part of the vortex surface can penetrate any other part of the vor-
tex surface. The cross sections through the wake become spirals. The vortices of the vor-
tex lattice also exhibit the typical roll up but they penetrate the vortex lattice representing
the vortex surface. This leads to a chaotic mixing of the vortices that does not model the
roll up of the vortex surface. Moreover, the roll up of the vortex lattice begins earlier and
much faster than the roll up of the vortex surface.

All these shortcomings raise the question whether reliable results can be obtained from
a vortex-lattice method. Many valuable results have been presented, however, for fixed
geometries and fixed wakes without relaxation. In this case, the induced velocities are only
considered at the center of the doublet elements, which never coincide with a flow singularity.
If the velocity normal to the blade surface is required to be zero at these points, the total “leak-
age” through the vortex lattice is small because the positive and negative contributions tend to
cancel each other. This is still true if a vortex wake is assumed to have a fixed form. Once the
wake is to be adapted to the local induced velocities, however, the shortcomings become
almost overwhelming.

Zerle code.- To determine the differences between the results from blade-element the-
ory and the propeller with a free wake, it is most important to know the induced velocities
from the wake onto the propeller blade. These velocities depend on the shape of the wake. It
is known that the jet behind a propeller contracts and increases its downstream velocity. If the
propeller moves in the direction of its axis, the vorticity vector always has the direction of the
local velocity vector.

The shape of the wake is thus determined by the velocity field downstream of the pro-
peller. This velocity field is composed of the velocities due to the movement of the propeller
and the induced velocities from the propeller and the wake. No velocity component perpen-
dicular to the surface of the vortex wake is permitted. The solution of this problem normally
requires an iterative approach because the velocity field depends on the lift of the propeller

15



blades and the shape of the wake whereas the lift of the blades and, therefore, the vorticity
strength of the wake depend on the induced velocities.

The Zerle code starts with the given shape of the blade, although the blade sections
have no thickness. The blade and the wake are represented by panels having constant doublet
strength and straight edges, which correspond to vortex rings.

Instead of the iterative method previously discussed, the Zerle code starts from the
propeller with no wake and then develops the wake in time steps. After each time step, the
wake is updated. The wake elements from the preceding time step move with the local veloc-
ities and a new row of wake elements is introduced at the trailing edge of the blade. The new
elements contain only longitudinal vortices if the circulation at the radius has not changed. If
the circulation has changed, the elements also contain lateral vortices.

In calculating the strength of the doublet panels of the blade, all induced velocities
from the wake and the blade panels are considered. All vortices represent singularities in the
flow because the induced velocity of a vortex element tends toward infinity with decreasing
distance from the vortex element. This is, as previously mentioned, no problem for fixed
blade geometries and fixed wakes. For a free wake, however, the distance between the vorti-
ces may become very small or even zero. For these vortices, a so-called damping radius is
therefore introduced, within which the induced velocity tends toward zero instead of infinity.
This does not, however, prevent the chaos that occurs if vortices penetrate the vortex lattice,
unless the damping radius is very large. In this case, the essential effects of the wake move-
ment are lost. For calculating the displacement of the wake elements, a small damping radius
is also used for the blade vortices.

The greatest difficulty for vortex-lattice methods, including the Zerle code, is the com-
putation of the free wake. The shape of the vortex lattice, in which all vortex elements influ-
ence the movement of each other, is much more unstable than the shape of a vorticity surface,
which, in turn, is much more unstable than a vorticity layer of finite thickness. Frequently, the
movement of the vortex lattice becomes chaotic and is no longer representative of the real
wake. The instability is greatest at the beginning of the wake development. After less than
one revolution of the propeller, the wake can become completely chaotic. The chaotic portion
of the wake moves downstream, however, and the wake being shed from the trailing edge is
less unstable. The forces on the propeller often converge to asymptotic values. The induced
velocities from the wake onto the blades decrease rapidly with distance from the propeller.
Accordingly, a maximum lifetime ¢,, of the vortex elements has been introduced, after
which their induced velocities are neglected. In other words, an artificial termination of the
wake has been introduced. To avoid errors near the artificial terminus, ¢,,. must be large
enough that the evaluation of the forces on the propeller will result in very little error when
clements having a lifetime greater than #;,4 (< 1,,,,) are neglected. The most important crite-
rion for the validity of the results is the convergence of the forces on the propeller to asymp-
totic values with increasing time.

Modifications to Zerle code.- The number of panels in the Zerle code is limited to 6
chordwise and 20 spanwise, which is insufficient for the current problem. Therefore, the
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number of panels has been increased to 16 chordwise and 32 spanwise. Moreover, nondimen-
sional variables have been introduced in the same way as previously described. Simultane-
ously, the code was converted to double precision from single precision because of the
increased number of panels and, correspondingly, the size of the linear equation systems.

The major difficulty of the Zerle code is the unstable shape of the vortex lattice of the
wake. The instability is increased by the finer panelling. In two regions, the instability is very
persistent: the center of the wake and the roll up at the outer edge of the wake.

The following modifications to the Zerle code improve the behavior of the wake such
that, in most cases, an asymptotic convergence is achieved.

(1) The amount of rotation between two vortex elements is limited, which is effective pri-
marily near the outer edge of the wake where it retards the roll up.

(2) During the development of the wake, the lift on the blade varies. The resulting lateral
vortices in the wake increase the instability of the wake near the propeller axis. This is
reduced by neglecting the shedding of lateral wake vortices for varying lift. This does not
introduce an error in the asymptotic case, where the lift is constant.

(3) A maximum lifetime ¢,,,, of the vortex elements of the wake (typically, equivalent to
four revolutions) is introduced, after which all induced velocities from the elements are
neglected. The wake, which extends downstream to infinity, is artificially terminated at
t

max-

(4) An influence time ;7 (< 1,,,,) 1s introduced, after which the induced velocities from
the elements onto the blades are neglected.

(5) The total time for which the development of the wake is computed is always greater
than ¢,,,. A considerable portion of the wake has then departed the computation domain.

A total time corresponding to six propeller revolutions is usually sufficient.

Results of analysis.- The two-bladed propeller exhibiting the highest performance
(fig. 9(a)) has been evaluated using the modified Zerle code. The tip speed U, is 50 m/s and
the radius R, is 5 m. The modification of the tip according to reference 2 increases the radius
to 5.2 m and the tip speed to 52 m/s. A circular arc was used for the airfoil shape. An angle of
attack of 3 degrees is necessary for this airfoil shape to reach the desired lift coefficient of 1.
The chord of the propeller blade has been reduced slightly near the axis. This region will be
determined by structural requirements, in any event. The propeller and the computational
panels are shown in figure 10 as an axonometric projection and a plan view.

The development of the wake is shown in figure 11 after one through six revolutions;
24 time steps per revolution have been computed. (Note that the wakes have been terminated
at t;,4, equivalent to three revolutions in this case.) The projection direction is the longitudi-
nal axis of the propeller, which shows primarily the profiles of the propeller. It should be
noted that the airfoils are laid out on cylinders and appear, in this projection, not in their exact
shapes. After one revolution, the wake seems to develop regularly, although its downstream
velocity is too low and some irregularities occur in the center of the wake. After two revolu-
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tions, the downstream velocity of the wake has increased and the irregularities in the center of
the wake have grown into a chaotic region. After three revolutions, the chaotic region has
increased in extent and moved downstream. After four revolutions, a portion of the chaotic
region has already exceeded the time range of three revolutions shown. It has not yet, how-
ever, exceeded the range where it influences the shape of the wake. This is also true after five
and six revolutions, where the wake gradually becomes regular.

After each time step, the forces and moments are evaluated. During the final revolu-
tion, the thrust varies between 21.0 N and 21.3 N, which is near the design requirement.

All the results from the inviscid and viscous theories have been compared to those
from the simple formulas of the momentum or jet theory of propellers (e.g., refs. 7 and 8).
The very low nondimensional forward velocity (i.e., advance ratio) of the present propeller is
close to the static case, in which the power P and the thrust 7 of the propeller are related by
the formula

2.2
= 2npR, P

The thrust from the momentum theory cannot be realized because this theory neglects the
rotational energy of the propeller jet. Accordingly, an efficiency m is introduced into the

above formula
2
T=n 3A/27chfP

For all results from the inviscid theory, m is slightly less than 1, which demonstrates that the
details of the vortex wake influence the efficiency very little.

The viscous theory yields n = 0.753. Values of n =~ 0.7 are typical of propellers
that are not designed for the static case. Thus, the value for the present propeller appears to be
reasonable.

The local induced velocities from the wake onto the propeller blade can also be evalu-
ated from the asymptotic wake. Qualitatively, they do not differ greatly from the values com-
puted by the present method. The thrust agrees well and both methods exhibit higher
downstream velocities toward the center of the wake.

A decambering effect on the airfoil may be present because the aspect ratio of the
blade is low and the induced velocities from the wake are lower at the leading edge than at the
trailing edge of the blade. The airfoil must then have more camber than in the infinite, straight
flow assumed in theoretical and experimental airfoil evaluations.

Because of the very low Reynolds numbers, the uncertainties in the section character-
istics of the airfoil are at least of the same order of magnitude as the uncertainties in the pro-
peller theories. The final propeller shape can be determined once the aerodynamic
performance of the airfoil is known.
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AIRFOILS
DESIGN
Objectives and Constraints

The airfoil design specifications, which are derived from the propeller performance
requirements, are contained in table II. Two primary objectives are evident. The first objec-
tive is to achieve a high lift-to-drag ratio for a Reynolds number of 10,000. The second objec-
tive is to provide a reasonable range of lift coefficients over which no significant separation
occurs for the same Reynolds number. This range is intended to provide a margin against
such contingencies as manufacturing tolerances, operational deviations, three-dimensional
effects, and inaccuracies in the theoretical methods. Note that, because the free-stream Mach
number for all relevant operating conditions remains below 0.2, the flow is considered incom-
pressible (i.e., M =0).

Two major constraints were placed on the airfoil design. First, the zero-lift pitching-
moment coefficient must be no more negative than —0.20. Second, the airfoil thickness must
be at least 3-percent chord for structural reasons.

In addition to the airfoil specified by these requirements, designated the primary air-
foil, two thicker airfoils are desirable for the root region of the blade because of structural con-
siderations.

Philosophy

Given the above objectives and constraints, certain characteristics of the design are
apparent. To achieve a high lift-to-drag ratio (i.e., a low ¢), it is more efficacious to pursue
higher lift coefficients than lower profile-drag coefficients, especially because the very low
Reynolds numbers will likely result in laminar flow over the entire airfoil. Thus, at the maxi-
mum lift coefficient, the entire upper surface should be used for the pressure recovery. The
same is true for the lower surface at the minimum lift coefficient. To achieve a reasonable
range of lift coefficients without significant separation, the airfoil thickness should be
increased, although the thickness is constrained by the goal of higher lift coefficients.

From the preceding discussion, the pressure distributions along the drag polar can be
deduced. The pressure distribution near the maximum lift coefficient for the primary airfoil
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should look something like sketch 1. (The pressure distributions for the root airfoils should be
qualitatively similar.)

Sketch 1

To achieve a high maximum lift coefficient without significant separation, essentially the
entire upper surface is used for the pressure recovery. Because the very low Reynolds number
will result in laminar flow over the entire upper surface, the adverse pressure gradient must be
shallow to avoid laminar separation. The steep, adverse pressure gradient aft of about 90-
percent chord is a “separation ramp,” originally proposed by F. X. Wortmann,! which confines
separation to a small region near the trailing edge. By constraining the movement of the sep-
aration point at high angles of attack, high lift coefficients can be achieved with little drag
penalty. This feature has the added benefit of initiating docile stall characteristics. (See
ref. 9.)

The amounts of pressure recovery on the upper and lower surfaces are determined by
the airfoil-thickness and pitching-moment constraints and the objective of a reasonable range
of lift coefficients without significant separation.

IDirector, Institute for Aerodynamics and Gas Dynamics, University of Stuttgart, Germany.

20



The pressure distribution along the lower surface near the minimum lift coefficient
should be similar in nature to that along the upper surface near the maximum lift coefficient,
as illustrated in sketch 2.

Sketch 2

Execution

Given the pressure distributions previously discussed, the design of the airfoils is
reduced to the inverse problem of transforming the pressure distributions into airfoil shapes.
The Eppler Airfoil Design and Analysis Code (refs. 3 and 4) was used because of its unique
capability for multipoint design and because of confidence gained during the design, analysis,
and experimental verification of many other airfoils. (See refs. 10—-12, for example.)

The primary airfoil, which corresponds to the radii outboard of that for the maximum
local blade chord (i.e., »>0.17), is designated the SE403. The root airfoils, the SE404 and
SE405, were derived from the SE403 airfoil to increase the aerodynamic and geometric com-
patibilities of the three airfoils. The airfoil shapes are shown in figure 12 and the coordinates
are contained in tables III, IV, and V. The SE403 airfoil thickness is 4.66-percent chord; the
SE404, 7.01-percent chord; and the SE405, 9.32-percent chord, which satisfy the design con-
straints.

THEORETICAL PROCEDURE

The pressure distributions and section characteristics are predicted using the method
of references 3 and 4 for Reynolds numbers of 7,000, 10,000, and 15,000. Because the free-
stream Mach number for all relevant operating conditions remains below 0.2, all results are
incompressible. Because of the very low Reynolds number, it is unlikely that leading-edge
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roughness can force transition and, therefore, all results are computed with transition free (i.e.,
smooth) using a critical amplification factor of 11.

For comparison, the section characteristics of the SE403 airfoil are also predicted
using the method of reference 5. The computations are performed with transition free using a
critical amplification factor of 9.

RESULTS
Pressure Distributions

The inviscid pressure distributions for the SE403 airfoil at various angles of attack are
shown in figure 13.

Section Characteristics

The section characteristics of the SE403 airfoil predicted using the method of refer-
ences 3 and 4 are shown in figure 14, along with the separation locations. At 75-percent
radius, for which the Reynolds number is approximately 12,800, the lift-to-drag ratio at a lift
coefficient of 1 is about 27. Thus, the drag-to-lift ratio is about 0.036. The airfoil exhibits lit-
tle separation over the range of lift coefficients from 0.75 to 1.03, which meets the design
objective. (The small, trailing-edge separation predicted on the upper surface is caused by the
separation ramp; see fig. 13.) The zero-lift pitching-moment coefficient is predicted to be
—0.22, which exceeds the design constraint. Because of boundary-layer displacement effects
not accounted for in the analysis, the pitching-moment coefficient is probably overpredicted
by at least 20 percent. Therefore, the actual zero-lift pitching-moment coefficient should less
negative than —0.18, which satisfies the design constraint.

The effect of Reynolds number on the section characteristics of the SE403 airfoil is
summarized in figure 15. Because the flow is essentially completely laminar due to the very
low Reynolds numbers, laminar rather than turbulent separation affects the lift and pitching-
moment coefficients. Because laminar separation is independent of Reynolds number, the
zero-lift angle of attack, the lift-curve slope, and the pitching-moment coefficient as well as
the minimum and maximum lift coefficients are unaffected by Reynolds number. Only the
profile-drag coefficient is affected.

Because it is unlikely that leading-edge roughness can force transition, the effect of
roughness on the section characteristics is probably negligible.

The effect of Reynolds number on the section characteristics of the SE404 airfoil is
summarized in figure 16. The characteristics are similar to those of the SE403 airfoil, except
for the extensive separation on the lower surface. This separation becomes so massive on the
lower surface of the SE405 airfoil that the predicted section characteristics are not reliable.
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Comparison with Other Theoretical Results

The section characteristics of the SE403 airfoil predicted using the method of refer-
ences 3 and 4 (PROFILO05) are compared with those predicted using the method of reference 5
(MSES) in figure 14. Although the results do not agree well, for such very low Reynolds
numbers, it is remarkable that they are at least similar.

INTEGRATION

The SE403 airfoil is applied to the propeller blade from the radius corresponding to
the maximum local chord (» = 0.17) outboard to the blade tip (» = 1.00). The SE404 and
SE405 airfoils may be applied inboard of this radius as dictated by structural requirements.
The airfoils should be laid out at a given radius along the curve defined by the intersection of
a line inclined at the corresponding twist angle and a cylinder having the given radius. Note
that the twist angle is relative to the zero-lift angle of the airfoil, not the x-axis.

CONCLUDING REMARKS

The present propeller optimization theory is, in principle, based on blade-element the-
ory. Unlike other blade-element theories, however, the velocities and pressures are not aver-
aged over the blade-element cylinders. Instead, the blades themselves are “averaged” by
distributing them into an infinite number of infinitesimal blades, which yields a vorticity sur-
face that can be treated exactly.

The theory allows optimum propellers to be designed for given thrust coefficients and
advance ratios. The local airfoil drag is considered by a specified drag-to-lift ratio of the
blade sections. For the case of no drag and the thrust coefficient going to zero, the present
theory yields the classical and commonly used results of Betz. A finite thrust coefficient
shifts the lift of the blades toward the blade tip, which is understandable because the advance
angle is lower there. For a propeller of a high-altitude balloon, the difference is not negligible.
The airfoil drag has the opposite effect, which is also understandable because overcoming the
blade drag requires more power as the distance from the propeller axis increases. The effects
do not compensate each other, however, because they have different distributions along the
radius.

The resulting propellers have a finite chord at the blade tip. This has been corrected as
described in the supplement by Prandtl to Betz’s paper. The modification increases the diam-
eter of the propeller slightly but does not cause any further problems.

The shortcoming of any blade-element theory is that the induced velocities from the
vortex wake onto the blades are not explicitly regarded, but they are also not completely
neglected. The theory assumes only that the Bernoulli equation is valid along the streamlines
of the wake until the static pressure returns to free-stream. This is not guaranteed if the wakes
of the propeller blades roll up and form regions with strong vorticity and low pressure. The
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assumed flow satisfies the Euler equations for all streamlines that reach free-stream static
pressure before joining a low-pressure region. Therefore, the flow contains the induced
velocities from these streamlines. This conclusion is corroborated by the fact that the inviscid
solution from the present theory converges to the Betz solution, which is derived from an
assumed form of the wake flow.

The first generalization of the present theory should contain an option for specifying
section drag-to-lift ratio along the blade radius. When experimental results for the airfoil per-
formance are available, it should be possible to evaluate the drag-to-lift ratio as a function of
the local Reynolds number.

In summary, the aerodynamic design of a propeller for the trajectory control of a high-
altitude, scientific balloon has been performed using theoretical methods developed especially
for such applications. Optimum, nonlinear chord and twist distributions have been developed
in conjunction with the design of a family of airfoils, the SE403, SE404, and SE405, for the
propeller. The very low Reynolds numbers along the propeller blade fall in a range that has
yet to be rigorously investigated, either experimentally or theoretically.

Because the airfoil performance is the key to the propeller performance and because

current theoretical airfoil methods have not been validated for such low Reynolds numbers, it
is imperative that the SE403 airfoil be experimentally verified.
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TABLE I.- PROPELLER OPERATIONAL SPECIFICATIONS

Parameter

Value

Propeller radius

<5.334m (17.50 ft)

Shaft power P

<500 W

Forward velocity V.

1.29 m/s (4.22 ft/s)

Thrust (at forward velocity) T

>22.7N (5.10 Ibf)

Altitude

36,576 m (120,000 ft)

Air density p

6.6486 x 107> kg/m> (1.2900 x 107> slug/ft>)

Viscosity 1.5516 x 107> N-s/m? (3.2406 x 1077 Ibf-s/ft?)
Speed of sound 311.1 m/s (1021 ft/s)

Pressure 459.7 Pa (9.601 Ibf/ft?)

Temperature 2409 K (433.6° R)

Effective gravitational acceleration

9.696 m/s> (31.81 ft/s?)
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TABLE II.- AIRFOIL DESIGN SPECIFICATIONS

p " Objective/ Reynolds Mach
arameter Constraint | Number R | Number M
. . As high as

Lift-to-drag ratio ¢;/cy possible

Range of lift coefficients without significant 0.2 10,000 0

separation '

Zero-lift pitching-moment coefficient c,, o >-0.20

Airfoil thickness #/c >3%
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TABLE III.- SE403 AIRFOIL COORDINATES

Upper Surface
x/c vlc
0.000002 0.000090
.000172 .001009
.001019 .002848
.005958 .008441
015025 .014890
028398 021831
045973 028997
067685 036173
093345 043172
122764 .049803
155726 055925
191944 061431
231097 066219
272832 .070203
316767 073317
362498 075516
409595 076773
457613 077081
.506090 076451
554557 074911
602537 072506
.649556 069293
695143 065343
738838 060735
780197 055558
.818795 .049904
.854235 043866
.886143 037528
914172 .030933
938138 023896
958469 016557
975344 .009714
988447 .004295
996991 001014

1.000000

.000000

Lower Surface

x/c

0.000021
.000059
.000121
.000219
.000273
.000354
.000710
001726
005559
016464
033284
055861
084072
A17577
156077
199147
246279
296907
350413
406133
463362
521357
579351
636560
692188
745444
795552
841757
.883339
919462
949091
971783
987622
996930

1.000000

ylc

—0.000292
—.000459
—.000603
—.000728
—-.000781
—.000849
—-.001082
—001508
—-.002267
—.002433
—-.001225

.001035
004153
.007908
012137
016599
021092
025429
029432
032935
035787
037854
.039026
039221
038388
036510
.033608
029739
024971
019319
013290
.007783
.003523
.000892
.000000



TABLE IV.- SE404 AIRFOIL COORDINATES

Upper Surface
x/c vlc
0.000018 0.000320
.000278 .001495
.000499 .002093
.004860 008157
013552 015150
026667 022656
.044065 .030383
065663 .038103
091261 045617
120661 052729
153641 .059294
.189909 .065200
229139 .070340
270972 074625
315023 077987
360884 .080379
408121 .081772
456284 082159
.504909 081550
553522 079975
601644 077479
648797 074121
694506 069973
738309 065120
179758 059652
.818426 053665
.853912 047257
.885838 040514
913850 .033481
937764 025949
958064 018048
974982 010628
988213 004714
996915 001115

1.000000

.000000

Lower Surface

x/c

0.000008
.000099
.000324
.000680
001177
.001697
.008105
020239
037628
.060001
.087149
118764
154932
195443
239965
288102
.339392
393303
449231
506505
.564387
622083
678750
7133514
785485
.833771
877499
915637
946887
970698
987202
996837

1.000000

ylc

—0.000197
—000645
—-.001054
—-.001467
—-001914
—-.002301
—-.005147
—-.007704
—.009399
—-.010236
—-010136
—.008901
—.006448
—.003028

001167
005929
.011021
016182
021141
025623
029364
032127
033711
033968
032811
030218
026206
020754
014484
.008546
.003878
.000982
.000000
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TABLE V.- SE405 AIRFOIL COORDINATES

Upper Surface
x/c vlc
0.000003 0.000137
.000084 .000816
.000513 .002292
003668 .007390
.011900 014966
024710 023076
041905 031397
063375 .039688
.088906 047743
118289 055358
151294 .062384
187623 068705
226942 074209
268890 078807
313077 082427
.359088 .085020
406486 086556
454817 .087028
503613 086447
.552395 .084842
600682 082259
647991 078761
693844 074423
137775 069330
779334 063579
.818089 057269
.853636 050502
.885595 .043370
913603 035916
937472 027914
957738 019482
974682 011518
988014 005128
996849 001216

1.000000

.000000

Lower Surface

x/c

0.000035
.000209
.000510
.001409
002638
.010760
023554
.040919
062544
088177
A17577
151261
.189190
231172
276953
326206
378515
433369
490156
548164
606583
664519
721008
775039
825577
871589
911837
944748
969674
986818
996754

1.000000

yic

—0.000487
—001091
—-.001717
—.003020
—.004348
—.009901
—-.015171
—-.019836
—.023648
—.026292
—.027182
—-.026072
—.023287
—-.019027
—.013532
—.007100
—.000080

.007139
014145
020524
025885
.029881
.032233
032748
031327
027946
022552
015900
.009420
004274
.001079
.000000
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Figure 1.- Fundamental parameters of blade-element theory of propellers.
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Figure 2.- Vorticity surface for infinite number of propeller blades.
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Figure 3.- Cross section of flow tube.
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1 1=0.2, €=0.05

Figure 4.- Ellipses from equation (15) for A=0.2 and &= 0.05.
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Figure 5.- Function H(w) for A = 0.2 and € = 0.05 and a series of equidistant » values; function Hy(r) for A = 0.2 andsix ¢
values.
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Figure 6.- Normalized functions (ur),, of optimum propellers for A = 0.026 and A = 0.2, with € = 0; broken lines represent Betz
solution (ref. 1).
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Figure 7.- Effect of drag-to-lift ratio on lift-chord distribution of high-altitude propeller.
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Figure 8.- Effect of drag-to-lift ratio on lift-chord distributions of optimum propellers with higher nondimensional forward velocity and
different thrust coefficients.
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Figure 9.- Optimum propellers for high-altitude balloon.
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Figure 9.- Continued.
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Figure 9.- Concluded.

41



R/R,

z/R;

y/R;

z/R,

WL/

R/R,

Figure 10.- Axonometric projection and plan view of optimum propeller for high-altitude bal-
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Figure 12.- Airfoil shapes.
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Figure 13.- Inviscid pressure distributions for SE403 airfoil.
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Figure 14.-

Section characteristics of SE403 airfoil.
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Figure 14.- Continued.
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Figure 14.- Concluded.
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Figure 15.- Effect of Reynolds number on section characteristics of SE403 airfoil.



0s

—— R=17,000
_______ R = 10,000
_______ R = 15,000
7 - o cplox)
’’’’’ — . _——————= Cm
n — T SU.
/ /// /m ‘
¢ / / ~0.2- SL.
. -0.5
0.5 —0.5
1 -0.14
-0.05 1
-5 5 o 10
o7 [ B e S
25 30 35 O 10%, b5 0 05 x/c

Figure 16.- Effect of Reynolds number on section characteristics of SE404 airfoil.
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