

Magnetospheric Multiscale (MMS) Propellant Tank Thermal Capacitance Model

AIAA Region I YPSE Conference 11/2/2012

Stephen McKim Code 597, Propulsion Branch NASA-Goddard Space Flight Center

NASA GODDARD SPACE FLIGHT CENTER

- Magnetospheric Multiscale (MMS) mission overview
- Model approach and overview
- Propellant Gauging Method and ANSY Model
- Test Cases and Model Validation
- Results
- Model Refinements
- Conclusions & Continuing Work

Magnetospheric Multiscale (MMS) Mission Overview

Science Objectives

 Discover the fundamental plasma physics process of reconnection in Earth's magnetosphere

Mission Description

- 4 identical satellites
- Formation-flying in a tetrahedron
- 2 year operational mission

Propulsion System

- Identical on each satellite
- Each contains
 - 4 Tanks
 - 8 Radial thrusters (18 N)
 - 4 Axial thrusters (5 N)
 - 4 Latch valves
 - 4 Filters
 - 8 Pressure transducers

Objective

- Develop a tool to predict propellant mass using tank temperature data
- Approach
 - Develop a thermal model of the MMS propellant tank using a Finite Element Model (ANSYS)
 - Validate thermal model with existing tank Thermal Desktop model and during future thermal balance testing

• Typically three common Propellant Gauging Systems (PGS) used

- 1) Bookkeeping
- 2) Pressure-Volume-Temperature (PVT)
- 3) Thermal Capacitance

• Thermal Capacitance

- Inaccurate at BOL (little variation of tank surface temperature due to large volume of propellant)
- Accurate at EOL (large variation of tank surface temperature due to less volume of propellant)
- Requires a detailed thermal model of propellant tank and typically of surrounding spacecraft

• How do you estimate propellant load using tank temperature data?

- 1) Develop a thermal model of the tank
- 2) Apply boundary conditions to tank
- 3) Generate temperature vs. time curves for different propellant loads in tank
- 4) On spacecraft, heat tank using heaters and record temperature telemetry
- 5) Compare temperature telemetry to temperature vs. time curves generated in model.

Assumptions

- Convection neglected
- Fluid shapes do not change due to temperature effects
- The tank diaphragm was not modeled, but its mass was considered
- Tank blanket and tape were not physically modeled.
- Heater power based on constant bus voltage
- Boundary conditions were based upon the average temperature of the tank/spacecraft interface location and were assumed constant over time*
- A "perfect" bonded contact existed between all touching parts in the model

Boundary Conditions

- Heaters have total heat input of 29.87W
- Struts, inlet & outlet tubes, and axial pin set to 23°C
- Radiation applied to tank surface using blanket effective emissivity

*ANSYS has ability to model this behavior; behavior not included in this analysis

- Three different EOL propellant loading cases were simulated using the ANSYS transient thermal model
 - Case #1: 20% propellant load
 - Case #2: 15% propellant load
 - Case #3: 10% propellant load
- Thermal model for each case was the same, but the propellant and gas volumes were updated to reflect the propellant mass used
- The model was validated by comparing results to independently created Thermal Desktop model

ANSYS Model Results

NASA GODDARD SPACE FLIGHT CENTER

Temperature vs. Time for Propellant Side Thermistors

- Can clearly discriminate (min. 1°C difference met) masses from temperature data after ~9 hrs
 - Need at least 1°C difference to account for A/D conversion errors and thermistor calibration error.
- dT/dt behavior is nearly linear after ~9 hrs of simulation
- Time heaters turn off (TStat set point reached) widely separated in time & can be used to estimate propellant mass

Temperature vs. Time for Propellant Side Thermisters

• Linear curve fits produce good R² values

Propellant Mass Percentage vs. Heater Cut-off Time

MMS-Propulsion

 Analysis of the preceding charts shows that a closed form solution can be derived from the simulation data

Results

- From the T vs. t Chart and mass vs. dT/dt charts, mass percentage can be derived
- Results in:

$$m = \left(\frac{T - 22.85}{2.51t}\right)^{-\frac{1}{0.49}} \text{ for } \begin{cases} 30 \le T \le 43^{\circ}\text{C} \\ 9 \le t \le 21 \text{ }hr \end{cases}$$

 Propellant mass percentage estimate error can be determined by taking the derivative of above equation:

$$\Delta m = \frac{-0.81}{t} \left(\frac{T - 22.85}{2.51t}\right)^{-3.04} \Delta T$$

- Example:
 - A 1°C error in temperature at a temperature reading of 37°C at 20 hours yields a mass uncertainty of 1.90%.
 - Improvements in error estimation can be made by running more propellant loading cases and correlating model results with test data.

ANSYS Model Refinements

NASA GODDARD SPACE FLIGHT CENTER

• Following refinements made to model

- Implemented thermostatically controlled heaters to system
- Revised boundary conditions at tank to match on-orbit behavior predicted by Thermal Desktop model
- Modeled heater power using nominal as-built heater resistances

Temperature vs. Time

Conclusions:

Propellant load can be estimated using four different indications

- 1.) Using the temperature vs. time plot
- 2.) By propellant side heater cut-off time
- 3.) By slope (dT/dt) of temperature curve
- 4.) By a closed-form expression

Continuing Work:

Validate model by test using three methods

- 1.) Propulsion Module Chill Down Test
 - Conducted at atmospheric pressure to verify thermostat operation
 - No propellant in tank
 - Minimal convection effects
- 2.) Water Off-Loading
 - Perform thermal propellant gauging "maneuver" after water offloading operations when 10 kg of propellant in tank.
 - Conducted at atmospheric pressure.
 - Minimal convection effects
- 3.) Thermal Balance Test
 - Performed during spacecraft level thermal balance testing
 - Conducted in near vacuum
 - No propellant in tank

Questions?

NASA GODDARD SPACE FLIGHT CENTER

Backup Slides

NASA GODDARD SPACE FLIGHT CENTER

*Aparicio, A., and B. Yendler. "Thermal Propellant Gauging at EOL, Telstar 11 Implementation." AIAA-2008-3375. (2008): p.2.

• Basic Concept of Thermal Capacitance PGS

- Heat tank, look at the change in temperature over time
- Ultimately want to compare the dT/dt of the model to the dT/dt from on orbit telemetry

• From Energy Conservation

$$Q_{input} = Q_c + Q_{loss} \tag{1}$$

Where

$$Q_c = \sum_{i} \left(m C_p \, \frac{\partial T}{\partial t} \right)_c \tag{2}$$

- Components:
 - Tank shell
 - Helium
 - Propellant
 - Struts
 - Axial pin

$$Q_{input} = Q_{heaters}$$

$$Q_{loss} = Q_{rad} + Q_{cond} + \cdots$$

MMS-Propulsion

(3)

(4)

Thermal Capacitance: Theory (cont.)

• Heat flow (Q) and dT/dt are either known or found from

- ANSYS thermal model
 - Struts
 - Axial Pin
 - Radiation
 - Tank
 - Helium
- Tank Thermal Configuration
 - Heaters each dissipate a known amount of energy
 - Number of heaters known
 - Blanket emissivity is known
 - Mass of thermal hardware is known

Mass (m) is known from vendor data and/or specified (propellant) for analysis

- Regardless of the system, the overall process for developing a thermal propellant gauging model is as follows¹
 - 1). Develop a thermal model of the tank(s) and spacecraft
 - 2). Combine propellant tank and spacecraft thermal models
 - 3). Heat the tank on the spacecraft by turning on the tank heaters
 - 4). Simulate the propellant gauging operation for different propellant loads
 - 5). Compare flight and simulation data
 - 6). Determine tank propellant load and uncertainties of estimate
- For MMS tank capacitance model, completed steps 1-4, with the following exceptions
 - Modeling the spacecraft system. Boundary and initial conditions for the tank were obtained from thermal analysis performed by Thermal Branch on the MMS spacecraft
 - Simulation data compared with results from Thermal Desktop propulsion system analysis
 - No comparison of flight data to simulation data since spacecraft is not yet in operation
 - Validation of model will occur during thermal balance testing, currently scheduled for August 2013

¹Aparicio, A., and B. Yendler. "Thermal Propellant Gauging at EOL, Telstar 11 Implementation." *AIAA-2008-3375.* (2008): p.2.

Boundary Conditions

- Flight configuration of tank contains two main heater zones: gas and propellant.
- Each controlled by an over-temp thermostat set at 43°C
 - Configuration
 - Heaters have total heat input of 29.87W
 - Struts, inlet & outlet tubes, and axial pin set to 23°C
 - Radiation applied to tank surface using blanket effective emissivity
- Set #1 BCs showed that gas side of tank reached over-temperature set point rapidly
- Defined additional set of BCs to model situation
 - Set #2: Gas Side Heaters Off
 - Propellant side heaters have total heat input of 14.91W
 - Gas side of tank set to 43°C
 - Radiation remained the same

• Performed spreadsheet calculations to solve for propellant mass percent to determine model stability & convergence (<2% difference)

Case	Target Mass Percentage	Calculated Mass Percentage	Percent Diff
10%	9.71	9.86	1.54
15%	14.56	14.61	0.34
20%	19.40	19.37	0.15

Model Validation

• Hand Calculations:

- Analyzed heat transfer at boundary conditions
- For presentation, show radiation and strut calculations
- <u>Radiation (20% case)</u>:

$$Q = A\varepsilon\sigma(T_{tank}^4 - T_{envr}^4)$$

- Hand Calculation: Q = -5.05 W
- ANSYS Reaction Probe: Q = -4.92 W
- <u>Strut Conductance (20% case)</u>:

$$Q = \frac{kA}{L}(T_2 - T_1)$$

- Hand Calculation (all struts): Q = -0.24 W
- ANSYS Reaction Probe (all struts): Q = -0.25 W
- Model and 2-node hand calculations show good agreement with each other

• Spreadsheet calculations show

- Where heat in system is going at all times, and that the heat flow at any time step sums to heat input of heaters (conservation of energy)
- That the energy flow from the heaters, primarily to the propellant and radiation, is consistent with what one expects from theory

Heat Flow vs. Time (20% Case)

• Model comparison with all heaters on:

• ANSYS model is both Transient and Non-linear

- Time-varying thermal behavior
- Heat capacitance of materials
- Temperature-varying material properties
- Model is solved iteratively for each time-step; thermal solutions given at each time-step

Material Properties

- Obtained primarily from the Aerospace Structural Metals Handbook, 1998 Edition
 - Graphs were digitized and data extracted from charts
- Hydrazine properties were found from "Hydrazine and Its Derivatives" 2nd Edition by Schmidt.
- Helium Properties (conductivity, primarily) were found from the Journal of Engineering Physics and Thermo Physics, Vol. 32, No. 5.
- Materials not found in the above sources were found using
 - Vendor-supplied material data (ex., heater information was found from Honeywell, the maker of Kapton polyimide film)

• Materials Used in Model:

- 6AL-4V Titanium
- 3AL-2.5 V Titanium
- Helium
- Hydrazine
- 304 SS
- Kapton Polyimide Film

ANSYS Transient Thermal Model (cont.)

Boundary Conditions: heaters always on

- Obtained from Thermal Branch MMS thermal model
- Initial Temperature: 22°C

Tank Radiation

e*†	Tank Area (m²)	Environ. Temp.(°C)
4.50E-03	1.92	22

Temperature

Component	B.C.
Strut 1	23°C
Strut 2	23°C
Strut 3	23°C
Strut 4	23°C
Axial Pin	23°C
Gas Tube	23°C
Fuel Tube	23°C

Internal Heat Generation

Heater	Model Volume (m ³)	Q (W/m³)
-Х Тор	2.29E-05	9.30E+04
+Х Тор	2.29E-05	9.30E+04
-Ζ Тор	2.29E-05	9.30E+04
+Ү Тор	5.26E-05	4.06E+04
+X Upper	1.53E-05	1.40E+05
-X Upper	1.53E-05	1.40E+05
+Z Upper	1.53E-05	1.40E+05
+X Middle	1.53E-05	1.40E+05
-X Middle	1.53E-05	1.40E+05
+Z Middle	1.53E-05	1.40E+05
-X Lower	2.29E-05	9.30E+04
+X Lower	2.29E-05	9.30E+04
-Z Lower	2.29E-05	9.30E+04
-Y Lower	5.26E-05	4.06E+04
Q _{htr} (W):	2.13	
Total Heater Power (W):	29.87	

ANSYS Transient Thermal Model (cont.)

• Boundary Conditions: Gas side of tank set at TStat over temp set point

- Gas side of tank set to 43°C
- Heaters on gas side "turned off"
- Initial Temperature: 22°C

Tank Radiation

e*†	Tank Area (m²)	Environ. Temp.(°C)
4.50E-03	1.923	22

Temperature

Component	B.C.
Strut 1	23°C
Strut 2	23°C
Strut 3	23°C
Strut 4	23°C
Axial Pin	23°C
Gas Tube	23°C
Fuel Tube	23°C
Lower Tank	43°C

Internal Heat Generation

Heater	Model Volume (m ³)	Q (W/m³)
-Х Тор	2.29E-05	9.30E+04
+Х Тор	2.29E-05	9.30E+04
-Z Тор	2.29E-05	9.30E+04
+Ү Тор	5.26E-05	4.06E+04
+X Upper	1.53E-05	1.40E+05
-X Upper	1.53E-05	1.40E+05
+Z Upper	1.53E-05	1.40E+05
+X Middle	1.53E-05	0
-X Middle	1.53E-05	0
+Z Middle	1.53E-05	0
-X Lower	2.29E-05	0
+X Lower	2.29E-05	0
-Z Lower	2.29E-05	0
-Y Lower	5.26E-05	0
Q _{htr} (W):	2.13	
Total Heater Power (W):	14.91	

- ANSYS defines "Internal Heat Generation" as energy/time/volume.
 - Applies a uniform generation rate internal to a body*
- Chosen as method to model heaters since this best physically describes what a heater does.
- Internal heat generation loads were calculated by taking the volume of the ProE model of a given heater, and dividing the heater wattage by the heater volume.
- Heaters could have been modeled using a heat flux (energy/time/area).
 - Case was tried in ANSYS and results were the same as when modeled with IHG

• Charts showing heat flow vs. time for 10 & 20%case.

- 15% case fits between these two extremes

Analysis Results: 3 hr Simulation

Gas side thermistors do not provide enough resolution to discriminate between propellant masses
Need at least 1°C difference to account for A/D conversion errors and thermistor calibration error.
TStat set point of 43°C reached in approximately 1.3 hours

- Gas side thermistor data cannot be used for propellant gauging
- Propellant mass shown to be adequately determined from propellant side thermistors
 - Difference of at least 1°C between load cases seen at ~9 hours into simulation
- Temperature rise as measured by propellant thermistors is linear over long time periods
 - True for propellant but not gas
- Model refinements bringing analysis closer to actual setup.
 - Will need to do future testing/validation to refine model

Model Refinements

Tank Interfaces (Struts, axial pin, inlet/outlet tubes)

- Modeled interface temperatures to reflect extremes expected during different mission phases
 - Hot Operations (max 29°C)
 - Cold Operations (min -5°C)
- Comparison made with initial assumption of 23°C
- Result: boundary conditions play a negligible effect on the propellant temperature over time
- Determined that initial assumption of 23°C was sufficient.
 - Shows that on orbit, knowledge of exact temperature of tank interface not needed.

Propellant Temperature vs. Time

• Heaters

- Initially assumed a total heat input of 29.87W (at bus voltage of 34V), evenly distributed over all 14 tank heaters
- Using updated bus voltage data, recalculated heater power using bus voltage of 32V and nominal flight heater resistances
- Implemented code in ANSYS model to thermostatically control heaters
 - Thermostats now turn off heaters if temperature at thermostat exceeds 43°C.
 - Turns them back on once temperature drops below 43°C

Heater	Power [W]	Q [W/m^3]	
GAS-A	2.13	40600	
GAS-B1	2.13	93000	
GAS-B2	2.13	93000	
Gas-B3	2.13	93000	
GAS-C1	2.13	140000	
GAS-C2	2.13	140000	
GAS-C3	2.13	140000	
LIQ-A	2.13	40600	
LIQ-B1	2.13	93000	
LIQ-B2	2.13	93000	
LIQ-B3	2.13	93000	
LIQ-C1	2.13	140000	
LIQ-C2	2.13	140000	
LIQ-C3	2.13	140000	
Total:	29.87		

Old Power Distribution

New Power Distribution			
Heater	Power [W]	Q [W/m^	
GAS-A	4.76	90554	
GAS-B1	1.55	67450	
GAS-B2	1.55	67450	
Gas-B3	1.55	67450	
GAS-C1	1.55	101352	
GAS-C2	1.55	101352	
GAS-C3	1.55	101352	
LIQ-A	4.76	90554	
LIQ-B1	1.55	67450	
LIQ-B2	1.55	67450	
LIQ-B3	1.55	67450	
LIQ-C1	1.55	101352	
LIQ-C2	1.55	101352	
LIQ-C3	1.55	101352	
Total:	28.12		

on

- When an area or part of a model is selected, ANSYS will automatically average the nodal solutions of the selected area.
- Depending on the nodal results, one selected area might have different results than the same selection location, but with a larger (or smaller) selected area.
- Nodal solutions for any body or area in a model can all be analyzed and evaluated, but this process becomes tedious with increasing model complexity (due to increased number of elements/nodes).
- With a sufficient mesh, differences in average nodal results for different selected areas will be minimized.

Volume-Weighted Temperature Average Algorithm

• This algorithm works as follows:

- 1). A body in the given model is selected by the user
- -2). The element volume and temperature of the selected body is retrieved
 - The element temperature, when retrieved from the ANSYS solver, is the average temperature of all the nodes on the given element.
- 3). The element volume and temperature are multiplied together.
- -4). Step 3) is repeated for all elements in the selected body
- -5). The sum in Step 4) is then divided by the total volume of the selected body
- The result of the above is a volume-weighted average temperature for a selected body in the model.

- The following individuals have contributed invaluable time, experience and guidance for this project:
 - Dr. Eric Cardiff, Code 597
 - Dr. Rich Driscoll, Code 597
 - Dan Ramspacher, Code 597
 - Michael Rife, Mallett Technology, Inc.
 - Jason Solimani, Code 545
 - Amanda Steckel, Cornell University
 - Dave Steinfeld, Code 545
 - Kurt Wolko, Code 597
 - Rommel Zara, Code 545