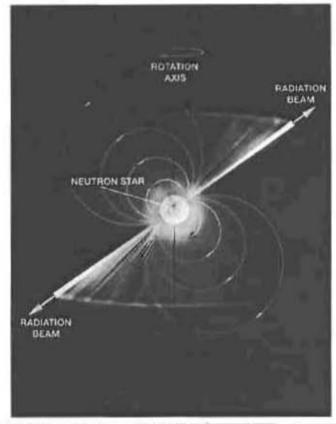
National Aeronautics and Space Administration

NASA

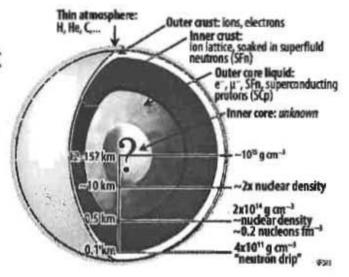
Pulsar Navigation & X-ray Communication Demonstrations with the NICER Payload on ISS

Presented by
Dr. Jason Mitchell
jason.w.mitchell@nasa.gov
for the NICER/XNAV team

1st Annual ISS R&D Conference
 Denver Marriott City Center, Denver, CO
 Jun 25–28, 2012


Station Explorer for X-Ray Timing and Navigation Technology (SEXTANT)
NASA GSFC

Outline


- Neutron-star Interior Composition ExploreR
- Mission naming
- People
- Mission commonality
- Goals
 - Navigation
 - Ground testbed
 - Communication
- Challenges
- Future activity

NICER — Science Objectives

- Address NASA and National Academy of Sciences strategic questions
 - Resolve the nature of ultra-dense matter at the threshold of collapse to a black hole
 - Structure—Reveal the nature of matter in the interiors of neutron stars
 - Dynamics—Uncover the physics responsible for the dynamic behavior of neutron stars
 - Energetics—Determine how energy is extracted from neutron stars

Project Names & Definitions

- NICER Neutron-star Interior Composition ExploreR
 - ISS ELC Explorer Payload (2016/09/02)
 - Observe pulsars in X-ray part of EM spectrum
 - Determine pulsar radii and masses
 - SMD selected purely on science (Phase A)
- SEXTANT Station Explorer for X-Ray Timing and Navigation Technology
 - Same instrument used for NICER
 - Navigation (XNAV) and communication (XCOM)
 - XCOM: payload is X-ray receiver
 - XNAV: advanced algorithms, measurement processing
 - Enhanced avionics/algorithms required over NICER baseline

Project Team Overview

NICER

 Keith Gendreau, Zaven Arzoumanian, Fotis Gavriil

XNAV

 Jason Mitchell, Monther Hasouneh, John Gaebler, Dennis Woodfork, Luke Winternitz, Jennifer Valdez

XCOM

- Wai Fong, Victor Sank, David Fisher
- And many, many more!
 - many external partners too!

Portion of XNAV Team

Mission Commonality: SEXTANT = NICER + XNAV + XCOM

NICER

Explorer/NOO Funded

NICER Unique

- Science Algorithm
 Development & Analysis
- Larger selection celestial objects
- −18 month mission
- · Science Team
- · More risk-averse

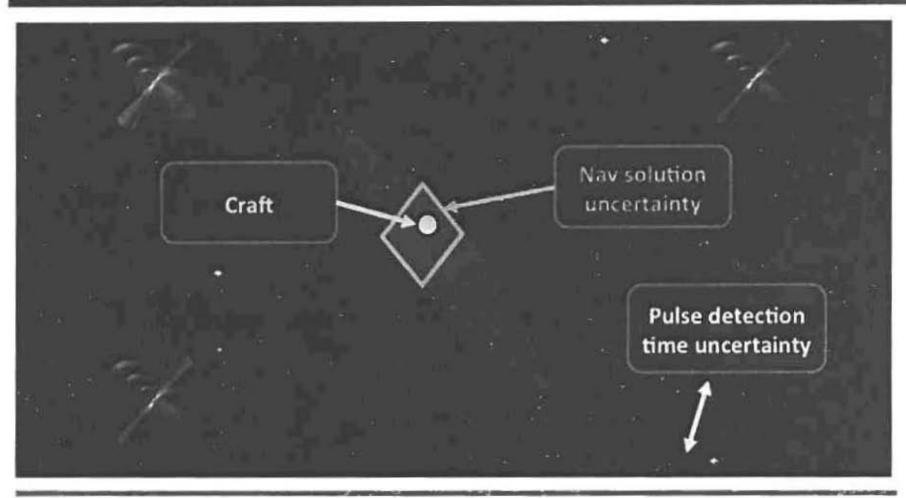
Common

- Same Hardware
- Same ConOps
- All XNAV Pulsars are NICER Pulsars
- . Same Data Archive
- . Same Ops Center
- Same ISS platform

XNAV

XNAV Unique

- XNAV Algorithm
 Development and testing
- Updates to GEONS FSW
- Technology team


XCOM
X-ray Communication

SEXTANT

Station Explorer for X-Ray Timing and Navigation Technology (SEXTANT)
NASA GSFC

Basic Navigation

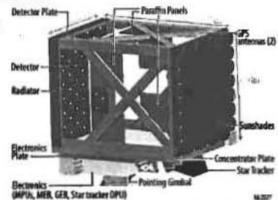
Station Explorer for X-Ray Timing and Navigation Technology (SEXTANT)
NASA GSFC

XNAV Concept

- Precise timing enables improved navigation
 - Pulsars: rapidly spinning neutron stars
 - Millisecond pulsars (MSPs)
 - rival atomic clocks as time-keepers
 - accuracy & stability
 - Potentially provide galaxy-wide time-base

Crab Pulsar (slowed), Cambridge University, Lucky Image Group

· GPS-like navigation capability throughout solar system


Measurement

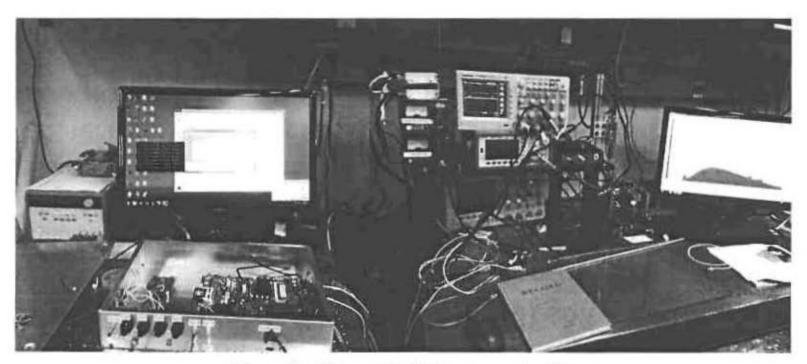
- Precisely time tag X-ray photons
- Pulse arrival time, i.e., pulsar pseudo-range
- Stitch sequence together for autonomous navigation solution
- Interested agencies: NASA, DoD (DARPA), NIST

SEXTANT / XNAV Goals

- Provide 1st on-orbit demo of XNAV concept
 - LEO worst case scenario
 - Real-time 1D range < 1 km from 2–3 pulsars / orbit
 - XNAV-only 3D position to ~500 m @ 1 day
 - Understand sky distribution effect on dilution of precision
 - Long-term characterization of pulsar clock stabilities
 - Characterization of additional candidate pulsars
- Other benefits
 - Active X-ray timing observatory, RXTE decommissioned
 - Improved sensitivity over RXTE, XMM-Newton

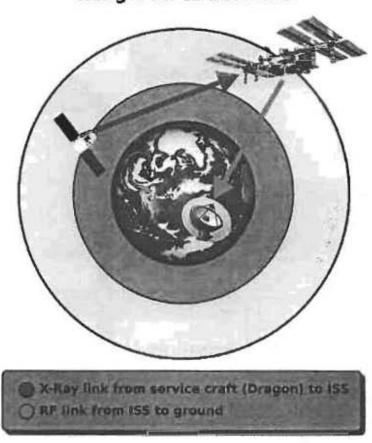
SEXTANT / XNAV Elements

- Improved X-ray concentrator optics
 - Large collecting area, small volume
- Silicon drift detectors
 - Time resolution < 200 ns
- Algorithms
 - Relativistic time-transfer, pulsar range estimator, XOD
- GSFC Navigator GPS technology
 - Precise reference to UTC
- MSP Emulator
 - Miniaturized modulated X-ray source
 - EDU time-tagging X-ray photon detector


Goddard XNAV Laboratory Testbed (GXLT)

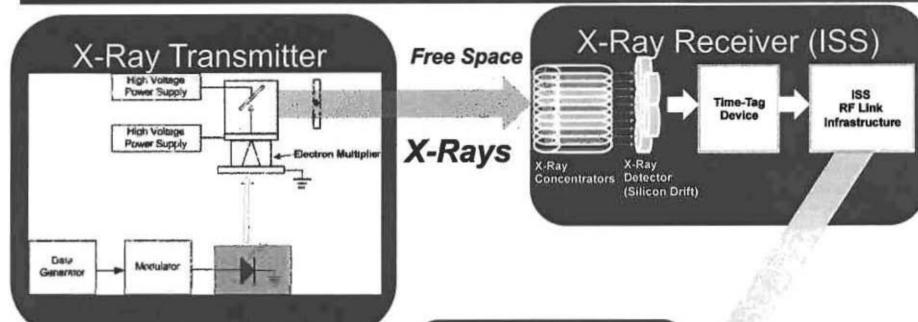
- Guided incremental multi-milestone development plan
- Leverages Goddard GN&C (Code 590) software tools
 - Mission design: General Mission Analysis Tool (GMAT)
 - Orbit determination:
 - Orbit-determination toolbox (ODTBX) for MATLAB
 - Goddard Enhanced On-board Navigation System (GEONS) flight software
 - GPS receiver (Navigator GPS) design and expertise
- Support algorithm development & testing
- Prepare & transition algorithms to flight software
- Standardized interfaces defined to foster collaboration

Current GXLT Progress



Real-time MSP emulation

XCOM Experiment Concept



Range: 25 to 1000 km

X-ray Comm. Link System Block Diagram

Ground Station

Post-Processing of time stamped data to decode bits & estimate distance from ISS to Dragon

Station Explorer for X-Ray Timing and Navigation Technology (SEXTANT)
NASA GSFC

Technical Challenges

- Launch: HTV or Dragon
 - Huzzah to SpaceX
- Address Crab PSR high photon count rates
- Observing sufficient photons from low-count-rate pulsars
 - accurate measurements challenging in high dynamics
- Choice of coordinate time
 - TDB vs. TCB
- GPS and timing accuracy on ISS
 - Multi-path effects from geometry
 - SV visibility & geometry
 - High time accuracy

Future Activity

- Complete Step 2 concept study report
 - Due mid-Sep 2012
- Demonstrate GXLT, real-time, hardware-in-the-loop
- Broad improvements to modeling fidelity
- Extensive algorithm testing
- EDU hardware integration
- Flight software development & integration
- S/C integration & test