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NICER Mission Overview

Astrophysics on the International Space Station:
Understanding ultra-dense matter through soft X-ray timing

Science: A proposed International
Space Station (ISS) payload dedicated
to the study of neutron stars—a
fundamental investigation of extremes
in gravity, material density, and
electromagnetic fields.

Spacecraft: Hosted on the ISS
Express Logistics Carrier

Launch: CBE= August 2016 by JAXA
HIIB/HTV or Space-X Falcon 9/Dragon

Duration: 18 (min.12) months

Team: NASA GSFC, MIT. Science co-
Is from USRA, UMCP, UMBC, NRL,
University of Arizona, McGill, SUNY,
MSU, F&M, NRAO, UNAM.




NICER: The Science Argument



NICER Science Objectives

Neutron stars— Unique environments in which all four fundamental forces
of Nature are simultaneously important.
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NICER Science Measurements

Structure through lightcurve modeling, long-term timing, and pulsation searches
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NICER Science Measurements

Structure through lightcurve modeling, long-term timing, and pulsation searches
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The Technology Demonstration
Argument: XNAV and Pulsar
Based Navigation



Pulsars were discovered Pioneer Plaque: Flown on the Pioneer 10 Spacecraft
in 1967 and immediately
were recognized as a tool
for Galactic navigation.

A map showing where the
Solar system is relative to
the known pulsars at the
time.




Clocks and Navigation

* You find atomic clocks on GPS satellites
that provide the infrastructure for a
navigation solution that works on the Earth
and nearby...

» Pulsars are distributed on a Galactic scale
providing a natural infrastructure for a
GPS-like navigation solution that works
throughout the Solar system and beyond.



Pulsars are very stable clocks that are comparable
or better than atomic clocks on long time scales
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Pulsar
A

Pulsar

3D Solutions by stitching together observations of multiple pulsars



Expected Accuracy

* Dependent on orbit
— How fast things change
— Integration time on pulsars

« <500 m for LEO orbit in a day
— Timescale for updates 1000s of seconds

* < 100m for interplanetary in a few days



XNAV compared to other deep space
navigation tools

Table 1: 'ith typical position determinations o 500 m In one day or less virtually anywhera in the Sofar System, KNAY provides unprec-

by

edented, mission-enabling navigation solutions across 3 wids range of space appiications. (L/A: Limited Apolicability, N/A: Net Applicable)

NASA Mission Orbit TDRSS NEN/DSN  ADOR(DSN) (CELNAV/Optical Requirement/Source”
LED Mm@z 2cn@l day |2-8m@ 1oibil [ 2-8m@lobt LA 1km@ | hi <fewm
HED [periges < 2Ryt (WOM@THZ Im@iday  |100m {190 m LA 0135 km @ 10mbit | < 1 km/many
GED 3Im@1Ez S0em@ tday (N/A i=8m@4-8 s LA =5 k@ daihit  110s of m/many
Lunar, in view Lk P4 p200m@2das LA G5km@05days  |500 m/iRD
Lupar, far sice/bi fat R/ N/A /A WA 05km@05days  |500 m/ARD
Sun-Earth Li/L2 A R4 2km @ 3weeks LA 5-20km@3days  |Zkm/WMAP
Mars {front side! /A /A 10s of km Tkn@ 1 day, |10scofkm (ronfor |5 km/forbitinseit,

& meters @ days [back) 5=10 n/science @ gays

Jupiter WA A 105 of kin Faw km 105 of ki ~1=5 km/insert
Bevond Juniter N/A HhA 1005 of km N0 km | 105 of km ~1=5 km/insert

XNAV provides more utility compared to existing navigation methods as we
venture further away from Earth.

At the greatest distances, the “Deep Space Network” (DSN) provide excellent
distance information from the earth, but MUCH less information in the cross-

direction.



The Instrument



SEXTANT Payload
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Stowed

* 56 co-aligned X-ray
concentrators with
matching Silicon
Detectors

« < 200 nsec absolute
time resolution

« > 2000 cm? Effective
Area

* Moderate (CCD-like)
energy resolution

Pointing
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Deployment and pointing scheme
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* Derivatives of GSFC foil optics- continued
legacy of Peter Serlemitsos

*Single bounce concentrators

« Full shells with deviation from cone
 Order of magnitude improvement on area/

mass ratio

. i : T : 1st optical image from XACT
XACT sounding rocket will use similar optics aplics FWHM ~& 1-atemin



The X-ray Detectors

e Silicon Drift Detectors

* Commercial with Custom Designed
Electronics

» Excellent Timing capability and Energy
Resolution
— But there is still a timing jitter term

« Summer 2010 USNA Midshipman Spencer
Ewing Project
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Experiment Setup

Function Generator (FG) the modulated X-ray source, producing a 60nsec wide pulse done at a 500 kHz rate.
Additional power supplies needed to power the MXS.

Data Acquisition compiled by Digital Pulse Processor, relayed to Oscope.

Scope averaged 100 triggers of data to reduce errors.



Operations Concept

» Getting from the Earth to ISS

 Robotic Installation

» Getting the science done, once we are
there

— USNA Midshipman Putbrese is working with
Prof Tae Lim and GSFC engineers on a
planning tool.



| DEXTRE romoves NICE from the EP
and installs onto ELC

The NICE payload arrlves at
ISS on the External Pallet
within the exposed logistics
module of the HTV. After the
HTV is berthed to Node 2, the
SSRMS removes the External
palist (EP) from the HTV (1).
Once clear of the HTV, the
SSRMS positions the EP so It
can hand it off to the JRMS (2).
Once the JRMS grapples the
EP, it moves the EP to a
temporary storage attach point
(3) on the -JEM Exposed
Faclity (JEM-EF) where Is
remains until ready for
installation on the zenith S3
Express Logistica Carrler
(ELC).

!

The JRMS removes the EP from
the temporary attach point and
moves it to the Latching End
Effector (LEE) on the Mobile
Base System (MBS) (4). Once
attached, the MBS transiates
the EP, as well as the SSRMS
and DEXTRE starboard from
the P1/P3 Truss to the S3 Truss.
The DEXTRE robot is installed
onto the end of the SSRMS,
DEXTRE removes NICE from
the EP and installs it onto the
zenith ELC (5).

along the truss to a $3 zenith ELC
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SEXTANT at
P3/ELC3

(outboard) PFAP
mounting location shown.
Note that each PFAP has
a specific orientation that
will require a separate
SEXTANT FRAM
configuration. However,
the location shown would
allow a single SEXTANT
configuration that could
be used on either P3 or
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3-D Model — ISS
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Science and backup



SEXTANT: Station Explorer for X-ray Timing and
Navigation Technology

XCOM:

\X-ray Communication

SEXTANT = NICER + XNAV +XCOM

28



Ongoing Millisecond Pulsar Discoveries Promise
Many New NICER Targets!
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What is the best way to detect the
pulses of a Pulsar?

 Radio
« 10m diameter dishes or greater
* RF propagation terms

* Optical
\ery Faint-> requires large telescope

» X-ray
« ~ few hundred square cm of area good enough ?ﬁ;\ &
\
i

« Gamma Ray i

* massive detectors required y

X-ray Navigation (XNAV) S



SPDM (with
SEXTANT on EOTP)
on US Lab PDGF.
SSRMS
reconfigures onto

4a. MBS (with SSRMS and
SPDM) translates to S3
worksite, SPDM removes
SEXTANT from EOTP and
installs onto ELC2

4b. MBS (with SSRMS and
1. Dragon berthed at Node 3. SSRMS grapples SPDM) translates to P3

2 Nadir. SSRMS/SPDM SPDM (with worksite. SPDM removes
removal from trunk. SPDMW SEXTANT on SEXTANT from EOTP and

stows SEXTANT on EOTP EXTANT Dragl installs onto ELC3
Deployment

Preliminary!!




Instrument Block Diagram
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