

NICER:

Neutron Star Interior Composition ExploreR and SEXTANT

Keith Gendreau
NASA/GSFC
301-286-6188

NICER Mission Overview

Astrophysics on the International Space Station:
Understanding ultra-dense matter through soft X-ray timing

- Science: A proposed International Space Station (ISS) payload dedicated to the study of neutron stars-a fundamental investigation of extremes in gravity, material density, and electromagnetic fields.
- Spacecraft: Hosted on the ISS Express Logistics Carrier
- Launch: CBE= August 2016 by JAXA HIIB/HTV or Space-X Falcon 9/Dragon
- Duration: 18 (min.12) months
- Team: NASA GSFC, MIT. Science coIs from USRA, UMCP, UMBC, NRL, University of Arizona, McGill, SUNY, MSU, F\&M, NRAO, UNAM.

NICER: The Science Argument

NICER Science Objectives

Neutron stars-Unique environments in which all four fundamental forces of Nature are simultaneously important.

- To address NASA and National Academy of Sciences strategic questions
- To resolve the nature of uiltradense matter at the threshold of collapse to a black hole
- To reveal interior composition, dynamic processes, and radiation mechanisms of neutron stars.

Structure-Reveal the nature of matter in the interiors of neutron stars.	Neutron star radii to $\pm 5 \%$. Cooling timescales.
Dynamics-Uncover the physics responsible for the dynamic behavior of neutron stars.	Stability of pulsars as clocks. Properties of outbursts, oscillations, and precession.
Energetics-Determine how energy is extracted from neutron stars.	Intrinsic radiation patterns, spectra, and luminosities.

NICER Science Measurements

Structure through lightcurve modeling, long-term timing, and pulsation searches

NICER Science Measurements

Structure through lightcurve modeling, long-term timing, and pulsation searches

Simulations demonstrate how well an assumed neutron star radius can be recovered.

The resulting allowed regions in the $M-R$ plane rule out proposed families of neutron star equations of state. The best mass measurements alone can't distinguish among competing models.

The Technology Demonstration Argument: XNAV and Pulsar Based Navigation

Pulsars were discovered in 1967 and immediately were recognized as a tool for Galactic navigation.

A map showing where the Solar system is relative to the known pulsars at the time.

Pioneer Plaque: Flown on the Pioneer 10 Spacecraft

Clocks and Navigation

- You find atomic clocks on GPS satellites that provide the infrastructure for a navigation solution that works on the Earth and nearby...
- Pulsars are distributed on a Galactic scale providing a natural infrastructure for a GPS-like navigation solution that works throughout the Solar system and beyond.

Pulsars are very stable clocks that are comparable or better than atomic clocks on long time scales

Time Interval (yr)

3D Solutions by stitching together observations of multiple pulsars

Expected Accuracy

- Dependent on orbit
- How fast things change
- Integration time on pulsars
- < 500 m for LEO orbit in a day
- Timescale for updates 1000s of seconds
- < 100m for interplanetary in a few days

XNAV compared to other deep space navigation tools

Tiable 1: With typical position determinations 5000 m in one day or less virually anywhere in the Solar System, XNA provides unprecedented, mission-enabling navigation solutions across a wide range of space applications. (L/A: Limited Applicability: N/A: Not Applicable)

NASAMission Orbit	GPS	TDRSS	NEN/DSN	$\triangle D O R$ (DSN)	CELNAV/Optical	Requirement/Source
LEO	3id cm @ $1+z_{2} 2 \mathrm{~cm} @ 1$ day	2-8me 1 orbit	2-8m@ 10 obt	LIA	$1 \mathrm{km@1hr}$	\leq fewm
HeO	$10 \mathrm{m@1} 1 \mathrm{~Hz}, 1 \mathrm{m@1}$ 1dy	100 m	100 m	LA	01-15 km@ 1 orbit	<1kn/may
GEO	3m@1H2,50cm@103y	N/4	1-8ma4-8 his	L/A	1-5km@10hit	ios ofm/many
Lumar inview	L/A	MA	$200 \mathrm{m@2day}$	L/	0.5 km 005 day	$500 \mathrm{~m} / \mathrm{LRO}$
Luna far sidethilat	W/A	V/A	W/a	N/4	0.5 km 0.5 days	$500 \mathrm{~m} / \mathrm{LRO}$
Sun-Eath 11/2	W/A	H/	$2 \mathrm{km@3}$ weeks	L/A	5-20kn@3das	$2 \mathrm{~km} / \mathrm{Whap}$
Mars (front side)	W/	W/A	105 of knm	5 kn61 day, meters © days	10sofkm (fromer back)	$-5 \mathrm{~km} / \mathrm{rb}_{\mathrm{b}} \mathrm{t}$ insent 5-10m/science @ days
unjitier	W/A	W/A	1050 of km	Few km	105 of km	-1-5 kmiliseft
Beyond dupter	N/A	W/A	1005 of km	1100 mm	105 ofkm	~!-5 km/insert

XNAV provides more utility compared to existing navigation methods as we venture further away from Earth.

At the greatest distances, the "Deep Space Network" (DSN) provide excellent distance information from the earth, but MUCH less information in the crossdirection.

The Instrument

SEXTANT Payload

- 56 co-aligned X-ray concentrators with matching Silicon Detectors
- < 200 nsec absolute time resolution
- > 2000 cm ${ }^{2}$ Effective Area
- Moderate (CCD-like) energy resolution

Deployment and pointing scheme

SEXTANT OPTICS

- Derivatives of GSFC foil optics- continued legacy of Peter Serlemitsos
- Single bounce concentrators
- Full shells with deviation from cone
- Order of magnitude improvement on area/ mass ratio
- XACT sounding rocket will use similar optics

$1^{\text {st }}$ optical image from XACT optics FWHM ~< 1 arcmin

The X-ray Detectors

- Silicon Drift Detectors
- Commercial with Custom Designed Electronics
- Excellent Timing capability and Energy Resolution
- But there is still a timing jitter term
- Summer 2010 USNA Midshipman Spencer Ewing Project

Background

-Incident X-rays enter silicon; energy frees electron from silicon atoms.
-Concentric drift rings are charged at increasingly negative voltages outside of the center signal anode.
-Drift rings guide freed electrons to move toward central sensing signal anode.
-Signal anode is read out by a preamplifier that converts the charge signal to a voltage signal.
-The further the initial X-ray interaction is from the sensing anode, the longer the drift time.

Figure 1: Illustration of SDD from AMPTEK

Figure 2: Diagram of how the SDD works from AMPTEK

Experiment Setup

Function Generator (FG) the modulated X-ray source, producing a 60 nsec wide pulse done at a 500 kHz rate. Additional power supplies needed to power the MXS.
Data Acquisition compiled by Digital Pulse Processor, relayed to Oscope.
Scope averaged 100 triggers of data to reduce errors.

Operations Concept

- Getting from the Earth to ISS
- Robotic Installation
- Getting the science done, once we are there
- USNA Midshipman Putbrese is working with Prof Tae Lim and GSFC engineers on a planning tool.

3-D Model - ISS

Science and backup

SEXTANT: Station Explorer for X-ray Timing and Navigation Technology

SEXTANT = NICER + XNAV +XCOM

Ongoing Millisecond Pulsar Discoveries Promise Many New NICER Targets!

$$
\begin{aligned}
& \mathrm{J} 1301+08 \\
& \times 12124-3358 \\
& x \quad x \\
& \text { J1549-06 } \\
& \mathrm{J} 0308+74 \times 17745+10 \times 1628-32 \times \times 50751+1807 \\
& 12215+51 \text { B1937 }+21 \text { B1821-24 }{\underset{x}{x}}_{\times} \times 1103-5403 \\
& \times 1902-51 \quad \text { } \times 10614-3329 \\
& 10218+4232 \\
& \times J 2124-3358 \quad \text { J0437-4715 } \\
& \text { J0030 }{ }^{\mathrm{x}}+0451 \\
& 12241^{\times}-5233^{*}
\end{aligned}
$$

What is the best way to detect the pulses of a Pulsar?

- Radio
- 10 m diameter dishes or greater
- RF propagation terms
- Optical
-Very Faint-> requires large telescope
- X-ray
- ~ few hundred square cm of area good enough
- Gamma Ray
- massive detectors required

X-ray Navigation (XNAV)

Preliminary!!

Instrument Block Diagram

Instrument Performance	
 Effective Area	0.2-12 keV 2300 cm^{2} @ 1.5 keV . $600 \mathrm{~cm}^{2}$ @ 6 keV
Energy Resolution	3\%@6keV, 10\%@1 keV
Timing Resolution	Detector 150ns
	GPS touTC 50 ns
	GPS pos'n 30 ns
	Total RSS 161 ns
Spatial Resolution	3 arcmin
Pointing Control Budget (arcsec)	Control 50
	Boresight 15
	ISS Jitter 11
	Thermal 11
	Tracker
	Total RSS 76
Sensitivity (unpulsed), $0.4-10 \mathrm{keV}$	$\begin{aligned} & 2.2 \times 10^{-14} \\ & \text { ergs } / \mathrm{s} / \mathrm{cm}^{2}, 50 \\ & \text { in } 10 \mathrm{ksec} \end{aligned}$
	Nel5 ${ }^{4}$

