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ABSTRACT 
 
On December 9th 2009, the International Space Station (ISS) 2A solar array mast experienced prolonged longeron shadowing 
during a Soyuz undocking.  Analytical reconstruction of induced thermal and dynamic structural loads showed an exceedance 
of the mast buckling limit.  Possible structural damage to the solar array mast could have occurred during this event.  A Low 
fidelity video survey of the 2A mast showed no obvious damage of the mast longerons or battens.  The decision was made to 
conduct an on-orbit dynamic test of the 2A array on December 18th, 2009.  The test included thruster pluming on the array 
while photogrammetry data was recorded.  The test was similar to other Dedicated Thruster Firings (DTFs) that were 
performed to measure structural frequency and damping of a solar array.  Results of the DTF indicated  lower frequency mast 
modes than model predictions, thus leading to speculation of mast damage. 
 
A detailed nonlinear analysis was performed on the 2A array model to assess possible solutions to modal differences.  The 
setup of the parametric nonlinear trade study included the use of a detailed array model and the reduced mass and stiffness 
matrices of the entire ISS being applied to the array interface.  The study revealed that the array attachment structure  is 
nonlinear and thus was the source of error in the model prediction of mast modes.  In addition, a detailed study was 
performed to determine mast mode sensitivity to mast longeron damage.  This sensitivity study was performed to assess if the 
ISS program has sufficient instrumentation for mast damage detection. 
 
KEYWORDS: Non-linear, Modal Analysis, Photogrammetry, Damage Detection 
 
1.0 INTRODUCTION 
 
The on-orbit construction of the International Space Station (ISS) began in November 1998, and was completed in July of 
2011.  The ISS consists of eight solar arrays for power generation.  Each array is mounted on a rotating gear box for solar 
tracking and is deployed with a 4 longeron mast.  Each mast is made of 32 bays consisting of longerons, fixed battens, 
flexible battens, and cable diagonals.  Early in the ISS assembly process it was noted that thermal and dynamic conditions 
exist that could buckle a solar array mast longeron.  This condition exists when one longeron is shadowed by another 
structure, thus causing asymmetric thermal loading in the mast longeron. 
 
The ISS program developed a software tool to predict longeron shadowing events and to minimize periods of extreme loads.  
During the 19S Soyuz undocking December 1, 2009, the vehicle was in a long period of solar array longeron shadowing.  
The analysis predicted extreme loads in array 2A longeron and possible buckling.  It was determined that an on-orbit test 
should be performed to analyze the dynamic response of the 2A array to check for damage. 
 
This test produced a significant frequency difference in the 1st In Plane Array Mode compared to the analytical model and the  
other arrays.  The ISS program requested a complete analysis of this event to determine if the 2A array was damaged or not.  
This paper documents the analysis performed and investigates possible solutions to the dynamic differences of this array.  In 
addition to the dynamic analysis, analysis was performed to determine if a longeron did fail, can the failure be detected from 
existing on-orbit instrumentation. 
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3.0 2A ARRAY MODAL ANALYSIS 
 
The 2A Solar array had experienced a sustained longeron shadow event.  The analytical reconstruction of the event showed 
an excedence in the limit loads when combining the dynamic and thermal loads.  An on-orbit dynamics test was performed 
and the IP mast mode was found to be 14% lower than what was expected when compared with the analytical dynamic 
model.  In addition, the 1st IP 2A Array test mode was lower than what was previously seen with any other array on-orbit test. 
The large frequency difference between the IP test and analytical mode was a concern to the program and resulted in the 
request of a more detailed analysis to determine the cause of the difference. 
 
The following detailed analysis was conducted to determine why the 1st IP Array mode was lower and if damage of the array 
could be detected with modal analysis. 
 
3.1 LINEAR ANALYSIS 
 
The ISS loads system model is made up of over 90 super elements and has 35,000 dof.  Each model takes about 60 minutes 
of computer time for the SOL 103.  When performing time domain solutions (SOL 109 or 129) the time increases 
dramatically.  This is an unmanageable model when performing parametric runs and numerous failure analysis time domain 
runs.  To simplify the problem, a stiffness matrix was developed using the NASTRAN DMIG option with the boundary 
conditions being constrained at the approximate CG of the ISS and the other boundary being the 4 grids that the Solar array 
BGA attaches to ISS. 
 
In addition, the solar array model used during nominal loads analysis has a simplified mast (1 Center Bar, 10 pieces) and did 
not model the individual longerons.  To perform parametric studies of failed longerons the detailed mast model would have to 
be integrated into the simplified system model. Fig. 6 illustrates the baseline loads model (left) and the detailed mast model 
delivered from the developer (right).  The highlighted CBARS are the longerons used for the failed analysis.  The far right is 
a close up of the longeron model and cross battens.  In failed longeron cases the complete connection is removed at positions 
depicted in Fig. 6 (MID and BASE). 
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Fig. 7 ISS Stiffness with Detailed BGA and Array Model 

 
 
The Boeing Loads and Dynamics group performs thruster plume analysis on all station arrays.  The program that performs 
the analysis uses plume jet mass flow and impinges on individual plates modeling the array.  The output is a force on each 
individual grid.  The program has been validated with other array displacement checks.  A special routine was developed to 
map force values and vectors for each array blanket.  These force values were mapped to every array blanket and the mast 
cap. The array wing displacement was plotted and compared to the on-orbit data.  These comparison plots are shown in Fig. 
8.  As can be seen by the displacement time history plots, the frequency of the on-orbit data and analytical data does not 
compare for the IP mode.  This also was seen in the frequency domain.   
 

    
Fig. 8 Time Domain Comparison of Out of Plane and In Plane Test and Baseline Analytical Data 
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All reports indicate that the non-linearities are mechanism slippage and are in the four-bar to IEA clevis connection.   
 

 
Fig. 10 Ground Test 4 Bar Assembly and Ground Test Stiffness Data 

 
The ground test documents showed that non-linearities exist in the four bar connections.  As noted earlier, the four-bar 
connections dominate the first two modes, OOP and IP.  At this point a more detailed analysis was performed on the on-orbit 
data using the Boeing Test Analysis Correlation Solutions (BTACS) program.  The BTACS system identification tool 
includes a method that extracts modal parameters within a set window over a prescribed period of time within the data set. 
The photogrammetry displacement data was analyzed using the system identification tool of the BTACS program. The modal 
parameters were computed every 0.67 seconds using a window of 60 seconds of data. 
 
The frequency values, of the extracted modes, were then plotted for each time increment where the color of the data point 
represented the EMAC value, red being greater than 90% and orange greater than 80%. Fig. 11 shows the results of the 
BTACS system identification analysis of the on-orbit data array data showing non-linearities of the 1st OOP and 1st IP Modes. 
The frequency of the OOP mode ranged from 0.06 to 0.068 Hz and IP 0.079 to 0.09 Hz over time, as the amplitude of the 
array displacement diminished.   
 

 
Fig. 11 Photogrammetry Data Mode Frequencies vs Time 

 



To better understand the mechanism of the four-bar clevis to truss connection, on-orbit photos were reviewed.  As previously 
noted the ground test documents indicate that the non-linearities were most likely coming from the four-bar to truss clevis 
connection.  Fig. 12 depicts the on-orbit photos showing the placement and close-up of the four-bar to clevis connection.   
 

              
Fig. 12 Four-bar to Truss Mechanism 

 
Fig. 12 illustrates the pin mechanism that locks the four-bar in the extended position (far right).  This pin connection is 
modeled as a set of springs in the BGA detailed NASTRAN model.  During the ground test it was decided to correlate the 
model to the linear stiff portion of the test data, thus increasing the rotational spring values as shown in Table 3, Colum 3 
(Ground test BL 081).  The original values of the model are shown in column 2 (Original).  
 
A series of NASTRAN runs were performed modifying the four-bar to truss spring values.  It was found that modifying the 
front two connections in DOF 1, 3, and 5 (see Fig. 13) would impact the frequency of the IP mode while having negligible 
effects on the frequency of the other modes.  Column 4 of Table 3 contains the final spring values used for the analysis. 
  

Table 3 BGA to Truss Spring Values 
 Baseline      

(in-lb) 
Ground test - 

BL 081 (in-lb) 
Modified - BL 081 

DOF 1,3,5 Front (in-lb) 
CELAS2 DOF1 5500000 5500000 5000 
CELAS2 DOF2 5000000 5000000 5000000 
CELAS2 DOF3 300000 300000 5000 
CELAS2 DOF4 450000 900000 900000 
CELAS2 DOF5 650000 2280000 2280 
CELAS2 DOF6 600000 6000000 6000000 

 



 
Fig. 13 Modified BGA Description 

 
After all the runs with spring reductions were complete, the final OOP and IP mode frequency values were checked against 
the baseline mode and the on-orbit test.  Table 4 illustrates the final frequency values and the percent frequency difference 
from the on-orbit test.  The modified spring values changed the frequency of the IP mode without affecting the frequency 
other modes. These results allowed for a plausible explanation of the modal discrepancies of the IP frequency difference.  It 
must be noted that this is a linear solution and that we saw non-linear results from the on-orbit test. 
 

Table 4 Analytical Results of Modified BGA 

On-Orbit Test 
BL 081 

(Hz) 
% Diff 
Test 

BL 081 DOF 1 , 
3, 5 Front (Hz) 

% Diff 
Test 

0.0602 OOP 0.065 8% 0.061 1% 
0.0814 IP 0.097 17% 0.079 -3% 
0.103 TOR 0.096 -7% 0.096 -7% 
0.152   0.152 0% 0.151 -1% 

 
 
To account for the non-linear results seen in the on orbit photogrammetry data, GAP elements were used for the four-bar to 
truss clevis connection.  The solution 129 was used for this analysis.  Numerous runs were performed using GAP elements 
and the NOLIN card.  The final analysis was performed using the NASTRAN GAP elements with varying axial stiffness 
values depending on open or closed gap.  To model the on-orbit structure the stiffness was modeled to be less with an open 
gap.  The closed gap stiffness is the same as the baseline  A recap of the GAP card values are shown in table 5. 
 

Table 5 GAP Stiffness Values 
 GAP Disp. (in) GAP Closed 

Stiffness (in-lb) 
GAP Open 

Stiffness (in-lb) 
DOF1 .00005 5500000 5000 
DOF2 No Gap 5000000 5000000 
DOF3 .0001 300000 5000 
DOF4 No Gap 900000 900000 
DOF5 No Gap 2280 2280 
DOF6 No Gap 6000000 6000000 

 
 
 



The GAP elements were used on the four-bar to truss clevis on the front locations only.  The initial gap open was determined 
by performing nominal plume runs and plotting the relative displacement between the GRIDS with the baseline spring 
constant.  The exact GAP opened value was determined after several runs and acceptable results were achieved.  
 
Once the proper GAP parameters were achieved, a time domain SOL 129 was performed.  When performing non-linear 
transient analysis, the damping value is specified with the W3 parameter and is the damping at a specified mode.  The 
frequency used for this was a split between OOP and IP mode and was valued at 2%.  The comparison time domain of the 
on-orbit test data and the non-linear analytical data is shown in Fig. 14.  As can be noted the comparison is much better than 
the baseline (Fig. 8) and considered to be a good analytical representation of the on-orbit structure. 
 

    
Fig. 14 On-Orbit versus Analytical Non-linear Time Domain Data 

 
In addition to the time domain of the individual OOP and IP displacement of the array, the overall relative displacement of 
the spring grids were plotted. Fig. 15 shows the relative displacement of the front four-bars to truss clevis.  The maximum 
displacement is 0.0175”. This displacement is a little more than double the complete tolerance stack up of the four-bar 
mechanism.  The tolerance stack up of the four-bar clevis to truss connection is 0.0073”. 
 

 
Fig. 15 Relative Displacement of Front Four-bar Clevis 

 
For a ’quick look’ analysis the softened springs were used on the boundary connections of the starboard truss IEA super 
element and the 2A BGA super element in the full detailed ISS system model.  This model has all eight arrays thus it will 
have eight OOP modes, eight IP modes, and eight torsional array modes. 
 
Table 6 compares the system model baseline modes and the 2A array reduced boundary connection model modes.  It is noted, 
in bold, the 2A IP array mode of the modified model is lowered by the amount seen on-orbit.  The mode shape comparison of 
the test modes and the modified model modes matched, and with the lower frequency value, would have deemed the array 
nominal if this was in the original analytical model when compared to on orbit 2A DTF. 
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Table 6 ISS Modal Comparison of Baseline and Modified 
Baseline 

Mode (Hz) Mode Description (Baseline) 
DOF 135 

Mode (Hz) Mode Description (Modified) % Diff 

0.05973 OOP PORT/STBD  0.05884 OOP PORT/2A  -1.5% 
0.06134 OOP PORT/STBD  0.06071 OOP PORT/STBD  -1.0% 
0.06472 OOP STBD 0.06472 OOP STBD 0.0% 
0.06484 OOP PORT/2A  0.06294 OOP PORT/2A  -3.0% 
0.06499 OOP STBD 0.06499 OOP STBD 0.0% 
0.06511 OOP PORT 0.06497 OOP PORT -0.2% 
0.06566 OOP STBD 0.06566 OOP STBD 0.0% 
0.06648 OOP PORT 0.06628 OOP PORT -0.3% 
0.09333 IP PORT Sym 0.08128 IP 2a -14.8% 
0.09566 IP STBD Sym 0.09568 IP STBD Sym 0.0% 
0.09639 IP PORT/2a  0.09473 IP PORT Sym -1.8% 
0.09664 IP STBD Anti-Sym 0.09664 IP STBD Anti-Sym 0.0% 
0.09676 IP STBD  0.09676 IP STBD Anti-Sym 0.0% 
0.09707 IP PORT, STBD anti-Sym 0.09700 IP PORT Anti-Sym , STBD -0.1% 
0.09713 IP PORT Anti-Sym, STBD 0.09713 IP PORT, STBD Anti-Sym 0.0% 
0.09812 IP PORT Anti-Sym 0.09811 IP PORT Anti-Sym 0.0% 
0.09961 TOR STBD 0.09961 TOR STBD 0.0% 
0.09968 TOR STBD 0.09968 TOR STBD 0.0% 
0.09974 TOR STBD 0.09974 TOR STBD 0.0% 
0.09976 TOR PORT 0.09978 TOR PORT 0.0% 
0.09977 TOR STBD 0.09977 TOR STBD 0.0% 
0.09995 TOR PORT 0.09967 TOR PORT -0.3% 
0.10025 TOR PORT 0.10022 TOR PORT 0.0% 
0.10036 TOR PORT 0.10036 TOR PORT 0.0% 

 
4.0 MAST DAMAGE SENSITIVITY STUDY 
 
In addition to the analysis performed to investigate the array mode frequency difference, it was asked if the current ISS 
instrumentation would allow for mast damage to be detected.  A detailed study was performed to investigate if a longeron 
failure could be detected with current instrumentation.   
 
The only instrumentation on orbit to measure ISS array modes is the photogrammetry system.  The photogrammetry analysis 
needs at least two cameras on each area being investigated.  It is possible but very difficult to get four cameras dedicated for 
an array test.  For this study it was decided to use four cameras. Fig. 16 illustrates the two areas the cameras would be 
pointed, one set at the tip and one set at the midpoint, spanning the most credible failure area.  
 



 
Fig. 16 Array Camera Viewing Locations 

 
A set of SOL 103, modal solution, runs were performed on the baseline array model, failed at mid model, and failed at base 
model.  The modal parameters for each model was output and compared to the baseline model modal parameters.  For each 
run the frequency difference and MAC was calculated. The baseline model has over 700 modes from 0-5.5 Hz.  To reduce 
the amount of modes to investigate, only modes containing 2% or greater kinetic energy in the array mast were saved.  This 
reduced the problem down to 60 modes.  It also must be mentioned that this is a total failure of the longeron and does not 
assume partial fractures. 
 
Once the major modes were selected, the MAC was calculated using the four grids as noted in Fig. 16. Table 7 summarizes 
the data results for the mast failed at mid model and Table 8 summarizes the data for the mast failed at base model.    
 
Table 7 is the summary of the failed longeron at the mid point of the mast.  The torsion mode has a low MAC between the 
baseline and damaged model but it would be difficult to detect this with the cameras available and determining if this is the 
results of the four-bar contribution or mast damage.  The next possible mode for detecting mast damage was the 0.677 Hz 
mast bending mode.  The failed mast does show a lower MAC value and mode frequency.  The best possibility of damage 
detection is the additional mode in the failed case at 1.2868 Hz (highlighted in bold).  When performing the MAC the best 
match is the baseline mode at 1.5107 Hz.  This mode would be the best mode to detect a total longeron failure at mid mast 
and the comparison mode shape is illustrated in Fig. 17.  Some other modes exist above 4 Hz but it is difficult on orbit to 
physically excite modes at that high of a frequency and the reliability of  photogrammetry to capture the modes at that 
frequency is unknown, due to the frame rate of the cameras of 15 or 30 Hz. 
 

Table 7 BGA at 81 deg Damaged at MID 

Nom Freq.  Fail Freq  MAC  % Dif Freq  Mode Description  % KE Mast 

0.093  0.090  0.758  ‐3.2%  TORSION  3% 

0.6777  0.6247  0.823  ‐7.8%  MAST BENDING WITH BLANKET (anti) BENDING   5% 

1.5107  1.259  0.745  ‐16.7%  OUT PLANE BENDING WITH LOWER BLNK BOX   20% 

1.5107  1.2868  0.722  ‐14.8%  ADDED MODE FROM MID DAMAGE  20% 

2.3272  2.2607  0.752  ‐2.9%  GOOD 1st IN PLANE BENDING   24% 

4.344  4.06  0.642  ‐6.5%  45 DEG PLANE 2ND BENDING   2% 

4.3824  4.6232  0.545  5.5%  OUT PLANE 2ND BENDING   52% 
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