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Abstract—The paper presents a prediction-identification model
based adaptive control method for uncertain systems with time
varying parameters in the presence of bounded external distur-
bances. The method guarantees desired tracking performance for
the system’s state and input signals. This is achieved by feeding
back the state prediction error to the identification model. It
is shown that the desired closed-loop properties are obtained
with fast adaptation when the error feedback gain is selected
proportional to the square root of the adaptation rate. The
theoretical findings are confirmed via a simulation example.

Index Terms—Time-varying parameters, guaranteed transient
performance, disturbance rejection;

I. I NTRODUCTION

Adaptive control has been considered as a promising tech-
nology to improve stability and performance of uncertain
systems. However, limitations of conventional adaptive meth-
ods (see for example [1]) have prevented them to be widely
adopted in safety-critical systems.

During past two decades majority of the efforts have been
directed to improving the transient of the tracking error
(see for example recent results in [2], [4], [5], [9] for the
systems with time varying uncertainties), but not the control
signal, the behavior of which significantly contributes to the
aforementioned limitations.

These limitations have been addressed in theL1 adaptive
control framework [3]. It has been shown that the desired
transient can be obtained via fast adaptation and a low-pass
filter, which a priori sets the bandwidth, within which the
uncertainties in the system can be compensated for.

An alternative method, which guarantees desired transient
behavior of the closed-loop system, has been proposed in [8].
It is based on the modification of the reference model by
the tracking error feedback, and is called modified reference
model MRAC (M-MRAC). The idea behind the method was
to drive the reference model toward the system proportional
to the tracking error, thus preventing the system’s attempt
to aggressively maneuver toward the reference model in the
initial stage of the process. It turns out that the error feedback
gain determines the damping in the control signal dynamics,
whereas the adaptation rate determines the frequency. This
allows the designer to choose proper values for the parameters.
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In this paper, we extend the approach to the systems with
time varying parameters using a prediction (or identification)
model based approach. The parameters are assumed to be
bounded and vary with bounded derivatives, no matter how
large these bounds are. The parameter estimates are generated
using the state prediction error as in the case of conventional
indirect adaptive control schemes, which is the reason to name
the approach indirect M-MRAC. However, our prediction
model differs from the conventional ones by a prediction
error feedback term, which turns out to play the same role
as the tracking error feedback term plays in the direct M-
MRAC approach. Hence, the desired closed-loop behavior
can be achieved with fast adaptation by selecting a proper
error feedback gain, which also separates the time scale of the
adaptive estimation from that of the system’s dynamics.

The rest of the paper outlines the properties of the proposed
indirect M-MRAC control architecture and demonstrates the
benefits of it in a simulation example.

II. PROBLEM STATEMENT

Consider the system

ẋ(t) = Ax(t) +BΛ(t) [u(t) +K(t)g(x(t)) + d(t)] (1)

with x(0) = x0, wherex ∈ Rn is the state of the system,
u ∈ Rq is the control,A ∈ Rn×n and B ∈ Rn×q are
given constant matrices withA being Hurwitz and(A,B)
controllable,g : Rn → Rp is continuously differentiable,
Λ : R+ → Rq×q is positive definite with bounded and
piecewise continuous unknown entries, which have bounded
derivatives,K : R+ → Rq×p is an unknown parameter matrix
with bounded and piecewise continuous entries, which have
bounded derivatives, andd : R+ → Rq is bounded and
piecewise continuous disturbance with a bounded derivative.

The control objective is to design a control input such that
the system (1) tracks the reference model.

ẋm(t) = Axm(t) +Br(t) (2)

with xm(0) = xm0, wherer : R+ → Rq is bounded and
piecewise continuous command with a bounded derivative.

We notice that the system (1) can be represented in the form

ẋ(t) = Ax(t) +Br(t)

+ BΛ(t) [u(t) + Θ(t)f(x, r) + d(t)] , (3)

whereΘ(t)f(x, r) = K(t)g(x(t))− Λ−1(t)r(t). Let

‖Λ(t)‖L∞
≤ λ∗, ‖Θ(t)‖L∞

≤ ϑ∗, ‖d(t)‖L∞
≤ d∗

‖Λ̇(t)‖L∞
≤ λ∗d, ‖Θ̇(t)‖L∞

≤ ϑ∗d, ‖ḋ(t)‖L∞
≤ d∗d (4)
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III. PREDICTION MODEL

We introduce the following adaptive prediction model

˙̂x(t) = Ax̂(t) +Br(t) (5)

+ BΛ̂(t)[u(t) + Θ̂(t)f (x, r) + d̂(t)] + kx̃(t)

with x̂(0) = x̂0, wherex̃(t) = x(t) − x̂(t) is the prediction
error, k > 0 is a design parameter,̂Λ(t), Θ̂(t) and d̂(t) are
the estimates of the unknown quantities, generated according
to adaptive laws

˙̂
Θ(t) = γ Pr

(

Θ̂(t), B⊤P x̃(t)f⊤(x, r)
)

˙̂
Λ(t) = γ Pr

(

Λ̂(t), B⊤P x̃(t)[u(t) + Θ̂(t)f (x, r)]⊤
)

˙̂
d(t) = γ Pr

(

d̂(t), B⊤P x̃(t)
)

, (6)

where γ > 0 is the adaptation rate,P = P⊤ > 0 is the
solution of the Lyapunov equationA⊤P+PA = −Q for some
Q = Q⊤ > 0, andPr (·, ·) denotes the projection operator [7],
which is defined asPr(θ̂,y) = [I−G(θ̂)]y, where

G(θ̂) =















0, if ϕ(θ̂) < 0

0, if ϕ(θ̂) ≥ 0, ∇ϕ⊤(θ̂)y ≤ 0
∇ϕ(θ̂)∇ϕ⊤(θ̂)

‖∇ϕ(θ̂)‖2 ϕ(θ̂), if ϕ(θ̂) ≥ 0, ∇ϕ⊤(θ̂)y > 0

with the notation∇ϕ(θ̂) = ∂ϕ(θ̂)

∂θ̂
, and the smooth convex

functionsϕ(θ̂) is given byϕ(θ̂) =
tr(θ̂⊤θ̂)−θ2

max

ǫθθ2
max

with θmax

denoting the norm bound imposed on the parameter matrix
θ̂ and ǫθ denoting the convergence tolerance. The projection
operator has the following properties

Lemma 3.1: [7] Let θ0 ∈ Ω0 = {θ̂ ∈ R
n | ϕ(θ̂) ≤ 0}, and

let the parameter̂θ(t) evolve according to the dynamics

˙̂
θ(t) = Pr(θ̂(t), y), θ̂(t0) ∈ Ω . (7)

Then 1) θ̂(t) ∈ Ω1 = {θ̂ ∈ R
n | ϕ(θ̂) ≤ 1} or ‖θ̂(t)‖ ≤

θ∗ for all t ≥ t0, where θ∗ =
√
1 + ǫθ θmax, 2) [θ̂(t) −

θ0]
⊤[Pr(θ̂(t), y)− y] ≤ 0 for all t ≥ t0.
It is straightforward to verify that

˙̃x(t) = (A− kI)x̃(t) +BΛ(t)[Θ̃(t)f (x, r) + d̃(t)]

+ BΛ̃(t)[u(t) + Θ̂(t)f (x, r) + d̂(t)] , (8)

whereΘ̃(t) = Θ(t) − Θ̂(t), Λ̃(t) = Λ(t) − Λ̂(t) and d̃(t) =
d(t)− d̂(t) are the estimation errors.

Lemma 3.2: If x̂0 = x0, then the prediction error̃x(t)
satisfies the bound

‖x̃(t)‖ ≤
√

c

λmin(P )

1√
γ
, (9)

where c = c1 + c2
2k , c1 = 4λ∗d∗2 + 4λ∗ϑ∗2 + 4λ∗2, and

c2 = 4λ∗ϑ∗ϑ∗d + 4λ∗d∗d∗d + 4λ∗dd
∗2 + 4λ∗dϑ

∗2.
Proof: The derivative of the candidate Lyapunov function

V (t) = x̃⊤(t)P x̃(t) + γ−1d̃
⊤
(t)Λ(t)d̃(t) (10)

+ γ−1tr
(

Θ̃⊤(t)Λ(t)Θ̃(t) + Λ̃⊤(t)Λ̃(t)
)

,

computed along the trajectories of the prediction error dynam-
ics (8) and the adaptive laws (6), satisfies the inequality

V̇ (t) ≤ −x̃⊤(t)Qx̃(t)− 2kx̃⊤(t)P x̃(t) (11)

+ 2γ−1tr
(

Θ̇⊤(t)Λ(t)Θ̃(t)
)

+ 2γ−1ḋ
⊤
(t)Λ(t)d̃(t)

+ γ−1d̃
⊤
(t)Λ̇(t)d̃(t) + γ−1tr

(

Θ̃⊤(t)Λ̇(t)Θ̃(t)
)

.

The projection operator in the adaptive laws (6) guarantees
the inequalities‖Θ̂(t)‖ ≤ ϑ∗, ‖Λ̂(t)‖ ≤ λ∗ and ‖d̂(t)‖ ≤
d∗. Therefore‖Θ̃(t)‖ ≤ 2ϑ∗, ‖Λ̃(t)‖ ≤ 2λ∗, ‖d̃(t)‖ ≤ 2d∗

and2tr
(

Θ̇⊤(t)Λ(t)Θ̃(t)
)

+2ḋ
⊤
(t)Λ(t)d̃(t)+d̃

⊤
(t)Λ̇(t)d̃(t)+

tr
(

Θ̃⊤(t)Λ̇(t)Θ̃(t)
)

≤ c2. That is

V̇ (t) ≤ −x̃⊤(t)Qx̃(t)− 2kx̃⊤(t)P x̃(t) + γ−1c2 . (12)

On the other hand we have d̃
⊤
(t)Λ(t)d̃(t) +

tr
(

Θ̃⊤(t)Λ(t)Θ̃(t) + Λ̃⊤(t)Λ̃(t)
)

≤ c1. It follows that

V (t) ≤ x̃⊤(t)P x̃⊤(t) + γ−1c1. Therefore, ifV (τ) > γ−1c,
for some τ then x̃⊤(τ)P x̃⊤(τ) > (2kγ)−1c2, which
implies that V̇ (τ) < 0. Since x̃(0) = 0 it follows that
V (0) ≤ γ−1c1 < γ−1c. ThereforeV (t) ≤ γ−1c for all t ≥ 0.

Since‖x̃(t)‖2 ≤ x̃⊤(t)P x̃(t)/λmin(P ) ≤ V (t)/λmin(P ),
the inequality (9) follows.

It can be observed from Lemma 3.2 that the state prediction
error can be decreased as desired by increasing the adaptation
rateγ, when the prediction model is precisely initialized. The
next lemma shows that the initialization error results in an
additive exponentially decaying term.

Lemma 3.3: If x̂0 6= x0, thenx̃(t) satisfies the bound

‖x̃(t)‖ ≤
√

c3
λmin(P )

e−kt +

√

c

γλmin(P )
, (13)

wherec3 = |V (0)− c
γ |, andV (t) is defined by (10).

Proof: Using the sameV (t) as in Lemma 3.2 and
following the same steps one can arrive to the inequality

V̇ (t) ≤ −2k[V (t)− γ−1c1] + γ−1c2 , (14)

integration of which results in

V (t) ≤
[

V (0)− c

γ

]

e−2kt +
c

γ
≤ c3e

−2kt +
c

γ
. (15)

Recalling that‖x̃(t)‖2 ≤ V (t)/λmin(P ), we readily obtain

‖x̃(t)‖ ≤
√

1

λmin(P )

√

c3e−kt +
c

γ
, (16)

Taking into account the inequality
√
a+ b ≤ √

a+
√
b for any

a ≥ 0, b ≥ 0, the bound (13) is concluded.
Since the effect of the prediction model initialization error

decays exponentially with the ratek, which is assumed to
be set to large values for the fast adaptation, in the next
derivations we assume thatx̂0 = x0.



IV. CONTROL DESIGN

Since the reference model is designed to satisfy the ro-
bustness and performance specifications, one would naturally
select the control signal

u(t) = −Θ(t)f(x, r)− d(t) . (17)

to achieve the control objective, if the system (3) were com-
pletely known. Obviously,u(t) is not implementable, therefore
its adaptive version

û(t) = −Θ̂⊤(t)f (x, r)− d̂(t) (18)

is used. When this control signal is applied, the prediction
model (5) reduces to the modified reference model introduced
in the M-MRAC architecture, that is

˙̂x(t) = Ax̂(t) +Br(t) + kx̃(t) , (19)

Lemma 4.1: Let the system (3) be controlled by the adap-
tive controlû(t) (18). Then closed loop signals are bounded.

Proof: Under the action of the adaptive controlû(t),
the error between the prediction model and reference model
em(t) = x̂(t)− xm(t) satisfies the equation

ėm(t) = Aem(t) + λx̃(t) , (20)

SinceA is Hurwitz, andx̃(t) is bounded according to Lemma
3.2, it follows thatem(t) is bounded. Since the inputr(t)
is bounded, the reference model’s statexm(t) is bounded,
therefore the predicted statêx(t) is bounded as well. Then, it
follows that the system’s statex(t) is bounded. The parameter
estimates are guaranteed to be bounded by the projection
operator, thereforêu(t) is also bounded.

Lemma 4.2: Let the system (3) be controlled by the con-
troller (18), which is defined by the prediction model (5) and
the adaptive law (6). Then

‖ũ(t)‖ ≤ β1e
−ν1t + β2γ

− 1

2 , (21)

where ũ(t) = u(t) − û(t), and ν1, β1 and β2 are positive
constants to be specified in the proof.

Proof: It is easy to show that̃u(t) satisfies the equation
[

˙̃u(t)
¨̃u(t)

]

=

[

0 Iq×q

−γF (t)L(t) −kIq×q

] [

ũ(t)
˙̃u(t)

]

+

[

0
γ

]

z1(t) +

[

1
k

]

z2(t) , (22)

where we denoteρ(t) = f⊤(x, r)f(x, r) + 1, F (t) =
ρ(t)Iq×q−H(t), H(t) = G(Θ̂)f⊤(x, r)f(x, r)+G(d̂), L =
B⊤PBΛ(t) (L(t) is positive definite),z1(t) = [ρ̇(t)B⊤

0 P +
ρ(t)B⊤

0 PAm]x̃(t), andz2(t) = −Θ̃⊤(t)ḟ (x, r)−ḋ(t). Since
x(t) is bounded, it follows thatρ(t) is bounded. That is, there
exists a positive constantα1 such that1 ≤ ρ(t) ≤ α1 for
all 0 ≤ t < ∞. On the other hand, it follows from the
definition of the projection operator that‖G(Θ̂)‖ ≤ 1 and
‖G(d̂)‖ ≤ 1. ThereforeF (t) is bounded. Further, it follows
from the dynamics (3) thaṫx(t) is bounded. Thereforėρ(t)
andz2(t) are bounded. That is, there exist positive constants
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Fig. 1. M-MRAC angle tracking performance withγ = 1000.

0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

1
Yaw rate in degrees/second

 

 

System

Reference

0 5 10 15 20 25 30 35 40
−20

−10

0

10

20

30
Roll rate degrees/sec

Time

 

 

System

Reference

Fig. 2. M-MRAC rate tracking performance withγ = 1000.

α2 and α3 such that|ρ̇(t)| ≤ α2 and ‖z2(t)‖ ≤ α3 for all
0 ≤ t <∞. Hence, (22) can be considered as a second order
linear system inũ(t) with time varying coefficients, where
the adaptation rateγ determines the frequency ofũ(t) and the
feedback gaink determines the damping ratio. We notice that
selection of the initial parameter estimates inside the convex
sets defined by the projection operator results inH(t) = 0
on some initial interval[0 t1]. Therefore,F (t) = ρ(t)Iq on
[0 t1]. Let a0 = α1λ

0+λ0

2 , whereλ0 = maxt≥0 λ(L(t)) and
λ0 = mint≥0 λ(L(t)). DenotingE(t) = a0Iq − ρ(t)L(t), we
can write

[

˙̃u(t)
¨̃u(t)

]

=

[

0 Iq×q

−γa0Iq×q −kIq×q

] [

ũ(t)
˙̃u(t)

]

(23)

+

[

0
γ

]

z1(t) +

[

1
k

]

z2(t) + γ

[

0n×n

E(t)

]

ũ(t) ,

the solution of which has an equivalent integral form

ũ(t) = ψ(t)
[

ũ(0) ˙̃u(0)
]⊤

+ γ
∫ t

0 ψ2(t− τ)[z1(τ) +

E(τ)ũ(τ)]dτ +
∫ t

0
[ψ1(t− τ) + kψ2(t− τ)]z2(τ)dτ,(24)



whereψ(t) = [ψ1(t) ψ2(t)] is the first row of the transition
matrix of the LTI part of system (23). Following [8], we select

k = 2
√
γa0 , (25)

which results in the minimum norm‖ψ2(t)‖L1
= (γa0)

−1.
For the same k, we have ‖ψ1(t) + kψ2(t)‖L1

≤
4(γa0)

−1/2. Since ‖E(t)‖L∞
= a0 − λ0, we obtain 1 −

γ‖ψ2(t)‖L1
‖E(t)‖L∞

= 2λ0a
−1
0 . Then, according to [8], it

follows from the expression (24) that

‖ũ(t)‖ ≤ b1(‖ũ(0)‖+ ‖ ˙̃u(0)‖)e−ν1t

+
1

2λ0
‖z1(t)‖L∞

+
4
√
a0

2λ0
‖z2(t)‖L∞

, (26)

whereb1 is a positive constant and

ν1 = −
√
γ

2

(√
a0 −

√

a0 − λ0

)

. (27)

From the definition ofz1(t) and Lemma 3.2 we have

‖z1(t)‖L∞
≤ (α2‖B⊤P‖+ α1‖B⊤PA‖)

√

c

γλmin(P )
.

Then, it is straightforward to obtain the bound (21) with

β1 =
b1(‖ũ(0)‖+ ‖ ˙̃u(0)‖)

2λ0

β2 =
4α3

√
a0

2λ0
+

(α2‖B⊤P‖+ α1‖B⊤PA‖)√c
2λ0

√

λmin(P )
.

This concludes the proof.

V. TRACKING ERROR

In this section we derive a norm bound for the tracking error
e(t) = x(t)−xm(t), which is given by the following lemma.

Lemma 5.1: Let the system (1) be controlled by the con-
troller (18), which is defined by the prediction model (5) and
the adaptive law (6). Then

‖e(t)‖ ≤ β3e
−νt + β4γ

− 1

2 , (28)

β3 andβ4 are positive constants to be specified in the proof.
Proof: It is straightforward to obtain the tracking error

dynamics in the form

ė(t) = Ae(t)−BΛ(t)ũ(t) . (29)

SinceA is Hurwitz, it follows that there exist positive con-
stantsb2 and ν2 such that‖eAt‖ ≤ b2e

−ν2t. Therefore the
following bound can be obtained

‖e(t)‖ ≤ b2‖e(0)‖e−ν2t + b2‖BΛ(t)‖L∞

∫ t

0 e
−ν2(t−τ) ·

[β1e
−ν1τ + β2γ

− 1

2 ]dτ ≤ b2‖e(0)‖e−ν2t + b2‖BΛ(t)‖L∞
[

β1

ν1−ν2
(e−ν2t − e−ν1t) + β2

ν2
(1 − e−ν2t)γ−

1

2

]

(30)

which can be expressed in the form of (28) with

β3 = b2‖e(0)‖+
b2β1

|ν2 − ν1|
‖BΛ(t)‖L∞

β4 =
1

ν1
b2β2‖BΛ(t)‖L∞

.
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Fig. 3. M-MRAC control signal time history withγ = 1000.
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Fig. 4. MRAC angle tracking performance withγ = 1000.

andν = min[ν1, ν2].
Remark 5.1: The proposed method guarantees the regula-

tion of all error signals by increasing the adaptation rate,which
is only subject to available computational power. Therefore,
with fast adaptation the control objective is achieved without
generating unwanted excursions and oscillations in adaptive
signals. The effects of the external disturbances and parameter
variations are compensated for by the fast adaptation, and the
effects of the initial conditions decay exponentially. �

Remark 5.2: It can be observed that the dynamics of the
reference model, the operating system and the tracking error
have the same time scales determined by the matrixA. Hence,
the reference model initialization error generates an additive
exponential termb2‖e(0)‖e−νt in the bound of the tracking
error with a rate of decay defined by the time constant of
the reference model, since the adaptation process is much
faster. The time scale of the prediction error dynamics (8)
is determined byk, which is proportional to

√
γ, and the time

scale of the adaptive estimates is determined byγ. Therefore,
for large values ofγ the time scale of the adaptive estimation
process is separated from the time scale of the underlying



closed-loop dynamics, which is not achievable by conventional
adaptive methods [1]. �

VI. I LLUSTRATIVE EXAMPLE

In this section, the advantages of the proposed indirect
M-MRAC architecture are demonstrated in simulations for a
dynamic model that represents the lateral-directional motion
of a generic transport aircraft (GTM) [6]. The nominal model
is the linearized lateral-directional dynamics of GTM at the
altitude of30, 000 ft and speed of0.8M and is given by

ẋ(t) = Anx(t) +Bnu(t) , (31)

wherex = [β r p φ]⊤ is the lateral-directional state vector,
in which β is the sideslip angle,r is the yaw rate,p is the
roll rate,φ is the bank angle, andu = [δa δr]

⊤ is the control
signal that includes the aileron deflectionδa and the rudder
deflectionδr, and the numerical values forAn andBn are

An =









−0.1578 −0.9907 0.0475 0.0404
2.7698 −0.3842 0.0240 0

−10.1076 0.5090 −1.7520 0
0 0.0506 1.0000 0









,

Bn =









0.0042 0.0476
0.0351 −2.2464
6.3300 1.7350

0 0









.

The reference model is selected from the perspective of
improving the performance characteristics of the nominal dy-
namics and is given by the equation (2), whereA = An−BnK
andB = BnN , with the feedback and feedforward matrices

K =

[

0 0 0.43 0.55
1.92 −1.5 0 0

]

, N =

[

1.26 0.65
3.33 −0.07

]

.

The reference model is driven by a command, which is
chosen to be a series of coordinated turn maneuvers. That
is, sideslip angle command is set to zero and the bank angle
command is chosen to be a square wave of the amplitude of
15 degrees and of the frequencyπ10 rad/sec, which is filtered
through a first order stable filter10s+10 .

The uncertain model of GTM roughly corresponds to28%
loss of left wing tip att = 0 sec, and 55% loss of rudder
surface and vertical tail att = 20 sec. Its dynamics are in
the form of the equation (3) with piecewise constantΘ(t) and
Λ(t), andf(x) = x. The corresponding numerical values are

Θ(t) =























[

−0.1820 0.0149 −0.1049 0
0.0807 −0.0109 0.0168 0

]

, t ≤ 20

[

−0.2268 0.0209 −0.1053 0
−0.8514 0.0692 0.0003 0

]

, t > 20

Λ(t) =























[

0.5401 0.0167
−0.0632 1.0524

]

, t ≤ 20

[

0.5413 −0.0492
0.0408 0.4225

]

, t > 20

0 5 10 15 20 25 30 35 40
−2

−1

0

1

2
Yaw rate in degrees/second

 

 

System

Reference

0 5 10 15 20 25 30 35 40
−20

−10

0

10

20

30
Roll rate degrees/sec

Time

 

 

System

Reference

Fig. 5. MRAC rate tracking performance withγ = 1000.
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Fig. 6. MRAC control signal time history withγ = 1000.

The external disturbance is chosen to be a sinusoid of am-
plitude0.1 and frequency2π/3 rad/sec in the yaw channel and
a square wave of amplitude0.15 and frequencyπ/3 rad/sec
in the roll channel. The disturbance magnitude correspondsto
8.6 degrees of aileron deflection and5.7 degrees of rudder
deflection. In the definition of the projection operator the
conservative boundsλ∗ = ϑ∗ = d∗ = 10 are used.

First, a simulation is run withγ = 1000, Q = I4 and k
is computed according to (25), where we used conservative
boundsλ0 = 0.2 and λ0 = 2. Figures 1 and 2 display
the tracking performance of the states. Clearly good tracking
is achieved with the chosen controller gains, for which the
control time history is presented in Figure 3. It can be observed
that the adaptive control signal closely follows the reference
signal given by (17). Small spikes in the control signal are
attributed to the discontinuities of the disturbance. For the
comparison purposes we also present the conventional MRAC
performance with the same setup. It can be observed from the
Figure 4 that MRAC achieves output tracking with small os-
cillations in sideslip angle. However, the rates and the control
surface deflection commands are experiencing unacceptable
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Fig. 7. M-MRAC output tracking withγ = 10000.
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Fig. 8. M-MRAC input tracking withγ = 10000.

oscillations (see Figures 5 and 6).
Next we increase the adaptation rate10 fold. As it can be

viewed form Figures 7 and 8, the output and input tracking
performances are substantially improved as predicted. Com-
putations show that the tracking error is decreased more than√
10 fold, implying the the derived bounds are conservative.

Farther increase of adaptation rate toγ = 100000 further
improves the system’s input and output performance (see
Figures 9 and 10), which verifies the theoretical derivations.

VII. C ONCLUSIONS

We have presented indirect modified reference model
MRAC (M-MRAC) approach to uncertain systems with time
varying parameters and bounded external disturbances without
imposing ”slow variation” restriction on the system’s param-
eters. The method uses a prediction error feedback term to
speed up the adaptive estimation process, which results in
predictable transient behavior for both state and input variables
of the system. It has been shown that the unwanted high
frequency effects of the fast adaptation in the control signal
can be regulated by the proper choice of the feedback gain.
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Fig. 9. M-MRAC output tracking withγ = 100000.
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Fig. 10. M-MRAC input trackingγ = 100000.
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