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Abstract 

In order to practically utilize ceramic matrix composites in aircraft engine components, robust 
analysis tools are required that can simulate the material response in a computationally efficient manner. 
The MAC/GMC software developed at NASA Glenn Research Center, based on the Generalized Method 
of Cells micromechanics method, has the potential to meet this need. Utilizing MAC/GMC, the effective 
stiffness properties, proportional limit stress and ultimate strength can be predicted based on the 
properties and response of the individual constituents. In this paper, the effective stiffness and strength 
properties for a representative laminated ceramic matrix composite with a large diameter fiber are 
predicted for a variety of fiber orientation angles and laminate orientations. As part of the analytical 
study, methods to determine the in-situ stiffness and strength properties of the constituents required to 
appropriately simulate the effective composite response are developed. The stiffness properties of the 
representative composite have been adequately predicted for all of the fiber orientations and laminate 
configurations examined in this study. The proportional limit stresses and strains and ultimate stresses and 
strains were predicted with varying levels of accuracy, depending on the laminate orientation. However, 
for the cases where the predictions did not have the desired level of accuracy, the specific issues related to 
the micromechanics theory were identified which could lead to difficulties that were encountered that 
could be addressed in future work. 

Introduction 

Ceramic matrix composites (CMCs) are being investigated for use in high temperature applications. 
Potential application areas include hot-section components such as blades, vanes, combustor liners and 
nozzles, as well as airframe structural components such as wing leading edges. Ceramic matrix 
composites offer several advantages over monolithic ceramics including higher specific stiffness and 
strength, lower density, improved toughness and more gradual failure modes. However, in order to 
practically design components using these materials, robust analysis tools are required that can simulate 
the material response in a computationally efficient manner. These required design and analysis tools are 
still under development. 

There have been some efforts in the past to predict the effective stiffness properties and strengths of 
ceramic matrix composites utilizing micromechanics based approaches, in which the properties and 
response of the individual constituents are utilized to predict the effective properties and response of the 
overall composite. There are two key effective strength values that are used in the analysis and design of 
structures utilizing ceramic matrix composites. The first value, the “first matrix cracking stress” or 
“proportional limit”, is defined as the stress level where the stress-strain curves first displays a significant 
deviation from linearity. This value is particularly important in the design of components constructed 
using ceramic matrix composites as once matrix cracking takes place oxygen can penetrate into the 
composite and degrade the material. The second value, the “ultimate strength”, has the classical definition 
of the highest stress level the material can reach under loading. Murthy, et al. (Ref. 1) utilized a simplified 
micromechanics approach to predict the effective stiffness properties and the stress-strain curves for a 
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laminated ceramic matrix composite. Through the computed stress-strain curves, the first matrix cracking 
stress and ultimate strengths were predicted. A maximum stress failure criterion was applied to each 
constituent, and a progressive failure algorithm was employed to track the evolution of the local failures. 
Researchers such as Lamon (Ref. 2) have utilized a combination of fracture mechanics and Weibull 
statistics to predict the first matrix cracking stress and ultimate strength of ceramic matrix composites 
based on the properties of the constituents. Mital, et al. (Ref. 3) predicted the effective stiffness properties 
of a representative woven CMC utilizing a variety of micromechanics approaches, including the 
Generalized Method of Cells, finite element analyses and several other analytical micromechanics 
approaches. Liu and Arnold (Ref. 4) utilized a multiscale expansion of the Generalized Method of Cells 
along with a bilinear matrix damage model to predict the stress-strain response (including nonlinearity) of 
a woven ceramic matrix composite. 

As implied by the discussion above, the Generalized Method of Cells micromechanics approach 
(Refs. 5 and 6) has the potential to serve as a valuable tool to predict the effective stiffness and strength 
properties of ceramic matrix composites in a computationally efficient manner given the properties of the 
constituents. One key challenge in utilizing micromechanics approaches in the analysis of ceramic matrix 
composites is that oftentimes the in-situ properties of the constituents, particularly the fiber coating 
(which forms the fiber/matrix interface, is a significant percentage of the fiber diameter, and contributes 
significantly to the effective response of the composite) and the matrix are difficult, if not impossible, to 
obtain experimentally due to effects such as voids and residual stresses. Therefore, systematic methods to 
characterize the required constituent properties based on available data for the overall composite need to 
be developed. 

The goal of the current paper is to evaluate the capability of the Generalized Method of Cells and its 
implementation within the NASA Glenn developed analysis code MAC/GMC (Ref. 7) to analyze the 
mechanical response of laminated ceramic matrix composites, including the determination of effective 
stiffness and strength values, along with the generation of effective stress-strain curves. A specific 
laminated ceramic matrix composite, SiC/RBSN, was analyzed due to the fact that significant 
experimental and analytical studies of this material have taken place at NASA Glenn (Refs. 1 and 8), 
leading to a reasonable availability of constituent and composite data. First, the Generalized Method of 
Cells (GMC) micromechanics method will be described, with a particular focus on those features of the 
method that are important in the analysis of ceramic matrix composites. Next, the specific laminated 
ceramic matrix composite that is analyzed in this paper will be described, along with basic setup of the 
composite model. The procedures that were used to correlate the constituent properties required for the 
analysis will be described. Note that in this paper the focus will be on the analysis of laminated ceramic 
matrix composites, the procedures could most likely also be generalized for the case of woven 
composites. Next, the effective stiffness properties, first matrix cracking stress and ultimate strength will 
be computed for the representative ceramic matrix composite. Unidirectional plies loaded both along the 
fiber direction as well as at multiple off-axis angles will be analyzed, as well as representative cross-ply 
and angle-ply laminates. Beside the computation of the effective stiffness and strength properties, a 
discussion of the ability of the GMC micromechanics method to identify the specific local damage 
mechanisms that contribute to the key features of the macroscopic deformation response will be explored. 

Generalized Method of Cells Micromechanics Method 

The Generalized Method of Cells micromechanics approach, which has been implemented within the 
MAC/GMC software package developed at NASA Glenn Research Center (Ref. 7), is a computationally 
efficient approach to compute the effective properties and response of a composite composed of an 
arbitrary number of constituents. In the analysis method, the composite repeating unit cell is divided up 
into an arbitrary number of subcells, each of which can be composed of a different material. This concept 
is shown in Figure 1 (Ref. 7) for the case of double periodicity, where the unit cell is divided into Nβ by 
Nγ subcells. For the case of the standard Generalized Method of Cells, each subcell is assumed to have a 
linear displacement field. A set of displacement and traction (constant stress and strain) continuity 
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conditions are applied between each of the subcells, which, when appropriately combined with the 
constitutive equations for each of the subcells, results in a series of algebraic equations that can be solved 
for the local stresses and strains in each subcell, given the global strains, which makes the method very 
efficient. The resulting equations can then be manipulated to obtain the effective stiffness properties and 
global stresses based on the constituent properties and local stresses and strains. An important point to 
note is that a fundamental limitation of this method (and other efficient micromechanics approaches) is 
that the normal and shear responses of the material are uncoupled, i.e., if only a normal strain is applied 
there can be no local shear stresses in any of the subcells, and vice versa. 

To compute the initiation and progression of damage, at each load step in an incremental loading 
process, the total stresses in each of the subcells are computed. A failure criterion is then utilized 
involving the local stresses and constituent strengths to determine whether or not failure has occurred. In 
the current version of MAC/GMC, the maximum stress, maximum strain and Tsai-Wu failure criteria are 
available for use (Ref. 7). If the failure criterion is satisfied (i.e., local failure has occurred) within a 
subcell, the stiffness of the particular subcell is instantaneously reduced to a negligible value. A revised 
effective stiffness for the composite is then computed, and the analysis proceeds with the revised stiffness 
values. Note that for the analyses described in this paper, a purely elastic response of the composite is 
assumed, so that the current total stress in the composite can be computed by multiplying the current 
effective stiffness matrix by the current value of the total strains. 

Analysis Setup 

For the studies conducted and presented in this paper, a laminated ceramic matrix composite 
composed of silicon carbide SCS-6 fibers (142 m diameter) in a reaction bonded silicon nitride matrix 
(SiC/RBSN) was analyzed. As mentioned earlier, this particular composite was chosen as a model 
material since it has been studied extensively at NASA Glenn Research Center (Refs. 1 and 8) and has 
been well characterized experimentally and analytically. The fiber has an outer carbon layer, which 
results in a very weak fiber/matrix interface, with a thickness equal to three percent of the fiber diameter. 
The nominal fiber volume fraction of the composite is 30 percent. More details of the composite and its 
fabrication can be found in Bhatt and Phillips (Ref. 8). As described in Bhatt and Phillips (Ref. 8), tensile 
stress-strain curves were obtained for laminates with [0]8, [90]8, [10]8, [45]8, [02/902]s and [+452/–
452]s ply layups. The [0]8 and [02/902]s stress-strain curves displayed a bilinear behavior, with an initial 
elastic modulus, significant matrix cracking followed by a secondary modulus until the final composite 
failure. The [90]8, [10]8, and [45]8 laminate stress-strain curves had a linear response until a sudden 
brittle failure. The failure initiated with fiber/matrix debonding and then proceeded immediately to an 
ultimate brittle failure (Ref. 8). The [+452/–452]s stress-strain curve displayed an initial elastic response 
followed by matrix damage and a more gradual softening of the stress-strain curve. Note that, even 
though there is a significant statistical variation in the material response (Ref. 8), and that both the 
constituent properties and effective response of ceramic matrix composites are known in general to be 
highly stochastic (Refs. 2 and 4), only deterministic analyses were performed to capture the average, or 
mean, response of the material. Average values were used for the constituent properties, and the average 
material effective properties and response were examined and computed. Future efforts will involve 
adding stochastic/probabilistic methods to the analysis. 

The MAC/GMC unit cell that was used for the analysis is shown in Figure 2 (Ref. 7). Note that the 
unit cell shown is not to scale for this particular problem, but is just a generic depiction of the subcell 
layout. The interface was modeled as a distinct constituent with a thickness equal to three percent of the 
fiber diameter, similar to the approach utilized by Murthy, et al. (Ref. 1). This relatively simple unit cell 
was analyzed in order to provide initial insights into how the micromechanics method is analyzing the 
physics of the problem. Furthermore, this simplified unit cell is a very efficient model which would be 
good to use in a multiscale analysis. In future efforts, more complex unit cells that might more 
realistically represent the composite microstructure and enable the simulation of more complex 
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deformation and damage mechanisms will be studied. The classical lamination theory module available 
within MAC/GMC was used to analyze fiber layups with other than a [0] orientation. 

Composite laminates with the orientations that were tested by Bhatt and Phillips (Ref. 8) were 
examined. The room temperature longitudinal responses of the laminates were computed. The composites 
were loaded in tension under a strain controlled loading until ultimate failure occurred. As discussed in 
Murthy, et al. (Ref. 1), to accurately model the progressive damage in the composite, an appropriate cool 
down has to be applied from an elevated temperature in order to ensure that residual stresses are 
appropriately accounted for within the material. The process of applying a cool down from an elevated 
temperature to induce residual stresses was also carried out for this study. As shown in Table 1, for the 
SiC/RBSN material examined in this study, the coefficient of thermal expansion of the fiber is 
significantly greater than that of the matrix, leading to significant residual tensile stresses in the matrix 
after the cool down is applied. Bhatt and Phillips (Ref. 8) describes how the composite is formed by 
nitriding at a temperature of 1200 C and is then cooled down to room temperature. However, as 
discussed in Reference 1, the actual stress-free temperature of the composite can be much lower than the 
temperature at which the nitration took place. Murthy, et al. (Ref. 1) speculated that at higher 
temperatures the chemical reactions that formed the composite were still taking place, and therefore the 
cool down would not apply stresses to the composite. Details on how the stress-free temperature was 
determined will be described in the next section. 

A maximum stress criterion was applied for all of the constituents in the analysis. During a particular 
load step, if the tensile stress in any direction in a particular subcell exceeded the specified tensile 
strength, the stiffness of the subcell was set to a negligible value and the analysis continued. Ultimate 
failure was considered to have occurred when the effective stress level in the composite reached a 
negligible value due to a sufficient number of subcells having a negligible stiffness. 

Characterization of Constituent Properties 

Ideally, in a micromechanics analysis, the stiffness properties and ultimate strengths of the individual 
constituents in the composite could be utilized directly within the analysis to compute the effective 
properties and response of the material. However, as discussed in Murthy, et al. (Ref. 1), for laminated 
ceramic matrix composites, such an approach cannot be applied, and the constituent properties need to be 
correlated based on composite level test data due to the fact that the in-situ properties cannot be 
determined experimentally. There are two particular material property values which dictate some level of 
constituent property correlation.  

First, the stress-free temperature from which the cool down was initiated had to be determined. The 
temperature needed to be high enough that the appropriate amount of residual stress was captured. 
However, the temperature needed to be low enough that failure in the constituents did not take place 
before the cool down was completed. To determine the correct cool down temperature, the first matrix 
cracking stress (the point of the deviation from linearity in a stress-strain curve) for [0] unidirectional 
laminates was used as the basis of correlation. The internal damage leading to the first matrix cracking 
stress for a [0] laminate has been found (Ref. 8) to be primarily driven by significant cracking in the 
matrix, with little if any contribution from the interface. As a result, given the bulk strength of the matrix 
(which was determined in Bhatt and Phillips (Ref. 8)), the one variable which affected the value of the 
first matrix cracking stress was assumed to be the amount of tensile residual stress applied to the matrix, 
controlled by the stress free temperature. By adjusting the stress free temperature until the computed first 
matrix cracking stress matched the experimental value, a stress free temperature of 400 C was 
determined. Since the residual stresses in the matrix at room temperature were tensile, varying the amount 
of residual stresses (by adjusting the cool down temperature) would affect the composite first matrix 
cracking stress (with higher residual stresses leading to higher overall matrix stresses leading to a lower 
first matrix cracking stress). Therefore, by correlating to the matrix cracking stress the appropriate level 
of residual stresses were indirectly obtained. This value was purely correlated; future studies need to take 
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place to determine if this value is realistic. The ultimate strength of the [0] laminate can be related to the 
axial failure of the fibers (Ref. 8). Therefore, the axial failure strength of the fibers was correlated using 
the [0] laminate ultimate strength, i.e., the failure strength was adjusted until the computed ultimate 
strength matched the experimental value. The fiber was assumed to be an isotropic material, therefore the 
transverse strength of the fiber was set equal to the axial strength, and the shear strength of the fiber was 
set to be the axial strength of the fiber divided by the square root of three (a von Mises type of assumption 
for an isotropic material (Ref. 9)). The stiffness and thermal expansion properties of the fiber given by 
Murthy, et al. (Ref. 1) were used. As mentioned above, the axial and transverse strengths of the matrix 
(assuming an isotropic material) were set equal to the bulk matrix strength determined by Bhatt and 
Phillips (Ref. 8). The shear strength of the matrix was set equal to the axial strength divided by the square 
root of three (a von Mises type of assumption (Ref. 9)). The matrix stiffness and thermal expansion 
properties given by Murthy, et al. (Ref. 1) were used. All of the stiffness and strength property values for 
the fiber and matrix are given in Table 1. 

The second aspect of the constituent material property characterization process that required 
correlation based on composite data was the stiffness and strength of the fiber/matrix interface. The 
interface plays a key role in the response of ceramic matrix composites. It is generally very compliant and 
weak, leading to a low effective stiffness in the transverse direction for the composite (Refs. 1 and 8). 
Furthermore, when a laminated unidirectional composite is loaded transverse to the fiber direction or in 
an off-axis direction, the initial mode of failure is fiber/matrix debonding, which leads to a sudden 
ultimate failure of the composite (Ref. 8). However, one cannot easily determine directly by experimental 
means the stiffness and strength properties of the interface. Therefore, to determine the stiffness of the 
interface, one needs to correlate the value based on the transverse stiffness of the unidirectional 
composite, since the transverse modulus of the composite is driven by the interfacial stiffness. The 
transverse modulus of the interface was therefore adjusted until the computed value of the axial modulus 
of the [90] laminate matched the experimental value. The axial stiffness of the interface can be set to the 
transverse stiffness, since the interface has a minor contribution to the axial stiffness of the composite and 
assuming the interface is an isotropic material simplifies the analysis. The shear stiffness of the interface 
was computed using the usual assumptions of an isotropic material. To determine the transverse strength 
of the interface, a correlation based on the ultimate transverse strength of the composite was performed. 
The transverse strength of the interface was adjusted until the computed value of the ultimate transverse 
strength of the composite (the axial strength of the [90] laminate) was equal to the experimental value. 
The axial strength of the interface was set equal to the transverse strength by assuming the interface is 
isotropic. The shear strength of the interface was assumed to be equal to the axial strength divided by the 
square root of three (again, a von Mises type of assumption for an isotropic material (Ref. 9)). The 
coefficient of thermal expansion used in Reference 1 was again applied here. The stiffness and strength 
properties for the interface are also given in Table 1. 

Analysis Results 

The effective elastic moduli for the SiC/RBSN [0]8, [90]8, [10]8, [45]8, [02/902]s and [+452/–
452]s laminates described above were computed using MAC/GMC and are listed in Table 2. In addition, 
the effective shear modulus for the [0] laminate was computed and is also shown in the table. The 
experimental values obtained in Reference 8 are also listed, including the statistical scatter. While the 
computed modulus for the [90] laminate is a correlation, the remaining modulus values are predictive. 
Note that the initial correlation for the [90] composite was carried out for an initial analysis of the 
stiffness response using a rudimentary micromechanics model. Since the interface stiffness utilized in the 
initial study still resulted in a reasonable, while not perfect, value for the [90] modulus for the 
MAC/GMC unit cell used for this study, the correlation process was not repeated. In general, the 
comparison between the experimental and computed results was close to if not within the experimental 
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statistical scatter, demonstrating the MAC/GMC software can successfully compute the effective stiffness 
properties of laminated ceramic matrix composites. 

The effective longitudinal stress-strain response for each of the laminates was also computed. The 
results for the [0]8, laminate are shown in Figure 3, the results for the [90]8 laminate are shown in 
Figure 4, the results for the [10]8 laminate are shown in Figure 5, the results for the [45]8 laminate are 
shown in Figure 6, the results for the [02/902]s laminate are shown in Figure 7, and the results for the 
[+452/–452]s laminate are shown in Figure 8. In all cases, the computed results are compared to the 
experimental results obtained in Reference 8. The computed and experimental stress levels at which the 
stress-strain curves for each of the laminates deviate from linearity are shown in Table 3, and the 
computed and experimental stress levels at which ultimate failure occurs are shown in Table 4. Note that 
for the [90]8, [10]8, and [45]8 laminates the experimental stress-strain curves displayed a sudden brittle 
failure which result in the ultimate stress being equal to the stress level at which the stress-strain curve 
deviates from linearity. 

Examining the results for the [0] laminate shown in Figure 4 (with the numerical values shown in 
Tables 3 and 4), the first matrix cracking stress is well correlated. After the matrix cracking took place, 
the computed stress level displayed a sudden jump downward followed by a continual increase in stress 
until final failure occurred. The primary cause for this stress jump is related to the simple subcell damage 
and failure model that was utilized for this study. Here, once the matrix subcells failed, the subcell 
instantaneously lost all of its stiffness and could not support any stress (given the strain controlled loading 
that was applied). The fact that the experimental stress-strain curve was more or less continuous indicates 
that in the actual composite the matrix can still hold stress, at least for some period of time, even after 
damage initiates. Another, secondary cause for the discrepancy between the experimental and analytical 
results is related to the fact that the response of ceramic matrix composites is known to be highly 
stochastic (Refs. 2 and 4). In the analyses conducted for this paper, amplified by the fact that only one 
unit cell was used, spatial statistical variation of the matrix strength was not taken into account. In the 
actual material response, with some areas of the matrix being stronger or weaker than others (possibly due 
to uneven distributions of porosity), the matrix failure is most likely more gradual, leading to a more 
gradual softening of the actual material stress-strain curve. This concept is hinted at in the actual material 
data shown by Bhatt and Phillips (Ref. 8), where at the point of the first matrix cracking stress the stress-
strain curve displayed some “serrations” (not shown in the curve in Fig. 3), indicating that there was local 
matrix failure taking place in multiple locations at different times during the loading, until the entire 
matrix had failed. In the deterministic analyses conducted here, all of the matrix failed at one time. If the 
actual coupon utilized in the experiments was simulated with a spatially statistical variation of the matrix 
strength applied, the serrations observed in the experimental stress-strain curve might be observed. Future 
efforts will include the developed of improved progressive damage and failure models which will allow 
for subcells to continue to hold stress even after the initial point of damage and to allow for a gradual 
unloading of the stresses. After all the matrix fails, the secondary slope of the stress-strain curve, due 
primarily to the response of the fibers, is predicted well and the ultimate failure stress is well correlated. 
The fact that the secondary part of the stress-strain curve, if extended back to the zero strain point, would 
not show a zero stress indicates that the residual stresses are being applied correctly. 

Examining the results for the [90] laminate shown in Figure 4 (with the numerical values shown in 
Tables 3 and 4), the analysis predicted that the interface failed due to normal stresses at the experimental 
ultimate stress, as expected. However, in the experimental tests, once the interfacial failure occurred 
composite failure happened almost immediately (Ref. 8). In the computed results, a downward stress 
jump occurred followed by an increase in stress with a reduced slope until an ultimate failure, well above 
the experimental failure stress, occurred due to matrix failure. Relating to the unit cell diagram shown in 
Figure 2, at the point of interfacial failure the rows of subcells which included the interface were assigned 
a reduced stiffness and could then carry a negligible amount of stress. However, the row of subcells 
consisting of pure matrix still was able to carry stress after the interfacial failure, reflected in the 
continuing stress-strain curve. This result is confirmed by examining the secondary slope of the stress-
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strain curve, which is equal to the matrix modulus scaled by the volume percentage of the matrix only 
row of the unit cell. Furthermore, the ultimate failure of the composite predicted by the analysis was due 
to failure in the matrix, that is in the matrix only row of the unit cell. In the actual composite, once the 
interfacial failure occurred, stress concentrations most likely formed and cracks propagated, leading to a 
sudden brittle failure. These forms of damage initiation and propagation cannot be modeled with the 
simple subcell failure models available within the current version of MAC/GMC. As mentioned earlier, 
future efforts will involve the development and implementation of more sophisticated subcell damage and 
failure models which can more accurately represent the actual behavior in the composite. 

The computed stress-strain curve for the [10] laminate (Fig. 5 and Tables 3 and 4) matches the 
experimental results fairly well. The ultimate stress is slightly overpredicted, while within the statistical 
scatter, but the sudden brittle failure of the laminate observed experimentally is captured. Interfacial shear 
failure was the first failure mode observed in the analytical results, followed almost immediately 
thereafter by matrix shear failure in the matrix only layers. These results indicate that in the actual 
composite failure most likely was also a result of the interface and matrix failing simultaneously. 

For the [45] laminate (Fig. 6 and Tables 3 and 4), at a stress level of approximately 57 MPa the 
analysis results predicted interfacial normal failure. This stress level is somewhat higher than, but within 
the statistical scatter of, the experimental failure stress. However, the stress level then dropped and the 
predicted global failure occurred due to shear failure in the matrix in the matrix only row of the subcell. 
This stress level was closer to the experimental failure stress, but the experimental results indicated a 
sudden brittle failure, which was not what was predicted. The inability of the analysis to predict a sudden 
brittle failure of the composite is most likely, once again, due to the simple subcell damage/failure model 
used. The reason that the predicted interfacial failure stress was somewhat higher than the experimental 
failure stress may be related to the use of a maximum stress failure criterion. If some form of interactive 
stress criterion was applied, the combination of normal and shear stresses in the interface may have been 
sufficiently high to cause failure at lower stress levels. Future efforts may involve examining additional 
failure criteria. 

To examine the ability of MAC/GMC to predict the response of more complex laminate orientations, 
the computed stress-strain response of a [0/90]s laminate was determined and is shown in Figure 7 
(numerical values in Tables 3 and 4). At a stress level of approximately 80 MPa, interfacial failure in the 
90 plies was predicted, but only a relatively small change in the computed stress-strain curve occurred. 
The experimental stress-strain showed no noticeable nonlinearity in the material at this point. 
Furthermore, Bhatt and Phillips (Ref. 8) found that no damage was present at stress levels below 
100 MPa, at which point cracking occurred mostly in the [0] layers, with some cracking occasionally 
seen in the [90] layers. These observations for the most part correlate with what was predicted 
analytically. The significant first matrix cracking stress observed experimentally was nicely predicted 
(well within the statistical scatter), and was computed to be the result of matrix failure in the 0 plies. The 
stress dip after the first matrix cracking stress was predicted once again, and was most likely due to the 
same factors as were discussed in the discussion of the [0] laminate analyses. The ultimate stress was 
overpredicted and the secondary slope after the first matrix cracking stress was overpredicted, to a level 
above the statistical scatter. However, both Murthy, et al. (Ref. 1) and Bhatt and Phillips (Ref. 8) also 
encountered these results in their analyses of the data, and could not come up with a good reason for the 
discrepancy. In both previous studies it was concluded that fiber damage must have occurred in the actual 
composite, leading to the lower secondary slope, which was not captured analytically. 

The stress-strain response of a [+45/–45] laminate was also computed and is shown in Figure 8 
(numerical values in Tables 3 and 4). The analysis results predicted sudden brittle failure, starting with 
interfacial shear failure followed by matrix shear failure, at a stress level somewhat below the first matrix 
cracking stress determined experimentally (and outside of the statistical scatter). Furthermore, the fact 
that the experimental stress-strain curve continued after the first matrix cracking stress occurred was not 
captured by the analysis, indicating that in the actual composite there is some interaction of the stresses 
occurring which is not being captured by the analysis. Furthermore, in the actual composite interfacial 
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failure may not have occurred. As discussed by Bhatt and Phillips (Ref. 8), above the initiation of 
nonlinearity only matrix damage occurred and was localized to relatively small regions of the specimens, 
indicating that the damage observed experimentally was much lower than what was predicted. Future 
efforts will attempt to determine the reason for these discrepancies. 

Conclusions 

The Generalized Method of Cells micromechanics method and the MAC/GMC software code were 
used to determine the effective mechanical response of the SiC/RBSN laminated ceramic matrix composite 
for various laminate orientations. Methods were developed to characterize the constituent properties based 
on a combination of experimental data at the constituent level combined with correlations based on the 
composite level response. The stiffness properties of the composite were predicted relatively well. The first 
matrix cracking stress and ultimate strength of the composite, as well as the longitudinal stress-strain 
response of laminates with various fiber orientations were predicted to various levels of accuracy. The 
deficiencies between the experimental and computed results were primarily due to the use of a relatively 
simple damage/failure model. Secondarily, the use of purely deterministic and not statistical material 
properties, and possibly an inaccurate application of residual stresses may have also been a factor. All of 
these deficiencies can be addressed in future efforts. However, the results shown in this paper indicate that 
the MAC/GMC software has a great deal of potential to provide a needed analysis capability in the design of 
structures composed of ceramic matrix composites. 
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TABLE 1.—CONSTITUENT PROPERTIES 
Constituent Modulus, 

GPa 
Poisson ratio Coefficient of thermal 

expansion 
(m/m/C) 

Axial strength, 
MPa 

Fiber 390 0.17 4.1 2250 
Matrix 110 0.22 2.2 84 
Interface 1.8 0.22 2.0 32 

 
 

TABLE 2.—PREDICTION OF STIFFNESS PROPERTIES 
Fiber orientation Axial modulus- 

experimental 
(GPa) (Ref. 8) 

Axial modulus- 
computed, 

(GPa) 

Shear modulus- 
experimental 

(GPa) (Ref. 8) 

Shear modulus- 
computed, 

(GPa) 
[0] 193±7 190 31±2 28.5 
[90] 69±3 73.3  -------- -------- 
[10] 165.3±4 168.8 -------- -------- 
[45] 81.81±5 77.26 -------- -------- 

[0/90] 124±6 132.1 -------- -------- 
[±45] 78±3 82.56 -------- -------- 

 
 

TABLE 3.—PREDICTION OF FIRST 
MATRIX CRACKING/NONLINEAR STRESS 

Fiber orientation Measured 
stress, 

(MPa) (Ref. 8) 

Computed stress, 
(MPa) 

[0] 227±41 231.81 
[90] 27±3 28.58 
[10] 162±34 176.24 
[45] 43±17 57.48 

[0/90] 127±26 132.17 
[+45/–45] 75±10 60.27 

 
 

TABLE 4.—PREDICTION OF GLOBAL FAILURE STRENGTH 
Fiber orientation Measured 

stress, 
(MPa) (Ref. 8) 

Computed stress, 
(MPa) 

[0] 682±150 676.29 
[90] 27±3 35.47 
[10] 162±34 176.24 
[45] 43±18 40.78 

[0/90] 294±87 338 
[+45/–45] 100±16 60.269 
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