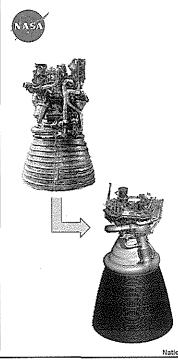
•6/14/2011

Overview of Liquid Propellant Rocket Engine Systems and the J-2X

Lecture for University of Stuttgart June 2011

Richard O. Ballard

J-2X SE&I Subsystem Manager, JP50 NASA Marshall Space Flight Center Huntsville, AL USA


National Aeronautics and Space Administration

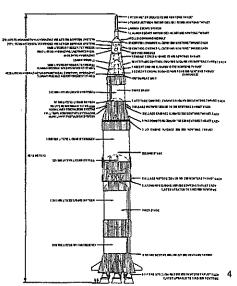
Objective

 Conduct an introductory discussion to rocket engines using liquid propellants to serve as the foundation for a subsequent discussion on the J-2X upper stage engine under development by Pratt & Whitney Rocketdyne (PWR) for NASA.

2

Outline

- Liquid Rocket Engine (LRE) Applications
- Liquid Propellants
- LRE Power Cycle Review
- The J-2X System


Vational Aeronautics and Space Administration

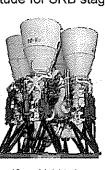
LRE Applications

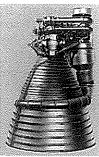
Integrated Launch Vehicle (Saturn-V)

- The Saturn-V launch vehicle used every rocket
 propulsion application
 - Booster (F-1 1st stage)
 - Sustainer (J-2 2nd stage)
 - Upper stage (J-2 3rd stage)
 - OMS (AJ10-137 SPS)
 - RCS (R-4D, SE-8)
 - Planetary Descent (VTR-10)
 - Planetary Ascent (RS-18)
- Propellant combinations used
 - LO₂/RP-1 (kerosene)
 - LO₂/LH₂
 - NTO/Aerozine-50
 - Solid (ullage motors)

National Aeronautics and Space Administration

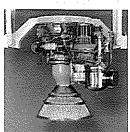
•2

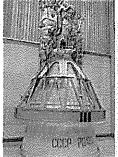



LRE Applications

Rooster

- · Provides initial propulsive thrust to launch vehicle
- Large thrust (T)
- High thrust-weight ratio (T/W)
- High specific impulse (I_{sp})
 - Area ratio (ε) limited by constraint from atmospheric pressure
- T, I_{sp} , and ϵ traded against propellants and power cycle ϵ for SSME optimized at altitude for SRB staging
- Examples
 - F-1
 - RD-170
 - RD-180
 - RS-68
 - SSME



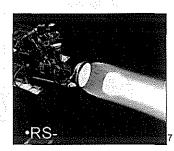

LRE Applications

Sustainer / 2nd Stage

- · Provide supplemental impulse for achieving orbit.
- High thrust, but less required than a booster engine
- Higher ε than booster, less than orbital LRE
- Examples
 - J-2
 - LR91 series
 - RD-120
 - NK-39

National Aeronautics and Space Administratio

•3



LRE Applications

Upper Stage Engine (USE)

- Typically applied for final orbital insertion or modification of orbital parameters (similar to OME)
- Low to medium thrust (10 300 Klbf)
 - Dependent on upper stage / mission requirements
- Propellants typically hypergolic (multi-start, thrust-on-demand) or LO₂/LH₂ (fewer starts, higher energy, higher orbits, larger payloads)
 - Russians prefer LO₂/kerosene or NTO/UDMH for their upper stages
- Examples
 - RL10 family
 - Agena

National Aeronautics and Space Administration

J-2X Application

- The J-2X continues to be used in the same applications that the heritage J-2 was developed to support for the Saturn-V vehicle.
 - Sustainer / Upper Stage for Ares-1
 - Upper Stage (EDS) for Ares-V

8

Liquid Propellants

9

Terms to Know

Liquid Propellants

- Fuel
- Oxidizer
- Monopropellant
- Catalyst
- Bipropellant
- Storable
- Space Storable
- Cryogenic

10

Some Liquid Propellants

STORABLE

- HAN Hydroxylammonium Nitrate
- HTP High Test Peroxide (H₂O₂) *
- IRFNA Inhibited Red Fuming Nitric Acid
- MMH Monomethyl Hydrazine
- N₂H₄ Hydrazine *
- N₂O₄ Nitrogen Tetroxide (NTO)
- RJ-1 Ramjet Propellant 1
- RP-1 Rocket Propellant 1
- TEA Triethyl Aluminum
- TEB Triethyl Boron
- UDMH Unsymmetrical Dimethylhydrazine *

SPACE STORABLE B₂H₆ - Diborane

- B₅H₉ Pentaborane
- BrF₅ Bromine Pentafluoride
- C₂H₆ Ethane
- NH₃ Ammonia
- N₂F₄ Tetrafluorohydrazine

CRYOGENIC

- CH₄ Methane
- FLOX Mixture of LF₂ and LO₂
- LF₂ Liquid Fluorine
- LH₂ Liquid Hydrogen
- LO₂ Liquid Oxygen
- OF₂ Oxygen Difluoride

* Also used as a monopropellant

11

National Aeronautics and Space Administration

Propellants

- Propellants are the materials that are combusted by the engine to produce thrust.
- Bipropellant liquid rocket systems consist of a fuel and an oxidizer. They are the most common due to their high performance, but are more complex.
- Several propellants can be used singularly as monopropellants (i.e. HTP, N₂H₄, UDMH), which release energy when they decompose either when heated or catalyzed.
- The mission / requirements of the vehicle will directly effect the selection of propellants and configuration (power cycle) of the propulsion system(s).
- The primary propellant types to be discussed are:
 - Storable
 - Space Storable
 - Cryogenic

12

J-2X

Propellant Types - Storable

- Storable propellants are liquid at sea level conditions of temperature and pressure and can be stored indefinitely in sealed tanks.
- One drawback of storable propellants is that, with the exception of kerosene-based fuels (RP-1, RJ-1) they are invariably toxic, reactive, corrosive, and difficult to handle.
- Most storable propellant combinations are hypergolic, meaning that they ignite spontaneously when in contact with each other.
 - Hypergolic propellant combinations are primarily used for small thruster applications.
 - Elimination of the ignition system reduces engine complexity and enables thruston-demand capability (quick start with minimal prep) and pulse mode (multiple rapid starts).

13

National Aeronautics and Space Administration

Propellant Types - Storable

Monopropellants

- Monopropellants are storable liquid propellants that can be induced to decompose to a gaseous state in the presence of a catalyst (or contamination) and release heat that can be converted to thrust.
 - Catalysts Shell 405, silver/cobalt plated wire gauze, sodium or potassium permanganate, etc.
 - Some monopropellants can be used in bipropellant systems as either a fuel (N₂H₄, UDMH) or an oxidizer (HTP), which can enable more operational flexibility
- The performance (i.e., I_{sp}) is lower than that of bipropellant systems, but the systems are more simple (higher reliability).
- One drawback of monopropellant systems is that the reactive nature of the propellant requires high standards of cleanliness to prevent uncontrolled decomposition from contaminants.
- Examples
 - Hydrogen Peroxide (H₂O₂, HTP) up to 90-98% concentration
 - Hydrazine (N₂H₄) most commonly used, mostly for satellites and space probes
 - UDMH (used in GG in RD-119)
 - HAN (experimental)

14

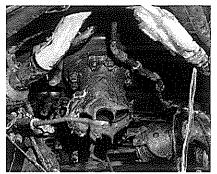
Propellant Types - Space Storable

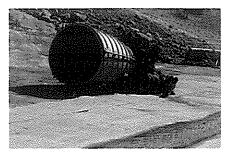
- Space storable propellants are liquid in the temperatures of space and generally have a net boiling point greater than 230°R.
- They can be stored for longer periods of time than cryogenic propellants when in space and depending on the storage tank design, thermal environment, and tank pressure.
- They are generally more energetic than most storable propellant combinations, but are rarely used due to their extreme toxicity, reactivity and handling difficulties.
- Actual application of space storable propellants in an operational propulsion system is rare due to the toxicity hazards.
 - Beginning in the late 1950's, the USAF studied the use of space storable propellants in upper stages. The findings indicated that the operational hazards did not justify the performance gains.
 - The XLR99-RM-1 rocket engine for the X-15 experimental hypersonic aircraft used a LO₂/NH₃ propellant combination.

15

National Aeronautics and Space Administration

Propellant Types - Cryogenic


- Cryogenic propellants are liquefied gases at extremely low temperatures (approx. 30°R to 230°R) and are typically the most energetic types of propellants.
- However, they are more difficult to store for any length of time (vaporization losses) and require provisions for venting the propellant tank.
- LO₂ and LH₂ are the most commonly used liquid cryogenic propellants, and will be used in the J-2X.
 - LH
 - · Advantages High performance, excellent coolant
 - Disadvantage Low density (~4.5 lb/ft³ vs. 72 lb/ft³ for LO₂, resulting in a disproportionate size in propellant tanks)
 - LO₂
 - Advantages Non-toxic, high reactivity to fuel (high performance)
 - Disadvantage Not selective about what it uses as fuel. It prefers hydrogen or hydrocarbons, but will consume almost anything with an oxidation potential. For example...


16

A Bad Day...

On 27 Mar 1985, SSME 2308 suffered a catastrophic failure when a weld failed on a critical fuel line, causing the engine to operate at a LO_2 -rich state. Deprived of LH_2 fuel, the LO_2 effectively used the metal (Inconel) of the engine itself as fuel (aka "hardware-rich").

The damage was such that the engine melted off the test stand and the lower half fell down in the flame bucket.

LO₂ is a great oxidizer, but demands respect to what it can do.

17

National Aeronautics and Space Administration

Mixture Ratio

Rocket propellants are mixed in relative quantities to produce the highest possible system I_{sp}. This ratio of propellant consumption is called *mixture ratio*, MR.

$$MR = \frac{\dot{w}_o}{\dot{w}_f}$$

In most cases, MR is selected for maximum energy release per weight of propellant. This can be achieved by mixing the propellants in a stoichiometric reaction in the combustion chamber, where all the propellants are thoroughly combusted. However, a stoichiometric MR does not necessarily mean optimized $I_{\rm sp}$.

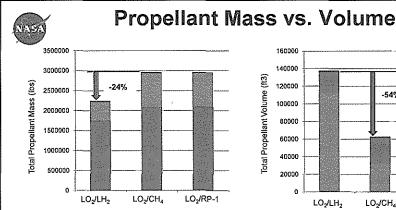
The SSME uses a MR of ~6 (stoichiometric for LO½ LH₂ combustion is 8) to reduce the internal and plume temperatures, but also to allow a small amount of H₂ to remain in the exhaust. The lighter molecule is able to accelerate to a higher velocity and generate higher kinetic energy (KE = ½ mV²) than a H₂O steam exhaust.

18

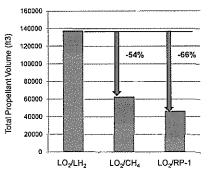
Density vs. I_{sp}

- Liquid bipropellant combinations offer a wide range of performance capabilities.
- Each combination has multiple factors that should be weighed when selecting one for a
 - Performance (I_{sp})
 - Density (higher is better)
 - Storability (venting?)
 - Ground Ops (hazards?)
- One of the more critical trades is that of performance versus density.
- LO₂/LH₂ offers the highest I_{sp} performance, but at the cost of poor density (thus increasing
- Trading $I_{\rm sp}$ versus density is sometimes referred to as comparing "bulk impulse" or "density impulse".

As an example, the densities and Iso performance of the following propellant combinations will be compared


ompareu.	Density (g/ml)	Density (lb/ft³)
Hydrogen	0.07	4.4
Methane	0.42	26.4
RP-1	0.81	50.6
Oxygen	1.14	71.2

Pc = 300 psia expanded to 14.7 psia	MR (O/F)	l _{sp} (sec)	
LO ₂ /LH ₂	3.5	3470	
LO2/CH4	2.33	263a	
LO ₂ /RP-1	2.4	263∞	


(1) SC (2) FC

19

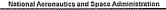
National Aeronautics and Space Administration

- For an impulse requirement similar to the 3 SSME's used on the Shuttle (1.5M lbf for 520 seconds), the required propellant masses are calculated.
- LO₂/LH₂ requires 24% less propellant mass than the others.
- However...

- When the propellant mass is compared against the tank volume, there is a significant disparity from the low hydrogen density that can adversely impact the size of the vehicle.
- Lesson: I_{sp} isn't everything especially with boost stages.

20

LRE Power Cycle Review


- · Pressure-Fed
- GG, Monopropellant
- · GG, Bipropellant, Single TPA

J-2X

- GG, Bipropellant, Dual TPA, Series Turbines
- Tap-Off
- Fuel-Rich Staged Combustion, Dual Preburners
- · Fuel-Rich Staged Combustion, Single Preburner
- · Full-Flow Staged Combustion
- · Oxidizer-Rich Staged Combustion
- Expander

21

LRE Cycle Uses & Trades

	Staged Combustion, Single Chamber Tripropellant	Staged Combustion, Dual Preburner	Staged Combustion, Single Preburner	Gas Generator	Expander	Tap-off
Advallages	Highest integrated performance available (closed cycle). Maximizes propellant bulk density and lsp.	High performance (closed cycle). Very attractive for reusable applications. Easter MR and thrust level throttling characteristics.	High performance (closed cycle). Simplier than multi preburner options to left. Very attractive for reusable applications	Simple cycle, low production costs, easiler to develop	High roliability, benign failure modes (containted), simple cycle	Simple cycle with fewer parts, lower production costs, casier maintainability
Descriptinges	Most difficult to develop. Will be very expensive. Production cost makes reusable applications mandatory. Vehicle must be very performance driven such as SST 0.	More difficult to develop than single PB. Tends to be very expensive. Failure medes tend to be more involved. Producton coal makes reusable applications almost mandatory.	More difficult to develop Tends to be more expensive. Faiture modes tend to be more involved.	Lower performance because of open cycle. Performance level makes this unattactive for most reusable applications.	Limited to LOX/LH2 propollants only. Limited performance because of heal transfer limitations	Hot gas duct that taps off from the MCC and mixes dilluent fuel to regulate gas temperature. Lower performance (Open cycle)
	Reusable SSTO.	Booster or upperstage, reusable rockets	Booster or upperstage, reusable or expendible rockets (May depend on propellant choices)	Booster or upper stage, expendible rockets	Boosler or upperstage, reusable or expendible rockets	Booster or upper stage, expendible rockets

- The power "cycle" refers to how energy is generated to power the turbopump(s)
- A number of thermodynamic cycle options exist
- Which one used depends on application or mission requirements
- One cycle is not right for every application

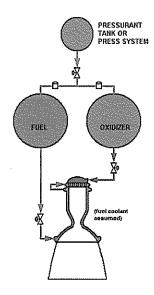
22

Terms & Acronyms

- FTP (Fuel Turbopump)
- · GG (Gas Generator)
- · GGFV (Gas Generator Fuel Valve)
- · GGOV (Gas Generator Oxidizer Valve)
- HEX (Heat Exchanger)
- MCC (Main Combustion Chamber)
- MFV (Main Fuel Valve)
- MOV (Main Oxidizer Valve)
- Nozzle
- NE (Nozzle Extension)
- OTBV (Oxidizer Turbopump Bypass Valve)
- OTP (Oxidizer Turbopump)
- TCA (Thrust Chamber Assembly)
- TPA (Turbopump Assembly)

23

Rocket Engine Cycles


National Aeronautics and Space Administration

- A rocket engine "cycle" refers to the power cycle that the engine system uses to power the turbopumps to pressurize the propellants.
- The selection of power cycle can be driven by many factors:
 - · Propellants
 - · Performance (thrust, specific impulse)
 - · Safety / Reliability
 - Reusability
 - · Technical Risk
 - · Cost / Schedule
 - Etc.

24

Pressure-Fed "Cycle"

- Excellent reliability
- Robust start/shutdown*
 - o "Thrust on demand"
- · Good Storability*
- · Good throttleability
- Acceptable performance
 - Trade thrust vs weight
- Examples
 - Aerojet AJ10-190 (STS)
 - Aerojet AJ10-118 (Delta II)
 - Most RCS/ACS systems

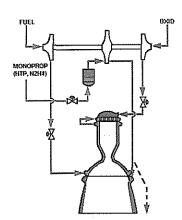
* Assumes use of hypergolic propellants

25

National Aeronautics and Space Administration

Gas Generator (GG) Cycle

- One of the first power cycles developed for rocket propulsion
- Uses either dedicated or common propellants in gas generator (GG) to produce turbine drive gas
- Turbine exhaust dumped, resulting in degraded I_{sp} performance
- · Good reliability
- · Robust start/shutdown
- Lower operating pressures mitigate the need for boost pumps
- Can utilize almost any viable bipropellant combination

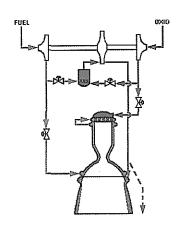

- GG Cycle Variations
- Monopropellant GG
- Bipropellant GG
 - Common-shaft main TPA
 - Separate fuel and oxidizer TPAs
 - Series turbines
 - Parallel turbines

26

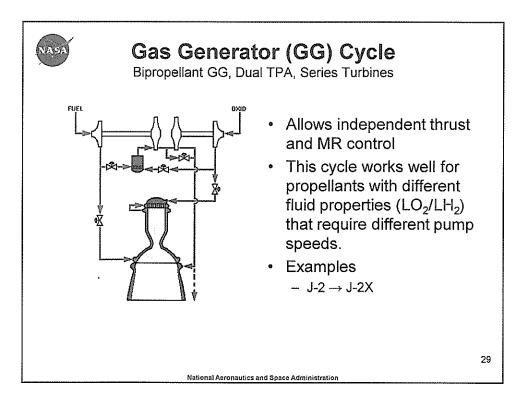
Gas Generator (GG) Cycle

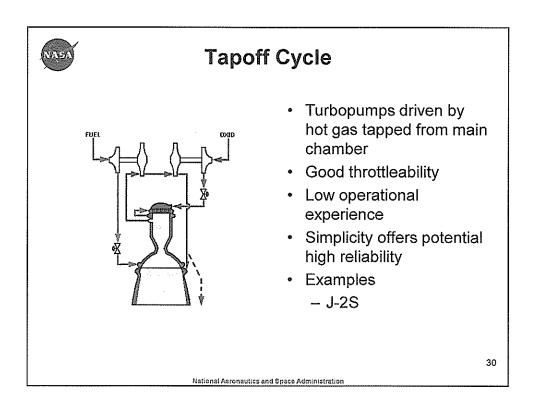
Monopropellant GG

- · Early/original power cycle
- · Acceptable performance
 - Independent monopropellant control provides more reliable system, but at the cost of increased weight of third propellant
- Examples
 - A-4 (V-2)
 - A-6 (Navaho-i)
 - A-7 (Redstone)
 - RD-107/108 (R-7 family)
 - XLR99-RM-1 (X-15)
 - AR2-3A (F-104)


27

National Aeronautics and Space Administration


Gas Generator (GG) Cycle


Bipropellant, Single TPA

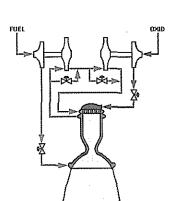
- Improved performance over monopropellant GG
 - Bootstrap start
 - T/W improved by elimination of 3rd propellant
- This cycle works well for propellants with similar fluid properties (i.e., density, viscosity = LO₂/RP-1) to allow a common shaft RPM.
- Examples
 - F-1
 - Atlas MA-2, -3, -5, -5A
 - Navaho-II, -III
 - MC-1 / Fastrac
 - S-3D → H-1 → RS-27

28

Expander Cycle

Single TPA

- Good throttleability
- Thrust limited by ability to utilize heated fuel
 - Requires high heat transfer efficiency and/or multi-stage turbine to extract work
 - T/W impact
- · High reliability
- Benign failure modes
- Examples
 - RL10 family


31

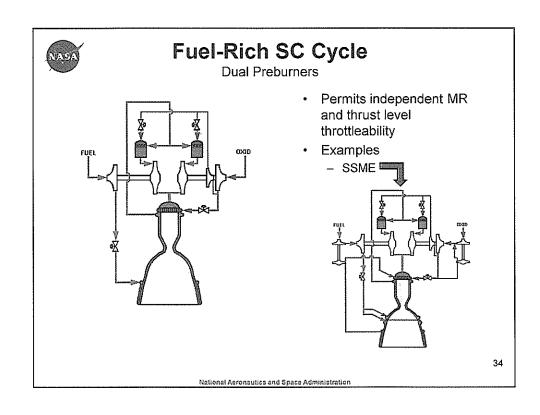
National Aeronautics and Space Administration

Expander Cycle

Dual TPA

- Good throttleability
- Turbine bypasses permit independent thrust and MR control
- Thrust limited by ability to utilize heated fuel
- High reliability
- Benign failure modes
- Examples
 - RL60
 - MB-xx

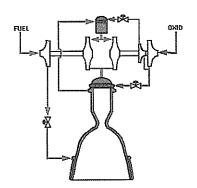
32


Staged Combustion (SC) Cycle

- Utilizes all propellants to generate thrust
- High performance (thrust, I_{sp}, T/W)
- High I_{sp} requires high operating pressures
- Good reliability, but high operating conditions demand vigilance
- Usually requires the use of boost pumps to increase propellant pressure entering main pumps to prevent cavitation

SC Cycle Variations

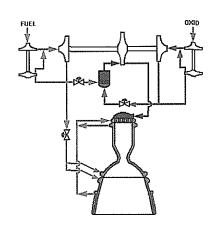
- Fuel-Rich (FRSC)
 - Often used with LO₂/LH₂ propellants
- Oxidizer-Rich (ORSC)
 - Often used with LO₂/Kerosene propellants
 - NTO/UDMH also used
- · Full-Flow (FFSC)
 - One experimental system developed (IPD) using LO₂/LH₂ propellants


33

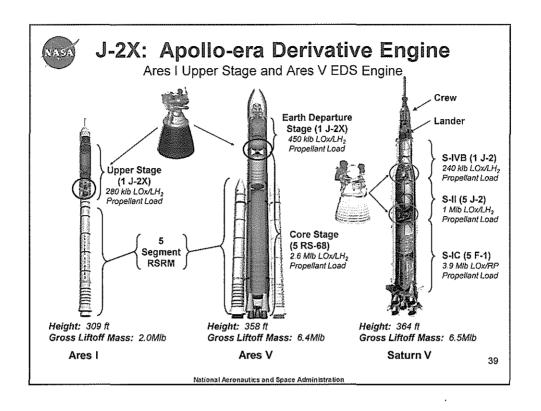
Fuel-Rich SC Cycle

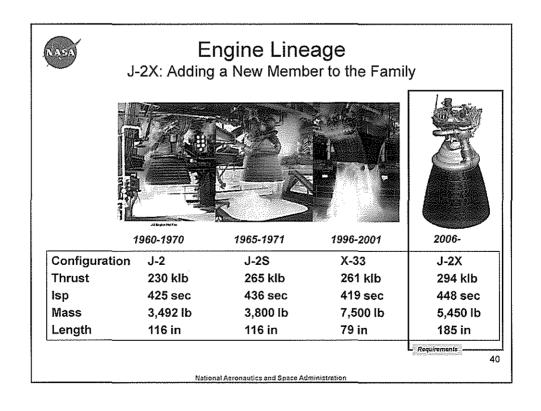
Single Preburner, Dual TPAs

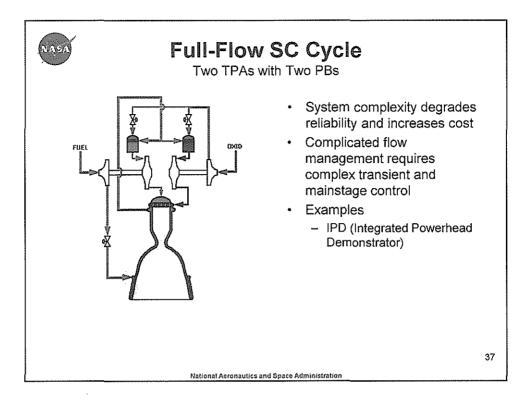
- Permits some MR and thrust level throttleability
- Better system simplicity offers better reliability than DPFRSC system
- Examples
 - RD-0120
 - LE-7
 - RS-30 ASE (DDT&E incomplete)
 - COBRA (DDT&E incomplete)


35

National Aeronautics and Space Administration


Oxidizer-Rich SC Cycle


Single TPA with Boost Pumps



- · Good Reliability
- Requires use of materials resistant to ignition in an oxidizer-rich environment
 - Requires exotic coatings
- · Used exclusively in Russia
- Examples
 - RD-253
 - RD-170 Family
 - RD-170, -171, -172
 - RD-180
 - RD-191
 - RS-84 (DDT&E incomplete)

36

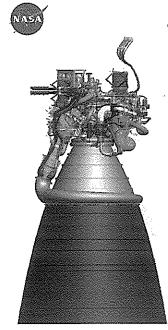
The J-2X System

38

Design Overview

- Mission: Common upper stage engine for Ares I and Ares V
- Development Philosophy: Evolved hardware and mature technology where possible, aggressive schedule, early risk reduction testing, requirementsdriven
- Key Features:
 - LOX/LH₂ GG cycle
 - Series turbines with throttle capability through Lox turbine bypass
 - Open loop, pneumatically actuated valves
 - On-board engine controller and health monitoring
 - Tube-wall regen nozzie/large passively-cooled nozzle extension, turbine exhaust gas boost/cooling
 - Helium spin start with on-orbit restart capability

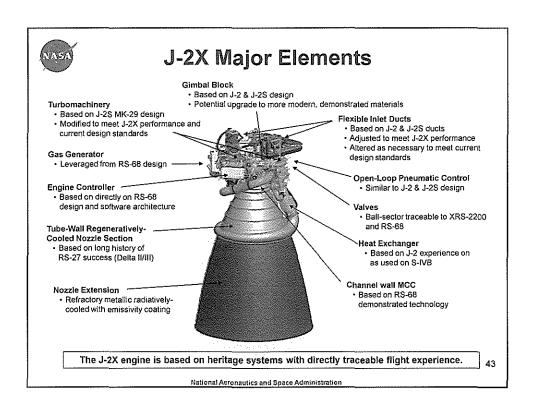
- Vacuum Thrust: 294,000 lbf (1307 kN)
- · Specific impulse: 448 sec (min)
- Mixture ratio: 5.5
- Run duration: 500 seconds
- Weight: 5,535 (2,516 kg)
- Size: 120" día x 185" long
- · Life: 8 starts / 2600 sec
- Ares V specific: on-orbit restart, 82% thrust (4.5 mixture ratio)

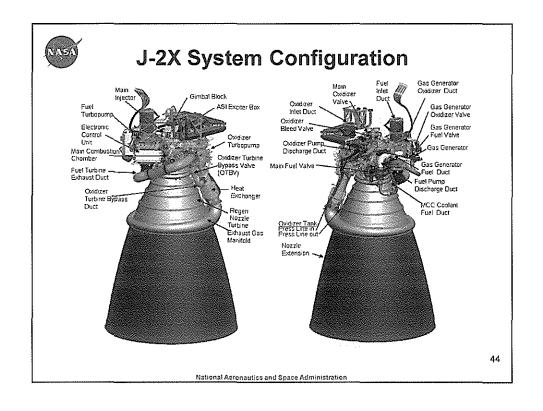

Major Hardware Flow

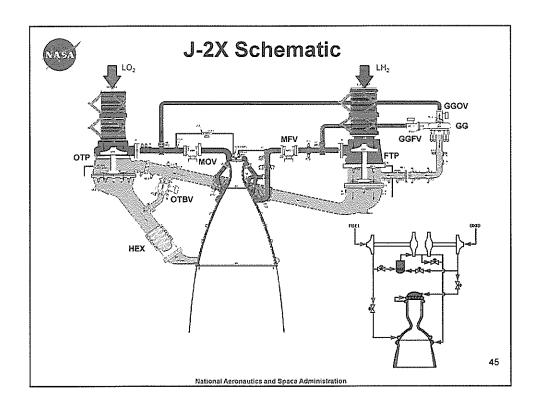
- · Production Pratt & Whitney Rocketdyne, Canoga Park, ĆA
- · Engine assembly SSC, MS, Bldg 9101
- Test SSC, MS, Stands A1, A2, A3
- Stage integration MAF, LA 41

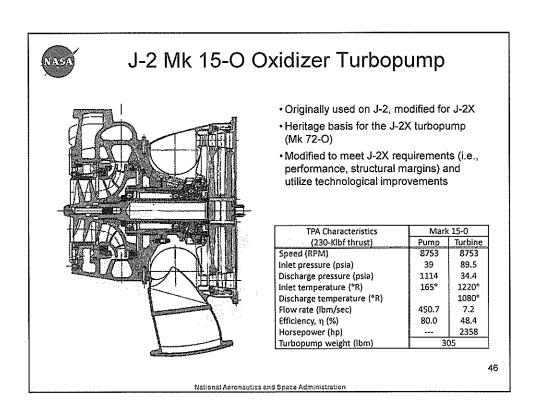
42

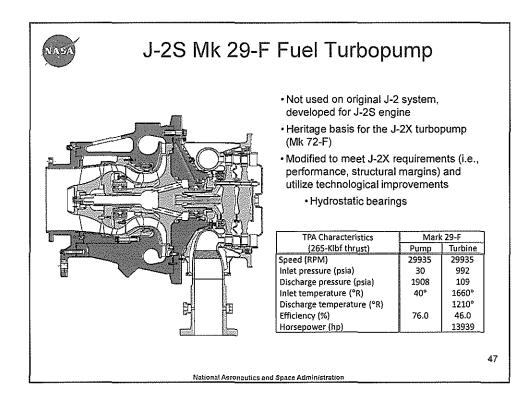
·Metric

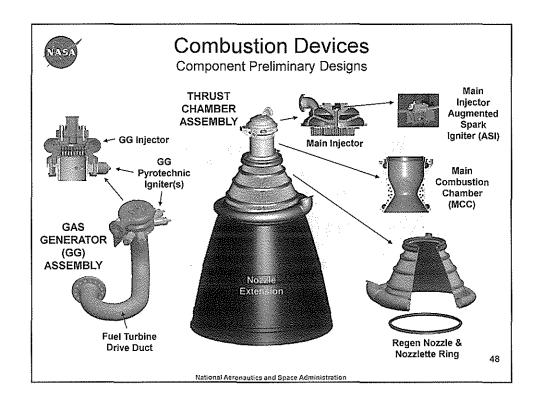

National Aeronautics and Space Administration

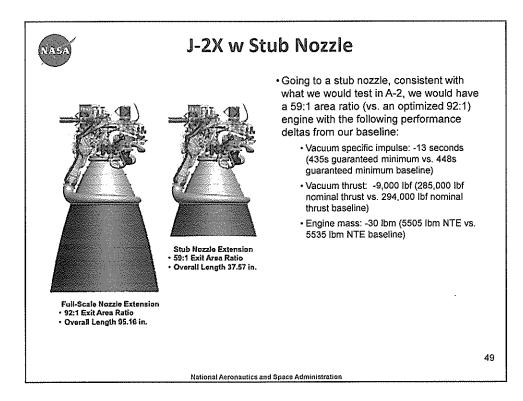


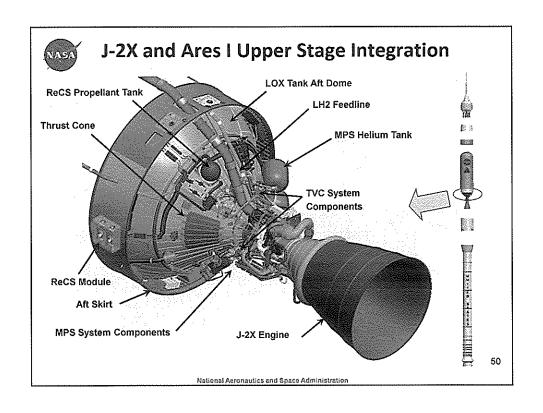

J-2X Basic Statistics

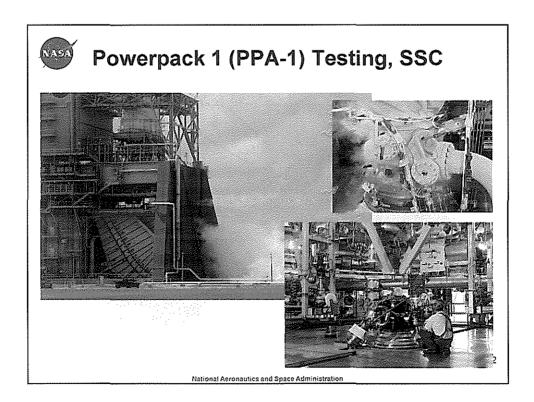

	-Lugusu	·meure
• Cycle	GG	GG
Thrust, vac	294 klbs	1308 kN
· Isp, vac (min)	448 s	448 s
• Pc	1,337 psia	9.218 MPa
• MR	5.5	5.5
AR (geometric)	94.4	94.4
Weight (max)	5,450 lbs	2472 kg
Secondary Mode MR	4.5	4.5
Secondary Mode PL	82%	82%
Restart	1	1
Service Life Starts	8	8
Service Life Seconds	2,600 s	2,600 s
· Length (max)	185 in	4.699 m
• Exit Dia. (max)	120 in	3.048 m

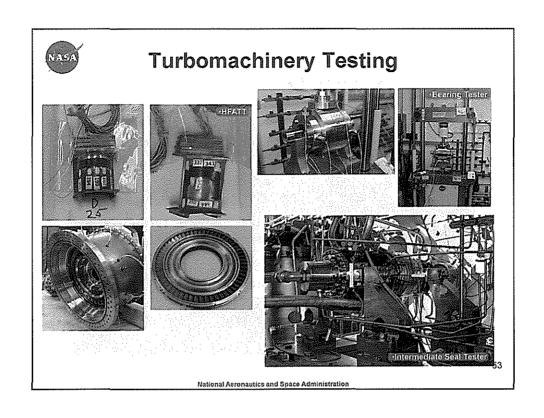

•Fnalish

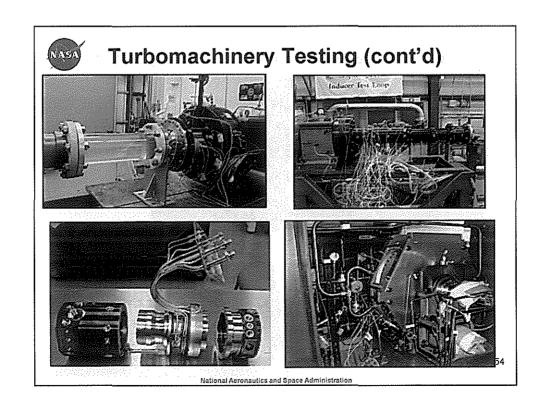


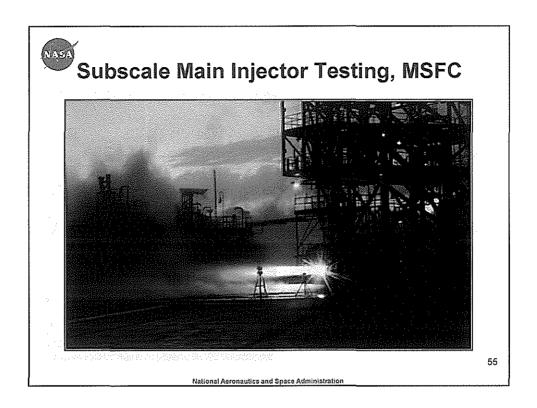


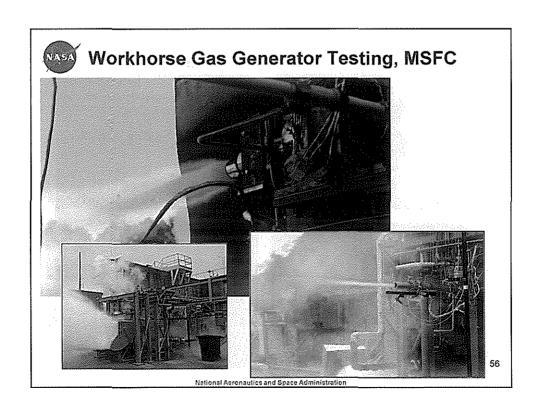


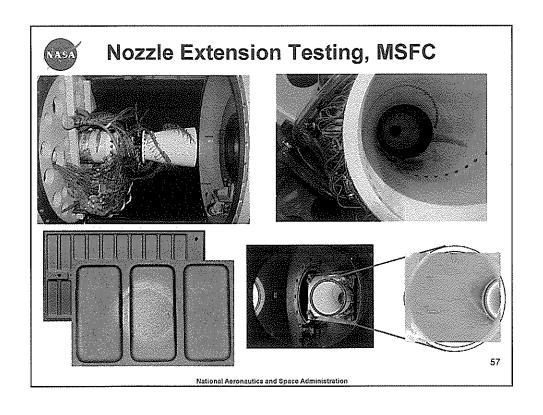


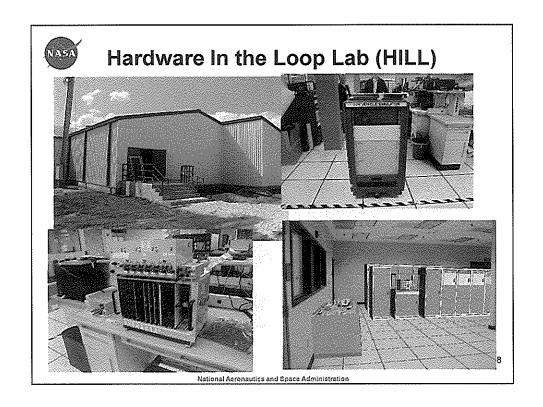




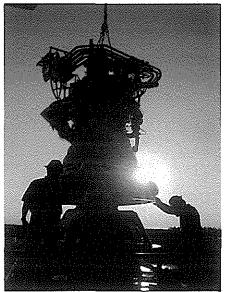

J-2X Component & Subscale Testing


5

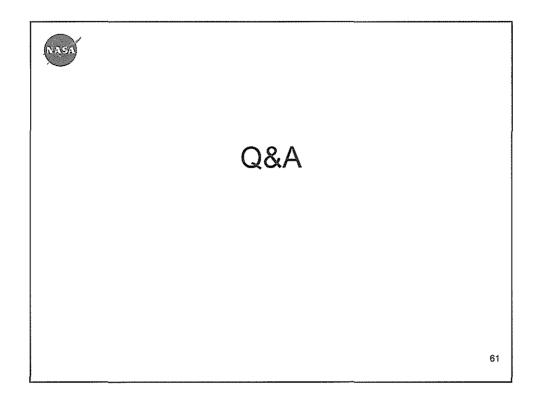




Current Status


59

National Aeronautics and Space Administration



J-2X E10001 Testing, SSC

- •Recently, the first J-2X development engine (E10001) completed assembly and installation into the A-2 test facility at NASA-SSC.
- Full system testing has begun and is expected to continue to support system certification for use on the NASA Space Launch System (SLS).

60

- -metr		
		.
		1
		1
		•