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The added value of satellite-based surface soil moisture retrievals for agricultural 

drought monitoring is assessed by calculating the lagged rank correlation between 

remotely-sensed vegetation indices (VI) and soil moisture estimates obtained both before 

and after the assimilation of surface soil moisture retrievals derived from the Advanced 

Microwave Scanning Radiometer-EOS (AMSR-E) into a soil water balance model. 

Higher soil moisture/VI lag correlations imply an enhanced ability to predict future 

vegetation conditions using estimates of current soil moisture. Results demonstrate that 

the assimilation of AMSR-E surface soil moisture retrievals substantially improve the 

performance of a global drought monitoring system - particularly in sparsely-

instrumented areas of the world where high-quality rainfall observations are unavailable.  

1. Introduction 

Variations in soil moisture availability can provide a leading signal for subsequent 

anomalies in vegetative health and productivity [Adegoke and Carleton, 2002; Ji and 

Peters, 2003; Musyim, 2011]. As a result, soil moisture information is a key input into 

many large-scale drought monitoring systems [Mo et al., 2010]. For example, the United 

States Department of Agriculture (USDA) Foreign Agricultural Service (FAS) attempts 

to anticipate the impact of drought on regional agricultural productivity by monitoring 

soil moisture conditions using a quasi-global soil water balance model [Bolten et al., 
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2009]. However, the accuracy of such models is dependent on the quality of their 

required meteorological inputs and is thus questionable over data-poor regions of the 

globe.  

With the onset of data availability from the ESA Soil Moisture and Ocean Salinity 

(SMOS) and NASA Soil Moisture Active and Passive (SMAP) L-band missions [Kerr 

and Levine, 2008; Entekhabi et al., 2010], the next five years should see a significant 

expansion in our ability to retrieve surface soil moisture using satellite remote sensing. 

However, the added value of soil moisture remote sensing, above and beyond current 

water balance modelling approaches, has not yet been objectively quantified. Here, we 

evaluate the utility contributed by existing remotely-sensed surface soil moisture products 

for quasi-global agricultural drought monitoring. Following Peled et al. [2010] and Crow 

et al. [2012], our approach is based on sampling the lagged correlation between root-zone 

soil moisture anomalies obtained from a water balance model and subsequent anomalies 

in vegetation conditions (as captured by satellite-based visible/near-infrared vegetation 

indices). Since this approach measures the ability of current soil moisture estimates to 

anticipate future variations in vegetation health, it provides a direct valuation of soil 

moisture products in an agricultural drought context. In addition, by comparing 

correlations obtained before and after the assimilation of remotely-sensed surface soil 

moisture retrievals into the water balance model, we can quantify the added utility 

associated with assimilating remote sensing observations. 

2. Methodology 

2.1. 2-Layer Palmer Model  
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Model estimates of surface and root-zone soil moisture are derived from the 2-

Layer Palmer water balance model currently used operationally by USDA FAS. The 

model is based on a bucket-type modeling approach as described in Palmer [1965]. The 

available water capacity (AWC) of the top model layer is assumed to be 2.54 cm at field 

capacity, and the AWC of the second layer (i.e., root-zone layer) is calculated using soil 

texture, depth to bedrock, and soil type derived from the Food and Agriculture 

Organization (FAO) Digital Soil Map of the World available from the FAO at 

http://www.fao.org/ag/agl/lwdms.stm#cd1. In this fashion, water holding capacity for both 

layers (incorporating near-surface soil moisture and groundwater) range between 2.54 cm 

to 30 cm according to soil texture and soil depth. Vertical coupling between the two 

model layers is calculated using a simple linear diffusion equation based on the soil 

moisture content of each layer and an assigned diffusion coefficient [Bolten et al., 2010]. 

A confining layer (i.e., bedrock) is assumed for the bottom of the second model layer and 

is treated as a "no flow" boundary. Evapotranspiration is calculated from the modified 

FAO Penman-Monteith [Allen et al., 1998] method and observations of daily min/max 

temperature. Further modeling details are available in Bolten et al. [2010]. Required daily 

rainfall accumulation and air temperature datasets are obtained from the U.S. Air Force 

Weather Agency (AFWA) Agriculture Meteorological (AGRMET) system (see 

http://www.mmm.ucar.edu/mm5/documents/DATA_FORMAT_HANDBOOK.pdf) which 

derives a daily rainfall accumulation product based on: microwave sensors on various 

polar-orbiting satellites, infrared sensors on geostationary satellites, a model-based cloud 

analysis, and World Meteorological Organization (WMO) surface gauge observations.  

http://gcmd.gsfc.nasa.gov/KeywordSearch/RedirectAction.do?target=S6cqF6vMwKy8MNb%2BBHbjS5cMWiS0yG3H74eXZSNTLiXUGzKXew3o6Q%3D%3D
http://www.mmm.ucar.edu/mm5/documents/DATA_FORMAT_%20HANDBOOK.pdf
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Despite its continued operational use, the 2-Layer Palmer model is obviously less 

complex than many more modern land surface models. However, using the same NDVI-

based evaluation system applied here, Crow et al. [2013] found that modern land surface 

models generally offered only marginal increases in agricultural drought monitoring skill 

relative to simplistic soil water accounting models - suggesting that the 2-Layer Palmer 

model remains a reasonable baseline for evaluating the added impact of assimilating new 

remote sensing products.   

All modeling is performed on a quasi-global (60° S to 60° N) domain and 0.25° 

resolution mesh using a daily time step between June 1, 2002 to December 31, 2010. Soil 

moisture conditions are initialized using climatologically-averaged values (2002 to 2010) 

for June 1, 2002 and spun-up until the start of the analysis on July 1, 2002. Soil moisture 

predictions obtained from the model alone will be referred to as open loop (OL) results.  

2.2. Remotely-Sensed Soil Moisture 

Surface soil moisture retrievals are obtained from gridded 0.25° Land Parameter 

Retrieval Model (LPRM) products provided by VU University Amsterdam based on 

Advanced Microwave Scanning Radiometer-EOS (AMSR-E) brightness temperature 

products [Njoku et al, 2003] between June 2002 and December 2010 [de Jeu et al., 2003; 

Owe et al., 2008]. The effective measurement depth of LPRM surface soil moisture 

retrievals is estimated to be 1-2 cm. For the purposes of this analysis, we assume these 

retrievals reflect the equivalent soil moisture estimated in the surface layer of the 2-Layer 

Palmer model. Only descending (1:30 AM local time) overpasses are used since they 

appear to be more useful for soil moisture retrieval than ascending overpasses [de Jeu, 

2003]. LPRM gridded products are screened to mask areas with frozen soil, snow cover, 
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and/or excessive vegetation using a surface temperature algorithm based on 37 GHz 

AMSR-E brightness temperature observations and retrieved canopy optical depth [Owe et 

al., 2008]. 

2.3. The Ensemble Kalman Filter  

 Prior to assimilation, systematic biases between modeled and observed soil 

moisture datasets must be removed [Kumar et al., 2012]. To eliminate these differences, 

raw LPRM surface soil moisture retreivals (θLPRM) are rescaled such that their inter-

annual (2002 to 2010) mean (µ) and standard deviation (σ) obtained for a 31-day window 

centered on a given day-of-year (DOY) matches the mean and standard deviation 

sampled from the top-layer of an open-loop realization (OL1) of the model over the same 

time period: 

𝜃∗LPRM,𝑖 = �𝜃LPRM,𝑖 − 𝜇LPRM
DOY(𝑖)� 𝜎OL1

DOY(𝑖)

𝜎LPRM
DOY(𝑖) + 𝜇OL1

DOY(𝑖).   (1)   

Note that all soil moisture variables in (1) and below are given in volumetric units [m3 m-

3]. 

The assimilation of θ*LPRM from (1) into the USDA FAS 2-Layer Palmer model is 

based on an Ensemble Kalman Filter (EnKF). A 30-member ensemble of two-element 

soil moisture state vectors θj containing model surface and root-zone predictions is 

created via the direct perturbation of model soil-water balance calculations. These 

additive, mean-zero Gaussian perturbations are applied during each daily time step of the 

model and have covariance:  

 𝐐 = �
𝑄 𝛼𝑄
𝛼𝑄 𝛼2𝑄� [m6 m-6],     (2) 
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where α is the ratio of surface layer AWC to root-zone AWC. Upon acquisition of θ*LPRM 

at time i via the rescaling step in (1), each ensemble replicate θj is updated following 

 𝛉𝑖
𝑗+ = 𝛉𝑖

𝑗− + 𝐊𝑖�𝜃LPRM,𝑖
∗ + 𝜀𝑖

𝑗 − 𝐇𝛉𝑖
𝑗−�,    (3) 

where the observation operator H = [1 0]; ε is mean-zero, Gaussian noise with variance R 

[m6 m-6]; and j is an ensemble number index. The Kalman gain vector K in (3) is  

 𝐊 =PHT/(HPHT + R),       (4) 

with P representing the 2 x 2 state covariance matrix sampled directly from the θi
j- 

ensemble (created, in part, by the introduction of noise with covariance Q) and R the 

scalar error variance of θ*LPRM retrievals. While θ*LPRM is assumed to directly reflect 

surface layer conditions, the covariance information in P is used to update both surface 

and root-zone forecasts contained in θi
j-. After updating, each θi

j+ replicate is propagated 

in time by the Palmer 2-Layer Model (and further perturbed via Q) until the next-

available θ*LPRM observation, at which point (3) is re-applied using a newly sampled P. 

Daily EnKF state predictions for the surface and root-zone layers, θEnKF1 and θEnKF2 

respectively, are then obtained by averaging across the resulting θi
j+ ensemble.  

The parameter R represents the error variance in θ*LPRM retrievals for a given land 

surface type. The skill of retrieved soil moisture decreases significantly over areas of 

dense vegetation [Njoku and Chan, 2006]. Therefore, following Bolten et al. [2010], we 

calculate R as 

𝑅 = 𝑅0exp[2(cos−1(φ)𝑏𝜔𝑐)],      (5) 

where φ is the AMSR-E incidence angle; b [m2 kg-1] is a vegetation structure coefficient 

(set equal to 0.30 for wooded grasslands and shrubs, grasslands, and croplands and 0.28 

for closed bushlands, open shrublands, and bare soil); ωc [kg m-2] is canopy vegetation 
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water content; and Ro is a constant set equal to 0.152 cm6cm-6. A monthly climatology of 

Advanced Very High Resolution Radiometer-derived NDVI retrievals is used to estimate 

𝜔𝑐 following Bindlish et al. [2003]. While (5) has already been applied successfully for 

use in a similar data assimilation system [Bolten et al., 2010], it should be noted that 

more complex error estimates for θLPRM retrievals are also available [Parinussa et al., 

2011]. 

Likewise, Q captures the added uncertainty incurred when the 2-Layer Palmer 

advances soil moisture estimates ahead by a one day. Here we assume Q is driven 

primarily by the accuracy of daily rainfall accumulation products used to force the model. 

Since this accuracy is known to vary geographically according to the density of available 

rain gauges for the correction of satellite-based rainfall estimates [Gebremichael et al, 

2003], Q is specified as a function of the average distance D [km] to the three-closest 

WMO rain gauges: 

           𝑄 = �
0.022 m6m−6 𝐷 < 100 km
0.042 m6m−6 100 km ≤ 𝐷 < 150 km
0.062 m6m−6 150 km ≤ 𝐷 < 200 km

 .   (6) 

For the case D >= 200 km: Q = 0.082 cm6cm-6 and R = 0.  

2.4. MODIS NDVI and Land Cover Data 

Monthly Normalized Difference Vegetation Index (NDVI) products for 

evaluation are obtained from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) MOD13C2 product [NASA Land Processes DAAC, 2011]. Monthly NDVI 

composite products categorized as “fully reliable” in the MOD13C2 reliability flag file 

are aggregated from their native 0.05° resolution to match the 0.25° resolution modeling 

grid. In order to focus on water-limited ecosystems, sub-grid fractions of barren, tundra, 
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forest cover, and open water surfaces from the MODIS MCD12C1 land cover 

classification [NASA Land Processes DAAC, 2010] are summed within each global 0.25° 

pixel, and pixels where the sum of these areas constitutes more than a 50% areal fraction 

are masked. 

3. Analysis 

3.1. Rank Correlation Sampling 

Daily root-zone soil moisture estimates obtained from the 2-Layer Palmer model 

open loop (θOL2) and analysis products produced by the EnKF-based assimilation of 

θ*LPRM into the 2-Layer Palmer model (θEnKF2) are separately aggregated in time  between 

July 2002 and December 2010 to obtain monthly  𝜃OL2������  and 𝜃EnKF2���������  time series. Any 

months containing five or fewer θLPRM retrievals (e.g., due to snow cover and/or excessive 

vegetation) are masked from this monthly product. Each product is then grouped by 

month-of-year and ranked according to soil moisture value within these groupings. The 

resulting rank time series of Rank(𝜃OL2������) and Rank(𝜃EnKF2���������) describe the wetness of any 

particular month relative to the same month in all other years of the 2002 to 2010 data 

record.  

An analogous aggregation and ranking procedure is applied to monthly MODIS-

based NDVI to obtain Rank(NDVI�������), and the Spearman correlation coefficient Rs(L) is 

sampled between Rank(NDVI�������) for month k and both Rank(𝜃OL2������) and Rank(𝜃EnKF2���������) for 

month k+L. Much of our analysis will focus on  the specific case Rs(-1) where L = -1, and 

rank correlation is calculated between monthly soil moisture and NDVI when soil 

moisture precedes NDVI by one month. Note that since neither the 2-Layer Palmer model 

nor LPRM utilizes NDVI information (and the EnKF uses only climatological NDVI 



9 
 

information which will not impact inter-annual ranks), sampled Rs should not be 

spuriously impacted by the presence of cross-correlated errors. To focus on periods of the 

annual cycle prone to water (and not energy) limitation, only months with an average 

daily high air temperature above 5° C are included in such sampling. A minimum 

threshold of at least 30 monthly NDVI�������  and 𝜃OL2������ (or 𝜃EnKF2��������� ) pairs is then required to 

sample a reliable estimate of Rs.  

3.2. Results 

Figure 1 shows Rs(L) on a global 0.25° degree grid for the model-only 𝜃OL2������  

product [Rs(-1)OL2; Figure 1a] and the  𝜃EnKF2���������  analysis [Rs(-1)EnKF2; Figure 1b]. Figure 1c 

plots the difference obtained by subtracting Figure 1b from Figure 1a (i.e., Rs
EnKF2 minus 

Rs
OL2). By applying a Fisher transformation, Z-scores for this difference are calculated as 

 𝑍 = � 𝑛−3
2∗1.06

[𝐹(𝑅𝑠EnKF2) − 𝐹(𝑅𝑠OL2)]     (7) 

where F(Rs) = 0.5 Ln[(1+Rs)/(1-Rs)], n is the number of monthly soil moisture/NDVI 

values sampled to obtain Rs, and the factor 1.06 corrects for the non-Gaussian distribution 

of sampled Rs [Fieller et al., 1957]. Resulting Z-scores are plotted in Figure 1d. Note that 

since (7) neglects both the presence of auto-correlation in Rank(𝜃OL2������) and Rank(𝜃EnKF2���������) 

and potential cross-correlation in sampling error, care should be exercised in formally 

interpreting Figure 1d. Blank areas in Figure 1 are due to pixels failing the land-cover 

masking criteria described in Section 2.4 or land pixels where less than 30 pairs of values 

are available for estimating Rs(-1) (see Section 3.1).  

Arid regions (e.g., the Western United States, Southern Africa, and Australia) 

generally demonstrate the highest coupling between open loop root-zone soil moisture 

and future NDVI (Figure 1a). However, a sharp jump in Rs(-1) is noted when θ*LPRM is 
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assimilated into the model (Figures 1b and 1c). The benefit of surface soil moisture data 

assimilation is especially large in areas of world where poor rain-gauge coverage 

degrades the quality of model-only 𝜃OL2������ estimates (e.g., Africa, Central Australia, and 

Central Asia). In these areas, the assimilation of θ*LPRM improves monthly-scale soil 

moisture estimates by filtering random modeling errors due to poorly-observed rainfall. 

In addition to the L = -1 case shown in Figure 1, qualitatively similar results (not shown) 

are also found for the cases L = -2 and -3 [months]. Finally, Figure 1d demonstrates that 

spatially continuous areas of enhanced Rs(-1) are statistically significant at a 1σ level, and 

only sporadic areas of significantly degraded Rs(-1)  are found.  

 As seen in Figure 1, the impact of  θ*LPRM  assimilation is especially large in data-

poor areas of world lacking sufficient ground-based rain gauge instrumentation for 

adequate correction of satellite-based rainfall products. A number of these notably data-

poor countries also face considerable food security challenges. Figure 2 shows Rs(L)OL2 

and Rs(L)EnKF2  results averaged within six countries in Africa and Southern Asia with 

moderate to severe food security issues. Relative to the model-only case, the EnKF data 

assimilation case demonstrates consistently stronger rank correlation with future NDVI in 

these countries.  

It is also useful to examine seasonal trends in Rs(-1). For both the Extra-Tropical 

Northern Hemisphere (ETNH; to 60° N) and Southern Hemisphere (ETSH; to 60° S), 

spatially-averaged Rs(-1)OL2 and Rs(-1)EnKF2 are plotted in Figure 3 as a function of 

month-of-year. The seasonal time series in Figure 3 demonstrates an intuitive pattern 

with the highest soil moisture/NDVI coupling, and thus the largest Rs(-1), occurring 

during the middle/end of ETNH and ETSH summers when soil moisture storage tends to 
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be at yearly low. An increase in spatially-averaged Rs(-1)EnKF2 (relative to Rs(-1)OL2) is 

apparent throughout the annual cycle. In particular, despite relatively high levels of 

biomass, and thus reduced accuracy in remotely-sensed surface soil moisture retrievals 

[Njoku and Chen, 2006] during the ETNH and ETSH summers, the positive impact of 

soil moisture data assimilation persists throughout the growing season. This ability to add 

skill in the middle portion of the growing season is critical since crop yield sensitivity to 

water stress is maximized during this period.  

4. Conclusions 

Agricultural drought is commonly defined as an extended period of lower than 

normal root-zone soil moisture characterized by a reduction in plant biomass and 

ecologic productivity. Here, we quantify the added value of remotely-sensed surface soil 

moisture retrievals for improving our ability to accurately predict agricultural drought 

impacts on regional vegetation productivity. Following the general approach of Peled et 

al. [2010], our evaluation is based on sampling the rank correlation between current 

monthly root-zone soil moisture and future NDVI conditions. 

The assimilation of surface soil moisture retrievals into a quasi-global soil water 

balance model is shown to significantly improve the value of model-based, root-zone soil 

moisture estimates as a leading indicator of agricultural drought (Figure 1). Such 

improvement is especially clear over data-poor regions of the world where modeled soil 

moisture estimates are derived from poor-quality rainfall observations (Figure 2). Value 

is added even during the middle portion of the growing season when both vegetation 

biomass and crop yield sensitivity to drought is maximized (Figure 3). Overall, results 

provide an important new verification of the potential of remotely-sensed surface soil 
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moisture for regional-scale agricultural and ecological prediction activities - particularly 

in water-limited and/or data-poor regions of the world prone to food insecurity. While the 

use of vegetation indices like NDVI as a  proxy variable for yield is well-established 

[Becker-Reshef et al., 2010], a better characterization of agricultural productivity can be 

obtained from comparison against actual crop yield data. In addition, to fully characterize 

their utility for rapid drought and famine response, soil moisture estimates should ideally 

be evaluated at finer temporal scales (e.g., weekly rather than monthly). Finally, at least 

two more years of additional SMOS data collection is required to apply a comparable 

analysis to L-band satellite soil moisture products. Consequently, results in this paper 

should be interpreted only as a feasibility analysis and not as the description of a finalized 

agricultural drought product.  
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Figure 1. Global analysis of Rs(-1) (i.e. the rank correlation between monthly soil 

moisture and NDVI when soil moisture precedes NDVI by one month) for: a) model-only 

(root-zone) soil moisture [Rs(-1)OL2] and b) EnKF (root-zone) soil moisture created by 

assimilating LPRM soil moisture into the model [Rs(-1)EnKF2]. Also plotted are c) Rs(-

1)EnKF2 minus Rs(-1)OL2 (reflecting the net impact of the assimilating LPRM retrievals) 

and d) Z-scores for Rs(-1)EnKF2 minus Rs(-1)OL2 given by (7). 

 

Figure 2. Comparisons between Rs(L)OL2 and Rs(L)EnKF2 over a range of L (i.e., 0 to 6 

months) for sparsely-instrumented countries with moderate-to-severe food security issues. 

Plotted variable Rs(L) is the rank correlation between monthly soil moisture for month 

i+L and NDVI for month i.  

 

Figure 3. Seasonal cycles of Rs(-1)OL2 and Rs(-1)EnKF2 averaged within the Extra-tropical 

Northern (ETNH; to 60° N) and Southern (ETSH; to 60° S) Hemispheres. Plotted 

variable Rs(-1) is the rank correlation between monthly soil moisture and NDVI when soil 

moisture precedes NDVI by 1 month.  
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