
mu uuuu ui iiui imi um uui iiui iiui uui lull uuii uu uii mi
(12) United States Patent

Ortiz et al.

(54) METHOD AND SYSTEM FOR ENABLING
REAL-TIME SPECKLE PROCESSING USING
HARDWARE PLATFORMS

(75) Inventors: Fernando E. Ortiz, Newark, DE (US);
Eric Kelmelis, New London, PA (US);
James P. Durbano, Newark, DE (US);
Peterson E. Curt, Bear, DE (US)

(73) Assignee: EM Photonics, Inc., Newark, DE (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1321 days.

(21) Appl. No.: 11/875,298

(22) Filed: Oct. 19, 2007

(65) Prior Publication Data

US 2009/0103832 Al 	Apr. 23, 2009

(51) Int. Cl.
G06K 9140 (2006.01)
G06K 9100 (2006.01)
G06K 9146 (2006.01)
G06K 9166 (2006.01)
G06K 9136 (2006.01)

(52) U.S. Cl. 382/254; 382/100; 382/191; 382/275;
382/280

(58) 	Field of Classification Search 	382/100,
382/191, 254, 275, 280

See application file for complete search history.

(lo) Patent No.: 	US 8,300,968 B2
(45) Date of Patent: 	Oct. 30, 2012

(56) References Cited

U.S. PATENT DOCUMENTS

	

4,913,549 A * 	4/1990 Fujita et al 356/521

	

7,120,312 132 	10/2006 George

	

7,139,067 132 	11/2006 Pohle et al.

	

7,245,742 132 	7/2007 Carrano et al.

	

7,303,280 132 	12/2007 Olivier et al.
2006/0055772 Al* 	3/2006 Rosen 348/31

OTHER PUBLICATIONS

Curt, P. "Reconfigurable device for enhancement of long-range
imagery" Apr. 2007 SPIE vol. 6546; pp. 1-12.*
Humphrey, J. "Reconfigurable Device for Real-Time Compensa-
tion of Atmospheric Effects in Long-Range Imaging" 2006
MAPLD International Conference; abstract only.*
"An exact, linear solution to the problem of imaging through turbu-
lence," B.R. Frieden, Optical Sciences Center, University of Arizona,
Tucson, AZ, Optics Communications 150 (1998) 15-21, May 1,
1998.
"Speckle Imaging over Horizontal Paths," C. J. Carrano, SPIE Con-
ference on High-Resolution Wavefront Control, Conference in
Seattle, WA, Jul. 8-9, 2002.

* cited by examiner

Primary Examiner Bernard Krasnic
(74) Attorney, Agent, or Firm Connolly Bove Lodge &
Hutz LLP; Jeffrey W. Gluck

(57) ABSTRACT

An accelerator for the speckle atmospheric compensation
algorithm may enable real-time speckle processing of video
feeds that may enable the speckle algorithm to be applied in
numerous real-time applications. The accelerator may be
implemented in various forms, including hardware, software,
and/or machine-readable media.

9 Claims, 13 Drawing Sheets

561

A
N

rame=0

Read frame

e frame bispectrum

Buffer full?Y

dest frame bispectrum
umulated bispectrum

st frame bispectrum
dest frame bispectrum

569

TNormalize

ectrum to
ispectrum

 N
571A

ull? 	frame++

ize

ectrum

583 , I Output

571B, I frame++

(SW Datafloww/Sliding Window)

https://ntrs.nasa.gov/search.jsp?R=20120016378 2019-08-30T22:56:33+00:00Z

U.S. Patent 	Oct. 30, 2012 	Sheet 1 of 13 	US 8,300,968 B2

~bt ,
-

e~ ✓-. ds

a a+

Co

as
Pa ,.

tA

~
=~

C
O

C

C!2 w 	O

U

'L., 	11)

OI0

Q

rrnn

~

V 0 O

U
Cu
m

U.S. Patent 	Oct. 30, 2012 	Sheet 2 of 13 	 US 8,300,968 B2

FIG. A,

U.S. Patent 	Oct. 30, 2012 	Sheet 3 of 13 	 US 8,300,968 B2

FIG. 2

U.S. Patent 	Oct. 30, 2012 	Sheet 4 of 13 	 US 8,300,968 B2

cr. im

crq.re

cq. re

crq. im

cq.im

c r. re

crgcgcr.re

crgcgcr.im

FIG. 3A (BCU)

bispect.re

bispect.im

crgcgcb 	 Ac um 	cgood

FIG. 3B (BNU)

1100

Compute Bispectrum 	1107

1101

N

BCU 	? 	BNU
Y

I nverse 	 1103 	1105

Inputs (See FIG. 3A) Outputs (See FIG. 3B)

FIG. 4

U.S. Patent 	Oct. 30, 2012 	Sheet 5 of 13
	

US 8,300,968 B2

5 	 Y...............

y~jV.ti
	 f

 ---------------- - -------- Bispectrum Setup

Compute ftai-1 I'D 0-1,spectw ~

- --=
. --- -------------------- ---

Ati+`.! :t~̀* aG~•tiTiy: ~~ iciiGii bfso3£s:;~ru3.3'!

`.~ 	

;

h

-

-

... E ..

Fri
r ~------ R --- _ ____________
Y 	{

FIG 5.
(Backgrownd Art SSW ataf to)

U.S. Patent 	Oct. 30, 2012 	Sheet 6 of 13 	US 8,300,968 B2

533 	Peid lirame

-~ Add to ac;cumulatcd bispe fir um

frames to

	

._....._
Y
.._.._._._._..... T _ _

54 	

f}

Normalize

553 --- 1 t. otputF` r- C3 t

FIG. 5B
(Re-partitioned SW Dataflow)

U.S. Patent 	Oct. 30, 2012 	Sheet 7 of 13 	 US 8,300,968 B2

561
frame=0

563
Read frame

567 	
Compute frame bispectrum

N 	
587A

Buffer full?

589 	 Y
Subtract oldest frame bispectrum

from accumulated bispectrum

591

next oldest frame bispectrum
becomes oldest frame bispectrum

569
Add frame bispectrum to
accumulated bispectrum

5876
	 N

571A

Buffer full? 	frame++

Y
577 	Normalize

581
Invert bispectrum

583 	Output

571 B, 1 frame++

FIG. 5C
(SW Dataflow w/Sliding Window)

U.S. Patent 	Oct. 30, 2012 	Sheet 8 of 13 	 US 8,300,968 B2

Computational
Flow

701 	
(Background Art)

70

70

7(

7

Computational
Flow

IFvamnlary FmhMimant)

30

Legend
701

Compute Bispectrum
(Single Frame)

702—

Compute (and Store)
Bispectrum

(Single Frame)
703

em7m
Compute Single
Corrected Frame

30

30

FIG. 6A 	FIG. 613

U.S. Patent 	Oct. 30, 2012 	Sheet 9 of 13 	US 8,300,968 B2

7001

Host
PC

7002

----------------------------------- 	-- -------------------------

/7004 	
~nn~

108 MHz
7003 Oscillator

Transmitter
(Serializer)

PC[
Bridge

FPGA

Receiver

' 	7005
TX Svnth

(Deserializer)

7008
Platform 7006

FIG. 7A

33
_

q m

C /
~ ±

75 Q L) o
/

E

N
E
LO a

2
N

7
e 	$
C.0

3
m

Ig
~

\

/
%

/
\

U.R. Patent 	Oct. 30, 2012 	Sheet 10 of 13 	US 8,300,968 G2

(m

% / /
E \ /

ƒ 0 w
/ •° » i <
\ \\ ±
\/ ƒ

\
N 	@

x
N// \

%
LL

 % \ \ r-
° o

\ ~ 3 j e
ee

o

f»§e
	

\k 	
Co
= w E ^ ® 4 	a) x 	g I 	~

/
Q ®

\ N 	il/
r 2 	%

>
^

2 	E
 x 	k

/
Co

R 	± 	L /

/ LL SWd9 [
R ,mom uu00 Ray

U)
00

E
CY)

§ E

~
D 	/

O 2 x
Cu ? 	G 	0

/
<
2

o
Co

§ 	2
f >

</ k \ 	OO
.\ <
/ƒ 0 	0 	11 c
/
E

c
<

/ (Xe00)emoquu0 3S

\
%

~
~

LL

U
I
R m O I
O G

U.S. Patent 	Oct. 30, 2012 	Sheet 11 of 13 	US 8,300,968 B2

801.

Monitorl

EMP Workstation 	
804--)

(Input)

8 2
80

Nvidia
AMD 	AMD 	78000TX

Opteron 	Opteron 	(PCIe)

HD-SDI 	 Monitor2
SMPTE-292M 	HD 	 EMP 	 (Output)

Capture Card 	Celerity Card
(PCI-X) 	 (PCI-X)

805 	 806

FIG. 8A

U.S. Patent 	Oct. 30, 2012 	Sheet 12 of 13
	

US 8,300,968 B2

Input Connectors:
• Single Link SDI
• Component Betacam NTSC-J
• Composite NTSC
•Component SIVIPTE NTSC-J
• S-Video NTSC
• Composite PAL
• Component Betacam NTSC
• S-Video PAL

• Component SMPTE NTSC
• Component Betacam PAL
• Composite NTSC-J
• Component SMPTE PAL
• S-Video NTSC-J
• Component XVGA (High
Definition only)

Supported resolutions and Framerates:
720x576 @ 25.00i 1280x720 @ 23.976p 1920x1080 g 23.976sF
720x576 (Wide) @ 25.00i 1280x720 @24.00p 1920x1080 @ 24.000
720x486 @ 29.97i 1280x720 @ 29.97p 1920x1080 @ 25.000
720x480 @ 29.97i 1280x720 @ 30.00p 1920x1080 @ 29.97sF
720x480 (Wide) @ 29.97i 1280x720 @ 50.00p 1920x1080 9 30.00sF

1280x720 @ 59.94p 1920x1080 @ 25.00i
1280x720 @ 60.00p 1920x1080 @ 29.97i

1920x1080 @ 30.00i
1920x1080 @ 23.976p
1920x1080 @ 24.00p
1920x1080 @ 25.00p
1920x1080 @ 29.97p
1920x1080 @ 30.00p

FIG. 8B

Original Software
Version

Processor/FPGA
Prototype

g 	5 	10 	15 	20 	25 	30 	35

U.S. Patent 	Oct. 30, 2012 	Sheet 13 of 13 	 US 8,300,968 B2

...................................

Speckle Benchmark Runtime

Seconds

FIG. 9

US 8,300,968 B2
1

METHOD AND SYSTEM FOR ENABLING
REAL-TIME SPECKLE PROCESSING USING

HARDWARE PLATFORMS

This invention was made with Government support under
Contract NNK06OM14C awarded by NASA. The Govern-
ment has certain rights in this invention.

FIELD OF THE INVENTION

The field of the invention is optical image processing. In
particular, the present invention relates to hardware and meth-
ods for efficient algorithms for large-aperture optical image
processing.

BACKGROUND OF THE INVENTION

The quality of images taken with long-range optical imag-
ing systems can be severely degraded by atmospheric move-
ments, such as turbulence and air movement, in the path
between the region under observation and the imaging sys-
tem. In particular, as distance increases, atmospheric turbu-
lence is often the dominating source of image degradation in
infrared and visible imaging applications. Assuming ideal
observation conditions, the minimum distinguishable feature
size that can be resolved using a given optical imaging system
is bounded by the diffraction limit (1.22aJD), where X is the
wavelength and D is the distance. This diffraction limit sug-
gests that large-aperture optical imaging systems enable finer
image features to be resolved/distinguished.

However, in large-aperture optical imaging systems, tur-
bulence and air movement become the limiting factors long
before the diffraction limit effects discussed above appear. In
particular, the minimum distinguishable feature under turbu-
lent conditions is given by the equation 1.22aJRO, where RO
may be as small as a few centimeters and may be dependent
on the strength of the turbulence and air movement. Thus,
there is a practical limit on the ability to image distant objects
in background art large-aperture optical imaging systems.
Due to this, large-aperture optical imaging systems of the
background art systems: (1) have not been able to take full
advantage of the potential for increased resolution suggested
by the diffraction limit; and (2) do not provide improvements
in resolution and feature separation characteristics over
smaller-aperture optical imaging systems.

For example, a very similar problem is faced by astrono-
mers when trying to image the sky through the turbulent
atmosphere of the earth using large telescopes. To overcome
this limitation, special signal processing algorithms were
developed that are capable of minimizing the effects of a
turbulent atmospheric path by combining information from
several images taken in a time sequence. A bispectral speckle
imaging method described by C. J. Carrano, in "Speckle
imaging over horizontal paths," was presented at High Reso-
lution Wavefront Control: Methods, Devices, and Applica-
tions IV, 2002. Unlike astronomical optical imaging, the chal-
lenges in large-aperture optical imaging systems for
horizontal or slanted atmospheric paths are that the scenes are
extended and the scene covers a very large visible angle.
Thus, in general, the small-angle approximations typically
used in astronomical applications cannot be directly applied
to slanted path imaging systems.

In addition, the background art includes other digital signal
processing techniques that have been applied to degraded
images in an attempt to correct the images to overcome atmo-
spheric turbulence. In an article by B. R. Frieden, entitled:
"An exact, linear solution to the problem of imaging through

2
turbulence," Opt. Comm. 150 (1998) 15, a sequence of two
short-exposure intensity images is taken without any refer-
ence point sources. The images are then Fourier transformed
and divided by linear equations based on two random point

5 spread functions. The result is then inverse filtered to provide
an image of an object. However, a problem with this method
is that the point spread functions associated with the turbu-
lence are not known in an image due to the lack of any
reference. This situation can cause further problems inrecov-

lo ering an image taken through turbulence. Other examples of
background art in this technology area include, but are not
limited to: U.S. Pat. No. 7,139,067S (Pohle et al.); U.S. Pat.
No. 7,120,312 (George); U.S. patent application Ser. No.

15 10/661,138; U.S. patent application Ser. No. 11/017,384
(Olivier et al) and U.S. patent application Ser. No. 10/610,152
(Carrano et al).

As another example of the above-discussed background art
(i.e., Carrano et al.), researchers at Lawrence Livermore

20 National Laboratories have refined the astronomical bispec-
tral speckle imaging methods and modified them for earth-
based use. FIG. 1 is an exemplary block diagram 100 of this
background art method. The method combines information
from several images, taken a short time apart from one

25 another. These can be a series of multiple short-exposure still
shots from a conventional camera or, more commonly, a
sequence of consecutive video frames. This information is
combined and processed by complex "averaging" procedures
in the frequency domain, where the magnitude and phase are

30 calculated independently and subsequently recombined in
the real space. However, on a personal computer (PC), this
method requires several seconds to analyze a single frame.
Thus, even though this bispectral method provides accurate

35 results, it must be accelerated in order to work in real time.
To accommodate the spatially varying point spread func-

tions experienced in earth-bound imaging, overlapping sub-
fields of the image are separately speckle processed and re-
assembled to form the full field of an the image. As shown in

40 FIG. 2A and FIG. 213, what results is a method that produces
a single corrected image with quality near the diffraction
limit. In FIG. 2A, the image frame represents original,
degraded video image frame captures. FIG. 2B is the effect on
the image frame after running the speckle imaging method on

45 the degraded images. The computational rate required is a
direct consequence of the large number of pixels in the image,
which must be transformed into the frequency domain (e.g.,
by the Fast Fourier Transform (FFT)) and then to the bispec-
tral domain. These transformations account for the majority

50 of the computational time in the execution of the speckle
algorithm.

If the above-discussed problems of the background art
could be overcome, numerous applications could benefit
from improvements in large-aperture, optical imaging. Most

55 obvious are applications are the military field, particularly
intelligence, reconnaissance, and target designation. More-
over, there are many civilian applications of this technology
as well, especially in the surveillance and homeland security
areas. Unfortunately, these atmospheric compensation algo-

6o rithms are very computationally intensive, which prevents
even top-of-the-line PCs from evaluating them in real time.
The necessary processing typically requires tens of seconds
to enhance a single frame. In addition, this duration of time
for processing problem is worsened when video feeds are to

65 be processed, since real-time video requires several dozen
frames per second (e.g., a two order-of-magnitude
difference). Therefore, there is a need in the art for improved

US 8,300,968 B2
3

computational methods and systems for large-aperture opti-
cal imaging systems that would allow real-time or increased
performance.

SUMMARY OF THE INVENTION

Embodiments of the invention enable real-time speckle
processing of video feeds that further enables the speckle
algorithm to be applied in numerous real-time applications.
Features and advantages of embodiments of the invention will
become apparent from the following description. A broad
representation of the invention is provided by the detailed
description, which includes, but is not limited to: discussion,
drawings and examples of specific embodiments. Various
changes and modifications within the spirit and scope of the
invention will become apparent to those skilled in the art from
this description and by practice of the invention.

Exemplary embodiments of the invention include hard-
ware, software and machine readable mediums for an accel-
erator for the Speckle atmospheric compensation algorithm.
In particular, one embodiment of the invention is a method for
fast computation of a Speckle Algorithm, comprising: initial-
izing and setting up a plurality of memory locations; setting a
frame counter to 0; inputting a present frame of a time
sequenced image; computing a bispectrum of the present
frame; adding the present bispectrum computation to previ-
ously accumulated bispectrum computations and storing in
one of the plurality of memory locations; incrementing the
frame counter; checking whether the frame counter equals the
number of frames to be processed; incrementing the frame
counter when the frame counter is less than the number of
frames to be processed and returning to the step of inputting
the present frame; setting the frame counter to zero when the
frame counter is equal to the number of frames to be pro-
cessed and computing the normalization of the accumulated
bispectrum computations; computing an inverse bispectrum
computation; outputting the inverse bispectrum and returning
to the step of inputting the present frame.

Another embodiment of the invention is a method for real-
time computation of a Speckle algorithm incorporating a
sliding window, comprising: initializing and setting up a plu-
rality of memory locations; setting a frame counter to zero;
inputting a present frame of a time sequenced image; com-
puting the bispectrum of the present frame; determining
whether the computed bispectrum buffer is full with accumu-
lated bispectrum computations: when the computed bispec-
trum buffer is not full, setting a next oldest computed bispec-
trum frame to an oldest computed bispectrum frame, adding
the computed bispectrum of the present frame to the previous
accumulated bispectrum frame computations and, if the com-
puted bispectrum buffer is still not full, incrementing the
frame counter and return to the step of inputting the present
frame; and when the computed bispectrum buffer is full,
subtracting a next oldest computed bispectrum frame from
the accumulated bispectrum frame computations, setting a
next oldest computed bispectrum frame to an oldest com-
puted bispectrum frame, adding the computed bispectrum of
the present frame to the previous accumulated bispectrum
frame computations and, if the buffer is still not full, incre-
menting the frame counter and return to the step of inputting
the present frame; and when the computed bispectrum buffer
is full, normalizing the accumulated computed bispectrums;
inverting the normalized accumulated bispectrums; output-
ting the normalized accumulated inverted bispectrums; incre-
menting the frame counter and returning to the step of input-
ting the present frame.

4
Yet another embodiment of the invention is a system for

real-time computation of a method for a Speckle algorithm, as
recited in either of the above embodiments and further com-
prising: a host computer; a PCI bridge; an oscillator; a trans-

5 mitter synthesizer; a serialilzer; a receiver; SRAM and
DRAM memory modules; and an FPGA.

Preferably, the embodiments of the system above, further
comprises: input and output shielded connectors configured
to input and output video data; an equalizer and cable driver

10 connecter to the input and output shielded connectors, respec-
tively; and the deserializer and serializer are connected to the
outputs the equalizer and cable driver, respectively.

Preferably, in the system of the embodiment above, the
15 FPGA further comprises: a framing receiver and framing

transmitter connected to the outputs form the deserializer and
serializer, respectively; and a decoder and encoder connected
to the outputs from the framing receiver and framing trans-
mitter, respectively, and an SDRAM and the PCI Bridge are

20 connected to the FPGA, wherein the deserializer is connected
to the framing receiver and the serialize is connected to the
framing transmitter.

Preferably, in the system of embodiment above, the FPGA
comprises a Speckle engine, and the Speckle engine further

25 comprises: a startup function and parameter register file con-
figured to control system operation; an extract tile function
connected to a Demean function and configured to provide
inputs to an Apodization window; a first two-dimensional
(2-D) Real-Complex FFT connected to the outputs of the

30 Apodization window; an Intensity function connected to the
2-D Real-Complex FFT; a Compute Bispectrum function
connected to outputs of the Intensity function; an Averaging
Unit connected to outputs of the Compute Bispectrum f mc-
tion; a second two-dimensional (2-D) Real-Complex FFT

35 connected to outputs of the Averaging Unit; and an Apodiza-
tion Gain unit connected to outputs of the second two-dimen-
sional (2-D) Real-Complex FFT; wherein the startup function
is connected to the parameter register file, and the Speckle
engine, the PCI bridge is connected to the startup function and

40 the SDRAM is connected to the Speckle engine.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention can be described in greater
45 detail with the aid of the following drawings.

FIG. 1 is an exemplary block diagram of a background art
Speckle Imaging Method.

FIG. 2A, the image frame represents original, degraded
video image frame captures.

50 	FIG. 2B is the effect on the image frame after running the
speckle imaging method on the degraded images.

FIG. 3A is an exemplary block diagram of an embodiment
of a Bispectrum Computation Unit (BCU).

FIG. 3B is an exemplary block diagram of an embodiment
55 of a Bispectrum Normalization Unit (BNU).

FIG. 4 is an exemplary block diagram combining the BCU
and BNU to form the Compute Bispectrum function.

FIG. 5A is an exemplary flow chart of the Speckle Algo-
rithm of the background art.

60 	FIG. 5B is an exemplary flow chart of the re-partitioned
and accelerated Speckle Algorithm of an embodiment of the
invention.

FIG. 5C is an exemplary flow chart of the re-partitioned
and accelerated Speckle Algorithm after an embodiment of

65 the invention after adding a Sliding Window.
FIG. 6A is an exemplary computational flow diagram for

the Speckle algorithm of the background art.

US 8,300,968 B2
5

FIG. 6B is an exemplary computational flow diagram for
the re-partitioned and accelerated Speckle Algorithm.

FIG. 7A is an exemplary board layout of the re-partitioned
and accelerated Speckle Algorithm Demonstration.

FIG. 7B is an exemplary detailed block diagram of the 5
re-partitioned and accelerated Speckle Algorithm.

FIG. 8A shows a block diagram of an Accelerated Speckle
Demonstration System.

FIG. 8B shows a parts list for an exemplary Accelerated
Speckle Demonstration System, as shown in FIG. 8A. 	10

FIG. 9 shows a performance comparison between an origi-
nal software version of the Speckle Algorithm and the re-
partitioned and accelerated Speckle Demonstration System
showing how the demonstration system outperformed the 15
purely software approach by a factor 40x.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

20
Generally speaking, three major computational bottle-

necks have prevented real-time processing capabilities from
being applied to the speckle algorithm. These bottlenecks are:
(1) the Fast Fourier Transforms (FFTs); (2) calculation of the
bispectrum; and (3) normalization of the bispectrum. Since 25

they are a computational component of many scientific and
image processing algorithms, extensive work has been done
on the acceleration of FFTs. However, despite these efforts
and despite computing the algorithm with accelerated FFT
cores, the speckle algorithm would still be too slow to be of 30

practical use. Thus, embodiments of the speckle algorithm in
the invention include two methods: accelerating the calcula-
tion of the bispectrum; and accelerating normalization of the
bispectrum. To implement these two methods, embodiments
of the invention include two hardware accelerator units: (1) a 35

Bispectrum Computation Unit (BCU); and (2) a Bispectrum
Normalization Unit (BNU). Moreover, a third manner of
accelerating the speckle algorithm in embodiments of the
invention is a non-obvious reformulation of the speckle algo-
rithm itself. The following paragraphs will further detail the 40

above-discussed embodiments of the invention.
The Bispectrum Computation Unit (BCU) is a part of the

portion of the speckle algorithm that computes an `Average
Power Spectrum" stage of the speckle algorithm flow dia-
gram 100 (e.g., see FIG. 1). A rapid calculation of the bispec- 45

trum is at the core of accelerating the speckle algorithm and is
a major contributor to providing a real-time implementation
of the speckle algorithm. In particular, the BCU helps convert
data from the frequency domain into the bispectrum domain.
The mathematical details of this conversion process can be 50

found, for example in: "Speckle Imaging of Satellites at the
Air Force Maui Station" by T. W Lawrence, D. M Goodman,
E. M 7ohansson, J. P Fitch, which was presented at the Euro-
pean Southern Observatory (ESO) Conference on High Reso-
lution Imaging By Interferometry II, Garching, Fed. Republic 55

of Germany, 14-18 Oct. 1991.
Novel embodiments of the invention provide a method and

system capable of performing the bispectrum computations
in hardware, with significant speed gains is possible. In par-
ticular, FIG. 3A is more than a simple mapping of an algo- 60

rithm from software to hardware, and instead the BCU rep-
resents a new way of computing the bispectrum results. It is
analogous to the "butterfly" used in FFT computations that
enables efficient implementation of the FFT core operations;
the BCU represents a core capability that provides a repeat- 65

able computational unit that yields speed improvements in the
implementation of the speckle algorithm.

6
In particular, the BCU of this embodiment of the invention

takes several inputs (i.e., see the left side of FIG. 3A), repre-
senting various intermediate calculations internal to the
bispectrum computation process. Each of these inputs con-
sists of both a real and imaginary portion and is passed into
our BCU. In implementations of the BCU, the operations
indicated in FIG. 3A must be performed multiple times on
each pixel. This would pose a tremendous computational
burden on standard microprocessor implementations. In
order alleviate this computational burden, embodiments of
the invention utilize a custom hardware processor that is
completely pipelined (i.e., one result per cycle) and further
comprises several computational pipelines that can be imple-
mented in a single FPGA or other hardware platforms such as,
but not limited to: graphical processing units (GPUs) multi-
core processors, Single-Instruction-Multiple Data (SIMD)
digital signal processors (DSPs), Physics acceleration
engines and custom floating-point acceleration cards.

The BCU of FIG. 3A carries out the bulk of the frequency-
to-bispectrum domain conversion, ultimately producing
another complex intermediate result having real (crqcqcr.re)
and imaginary (crqcqcr.im) parts. From these complex inter-
mediate results, crqcqcr, the actual bispectrum used by the
speckle algorithm is generated. Since intermediate operations
must be performed multiple times on each pixel, and each one
can take several hundred cycles to complete, standard micro-
processor implementations are unable to compute these
results in real time. To alleviate this burden, embodiments of
the invention utilize custom hardware processor that is com-
pletely pipelined (i.e., one result per cycle) and several of
these computational pipelines can be implemented in a single
FPGA or other hardware platforms (e.g., graphics processing
units). In this manner, embodiments of the invention exploit
the computational parallelism inherent to the algorithm and
thus, accelerate the bispectrum computations and enable real-
time speckle processing.

This section further discusses the Bispectrum Nonnaliza-
tion Unit (BNU), as shown in FIG. 3B. Once the bispectrum
has been computed by the BCU, the next step in the speckle
algorithm process is the normalization of these bispectrum
results against a reference power spectrum. As with the
bispectrum computation, this normalization step is computa-
tionally intense, as it involves the addition and multiplication
of complex numbers, square roots and division operations, as
well as accumulation of these results. That is, though the
elements of the bispectrum normalization functions of addi-
tion, multiplication, division are themselves, mathematically
simple, the overall algorithm is a computationally intense
process that represents a tremendous bottleneck in the
speckle process.

To increase the performance of the speckle algorithm,
embodiments of the invention include both a BCU and BNU
in a Compute Bispectrum function block 1100, as shown in
FIG. 4. In FIG. 4, The BNU 1105 receives inputs and imple-
ments the intense computations (i.e., see FIG. 3A) required
by the non nalization process as inputs to the customhardware
of the Compute Bispectrum block 1100. A Decision Function
1103 determines whether the Compute Bispectrum block
1100 makes a calculation of the forward or inverse bispec-
trum. In the case of an inverse bispectrum, the outputs of the
BCU 1101 are fed as inputs to the BNU 1105, as shown in
FIG. 4. In the case of a forward bispectrum calculation, the
outputs of the BCU 1103 bypass the BNU 1105. In either
case, the outputs are stored in an output register 1107 for later
use. As with the BCU 1101, the BNU 1105 is pipelined and
several can be placed in parallel to further enhance the per-
formance of the system. As shown in FIG. 313, the inputs to

US 8,300,968 B2
7

the BNU (bispect.re , bispect.im, crqcqb) are input from the
left and are the real and imaginary components of the previ-
ously computed bispectrum. The reference spectrum
(crqcqb) is input as well in order to provide values to normal-
ize results against. In particular, the bispectrum works on the
FFT of a tile that is an Apodization windowed portion of a
demeaned, stabilized real image. Example windowing func-
tions include, but are not limited to: Hanning, Hann, Ham-
ming, Bartlett, Kaiser, Nutall, Blackman, Gauss and Flat top
windows. After accumulation of the results, the normalized
spectrum (cgood) is output from the BNU 1105 through the
output pipeline register 1107.

The third aspect of accelerating the speckle algorithm is a
non-obvious reformulation of the algorithm that is discussed
in this section. In order to successfully accelerate algorithms,
it is frequently necessary to change the underlying algorithms
so that the algorithm is better structured for a desired hard-
ware platform, rather than a standard microprocessor-based
system. The reformulation for embodiments of the invention
consists of two novel components: (1) a code partitioning
scheme; and (2) a sliding window. These two components
will be discussed further in the following paragraphs.

Microprocessors are general-purpose computational plat-
forms that can easily, thoughperhaps inefficiently, implement
diverse computational components. In contrast to micropro-
cessors, hardware accelerators generally operate on "similar"
computations in order to achieve a significant acceleration,
such as the one obtained by embodiments of the invention.
For example, graphics processing units (GPUs) are single-
instruction, multiple-data (SIMD) computational engines
that work most efficiently when processing data in parallel.
Similarly, field-programmable gate arrays (FPGAs), allow
multiple parallel computational data paths in order to increase
computational performance. Thus, neither of these platforms
is very efficient when operating on the diverse computational
components of the structure of the original speckle algorithm.
Reformulating the speckle algorithm will allow the process to
be better matched to the strengths of accelerated hardware
discussed above.

The speckle algorithm was originally designed to run on a
microprocessor-based systems and thus, functioned as a
single program to perform all aspects of the algorithm. How-
ever, when transitioning the algorithm to a pipelined hard-
ware accelerated platform of embodiments of the invention,
separating the functionality of the original speckle algorithm
was developed. That is, the reformulation of embodiments of
the invention has modified the original speckle algorithm to
logically create two components: (1) setup; and (2) solve.
Each of these components can be loaded onto a hardware
acceleration platform of embodiments of the invention indi-
vidually in order to obtain the best computational perfor-
mance from the reformulation processing system. In this way,
the entire hardware platform of embodiments of the invention
can be "dedicated" to the computation of a given type of code
section (e.g., BCU, BNU, Reformulation), rather than ineffi-
ciently utilizing the hardware of a standard microprocessor to
solve diverse computations.

FIG. 5A is an exemplary flow chart representing the soft-
ware code structure of the original speckle algorithm. In step
501 of FIG. 5A, the frame counter is set to 0. A frame of a time
sequenced image is read in step 503. Setting up the bispec-
trum data in preparation for computation occurs in step 505.
In step 507, the bispectrum of the frame is computed. Step
509 involves adding the computed bispectrum to accumu-
lated bispectrums. The frame counter is incremented in step
511. Checking whether the frame counter equals the number

8
of frames to be processed occurs in step 513. While the frame
counter is less than the number of frames to be processed,
steps 503 to 513 are repeated.

Alternatively, as shown in FIG. 5A, when step 513 deter-
5 mines the frame counter equals the number of frames to be

processed, the accumulated bispectrum data is set-up for a
normalization process in step 515. Step 517 computes the
normalization of the accumulated bispectrum data. In step
519, the normalized data is set-up for the calculation of an

io inverse bispectrum. The inverse bispectrum is computed in
step 521 and the Output of the inverse bispectrum occurs in
step 523.

FIG. 5B is an exemplary software flow chart representing
the repartitioned flow diagram for the hardware-optimized

15 code structure of embodiments of the invention. In particular,
Step 530 consolidates the various set-up operations of the
original Speckle algorithm (e.g., steps 505, 515 and 519, as
discussed above) into a single block. This code structure
enables embodiments of the invention to implement a more

20 efficient hardware device architecture for replication of
devices and increased processing speed for the algorithm. In
addition, the computations for the inverse bispectrum are
made more efficient in a similar way to that discussed above
for the forward bispectrum. That is, several of the inner loop

25 operations are put into hardware so that they may execute in
a single cycle.

In step 531 of FIG. 513, the frame counter is set to 0. A
frame of a time sequenced image is read into the algorithm in
step 533. In step 537, the bispectrum of the frame is com-

30 puted. Step 539 involves adding the present computation
bispectrum to previously accumulated bispectrum computa-
tions. The frame counter is incremented instep 541. Checking
whether the frame counter equals the number of frames to be
processed occurs in step 543. When the frame counter is less

35 than the number of frames to be processed, steps 533 to 543
are repeated.

Alternatively, as shown in FIG. 513, when the frame counter
equals the number of frames to be processed, Step 547 com-
putes the normalization of the accumulated bispectrum data.

4o The inverse bispectrum is computed in step 551 and output of
the inverse bispectrum occurs in step 553.

The Sliding Window aspect of embodiments of the inven-
tion is further discussed in the following paragraphs. In par-
ticular, the second aspect of the repartitioned Speckle algo-

45 rithm was the creation of a sliding window for bispectrum
storage. FIG. 5C is an exemplary flow chart of the reparti-
tioned Speckle Algorithm after adding a Sliding Window in a
hardware implementation. In step 561 of FIG. 5C, the frame
counter is set to 0. A frame of a time sequenced image is read

50 in step 563. In step 567, the bispectrum of the frame is com-
puted. Determining whether the computed bispectrum buffer
is full with 30 accumulated bispectrum computations occurs
in step 587A.

When the buffer is NOT full in step 587A, in step 591, the
55 next oldest becomes the oldest computed bispectrum frame

and step 569 adds the next computed bispectrum to the pre-
vious accumulated bispectrum computations and then pro-
ceeds to step 587B to determine whether the buffer is now
full. In step 587B, when the buffer is not full, the frame

60 counteris incrementedin step 571A and the method returns to
step 563.

Alternatively, when the buffer is full in step 587A, step 589
subtracts the oldest computed bispectrum frame of the accu-
mulated bispectrum computations from the previous 30 accu-

65 mulated bispectrum computations to produce 29 previous
accumulated bispectrum computations. Step 569 adds the
next computed bispectrum to the previous 29 accumulated

US 8,300,968 B2
9

bispectrum computations to provide the next 30 accumulated
bispectrum computations and, in step 591, the next oldest
becomes the oldest computed bispectrum frame. The flow
then proceeds to step 587B to determine whether the buffer is
now full (i.e., 30 accumulated bispectrum computations).

In step 58713, when the buffer is full, the 30 accumulated
bispectrums are normalized in step 577. Next, the bispectrum
is inverted in step 581. Step 583 outputs the inverted spectrum
and step 571B increments the frame counter and the method
returns to step 563.

FIG. 6A shows the computational flow of the original
Speckle algorithm of the background art. As shown in FIG.
6A, the bispectrum frame computation 701 is performed 30
times for 30 consecutive frames in order to compute/process
a first single corrected frame 703. This process of producing
bispectrum frame computations 701 is repeated again and
again for a next set of 30 consecutive frames before a next
single corrected frame 703 is computed. For example, in the
original Speckle algorithm, 1800 bispectrum frame compu-
tations were required to generate 1 second of enhanced video
(i.e., 30 bispectrums/framex60 frames/secxl sec).

FIG. 6B is a computational flow diagram of the improved,
repartitioned Speckle algorithm implementedby the embodi-
ments of the invention. As shown in FIG. 613, a compute (and
store) bispectrum computation 702 is performed for an initial
30 bispectrums. Then a single corrected frame 703 is com-
puted. However, as shown in FIG. 613, in the repartitioned
Speckle algorithm of embodiments of the invention, only 1
additional compute (and store) bispectrum operation 702 pro-
vides a next single corrected frame 703 after the compute (and
store) bispectrum operation 703 of the initial 30 compute
(and) store bispectrum operations 702. Thus, as can be seen
from FIG. 613, embodiments ofthe invention achieve a speed-
up, in terms of computing the corrected frame 703 in com-
parison withthebackground art Speckle algorithm, by storing
the previous 30 bispectrum computations in memory. There-
fore, for each new frame, embodiments of the invention com-
pute and store a next bispectrum 702 and use the previously
29 computed bispectrums. In this manner, a single next
bispectrum 702 is computed for each single corrected frame
703 and a speed-up in producing the corrected frames 703 is
provided by embodiments of the invention.

This speed-up in the production of single corrected frames
703 also comes with a large-scale reduction in bispectrum
computations per single corrected frame that dramatically
reduces the overall computations and increases the perfor-
mance of the repartitioned Speckle algorithm in comparison
to the original Speckle algorithm of the background art. This
will be further demonstrated through the performance testing
of a prototype system discussed below and by considering our
previous example. That is, for embodiments of the invention,
the computational rate for real-time processing of 1 second of
video uses 60 bispectrum transformations (i.e., 1 bispectrum/
framex60 frames/secx I sec) and only 60 bispectrum compu-
tations are utilized by the repartitioned Speckle algorithm as
opposed to 1800 bispectrum computations (i.e., a factor of 30
speed up) for the original Speckle algorithm of the back-
ground art.

As discussed above, such a computational rate would not
be possible on a standard microprocessor-based system
because of the additional memory required for such an
approach would be prohibitive in standard microprocessor
architectures and configurations. In addition, such an optimi-
zation of the original Speckle algorithm is non-intuitive, non-
obvious and an unexpected result since the architecture and
configuration of this new design for the memory architecture

10
would be incompatible with the memory architecture of stan-
dard microprocessor-based systems and PCs.

FIG. 7A and FIG. 7B are an exemplary circuit board layout
and a detailed block diagram of a hardware system for the

5 accelerated computation of the repartitioned Speckle algo-
rithm, respectively. FIG. 7A shows an overview of an
example of a circuit board layout 7002, that may be used in
conjunction with a host PC 7001. Circuit board 7002 may
contain a PCI bridge 7003, oscillator 7004, field-program-

l0 mable gate array (FPGA) 7005, TX synthesizer 7006, trans-
mitter 7007, and receiver 7008. In further detail, as shown in
FIG. 713, input/output video data to/from the system is pro-
vided through coaxial or other shielded connectors 7104,

15 which may be part of a board 7103, which may further be part
of another board 7102, which may be located, e.g., on a PMC
carrier 7101. These inputs 7104 are connected to equalizer
7105 and cable driver 7107, respectively. The output of the
equalizer 7105 and cable driver 7107 are connected to dese-

20 rializer 7106 and serializer 7108, respectively. Outputs form
the deserializer 7106 and serializer 7108 provide input sig-
nals for the framing receiver 7111 and framing transmitter
7113, respectively; these, and other components may be
implemented on an FPGA 7110. The FPGA 7110 may be

25 coupled to board 7103 via an XRM connector 7109, for
example, and it may also be coupled to an SDRAM 7127.
Outputs from the framing receiver 7111 and framing trans-
mitter 7113 provide inputs to the decode 7112 and encoder
7114, respectively. A startup function 7125 and Parameter

30 register file 7126 control the operation of a Speckle Engine
hardware function 7115.

The Speckle Engine hardware function further comprises
an extract tile function 7116 that is connected to a Demean

35 function 7117 that provides inputs to anApodization window
7118. The outputs of the Apodization window 7118 are con-
nected to a two-dimensional (2-D) Real-Complex FFT 7119.
The properties of the FFT 7119 include but are not limited to:
real-number inputs in the range of 0 to 1 (inclusive); 2-D FFT

40 sizes of at least 64x64, 256x256, 512x512 and 1024x1024;
and wherein the inverse transforms take similar sizes but are
range constrained at the output.

In addition, the outputs of the two-dimensional Real-Com-
plex FFT 7119 provide inputs to an Intensity function 7120,

45 whose outputs provide the data for a bispectrum computation
function 7121. The outputs of the bispectrum computation
function 7121 provide the inputs to an Averaging unit 7122.
The outputs of the Averaging unit 7122 are connected to a
two-dimensional Complex-Real FFT 7123. The outputs of

50 the two-dimensional Real-Complex FFT 7123 are connected
to an Apodization Gain unit 7124. The apparatus may further
incorporate a PLX 7128 that may be coupled between the
FPGA 7110 and a host PC (not shown).

Details of an exemplary implementation of the software
55 and hardware systems discussed above and shown in the

figures above and test results of the embodiments of the
invention are discussed in the following paragraphs. In order
to demonstrate and test embodiments of the invention, a
physical framework capable of capturing a variety of video

60 inputs and processing them using an FPGA was assembled.
As shown in FIG. 8A, the system consists of a PC workstation
801 fitted with a 16 GB CelerityTM card FPGA 806 and
advanced capture and display devices, such as the XenaLH
high-definition capture card 805 from AJA system. In devel-

65 oping the prototype FPGA solver, we needed to build the
computational components, state machines, and control logic
to handle baseline processing functionality. The communica-

US 8,300,968 B2
11

tion infrastructure required the appropriate memory control-
lers, host/solver communication channels, and access to the
necessary I/O device. The prototype system of FIG. 8A was
designed to meet, but is not limited to, the latest digital video
standards used in high definition TV (HDTV): 720p resolu-
tion (1280x720 @ 60 frames per second). This imposes
highly demanding constraints on the processing, much larger
than any known background art speckle implementation,
which typically use, but are not limited to sub-megapixel
images (512x512 @24 or 30 frames per second) and cannot
achieve realt-time throughput. Accordingly, the prototype
system also included AMD OpteronrM components 802 and
803, as well as a video card 804 (in this example, an NvidiaTM
7800 GTX video card).

An overview of the parameters of an exemplary HD Card
are shown in FIG. 8B. The High Definition (HD) Video Cap-
ture Card, as shown in FIG. 8A, supporting a wide range of
video formats, provides versatility and will lead to further
commercial applications of this project, and in other areas
beyond speckle image processing. HD-SDI signals were pro-
vided as inputs into the prototype accelerated Speckle solver
test system. After being captured by the HD card, they were
passed to the host PC and CelerityTM FPGA board for Speckle
algorithm processing. The "before" and "after" results are
output on two monitors. The purely software approach
required almost 35 seconds to generate a single frame of size
512 by 512 pixels. However, by utilizing embodiments of the
invention, as described above, our hardware/software co-pro-
cessor required less than 1 second. That is, as shown in FIG.
9, the demonstration and test hardware/software co-process-
ing solution outperformed the purely software approach by a
factor 40x. Further enhancement of the hardware solution is
possible through additional, parallel computational pipelines
to achieve an even greater speedup and thus enable real-time
image enhancement.

Note that the exemplary prototype system described above
represents just one, non-limiting example of many possible
implementations and embodiments of the invention. For
example, the system described above was implemented in a
host PC. However, it is also possible to implement such accel-
erated processing within an embedded platform, consisting of
an FPGA but no host PC. Additionally, the accelerated pro-
cessing can be performed within a graphics processing unit
(GPU), rather than an FPGA. Furthermore, other hardware
processing platforms, such as the Cell processor, could utilize
the invention described above to greatly enhance the perfor-
mance of the speckle algorithm

The foregoing description illustrates and describes
embodiments of the invention. Additionally, the disclosure
shows and describes only the preferred embodiments of the
invention, but as mentioned above, it is to be understood that
the invention is capable of use in various other combinations,
modifications, and environments and is capable of changes or
modifications within the scope of the inventive concept as
expressed herein, commensurate with the above teachings
and/or skill or knowledge of the relevant art. The embodi-
ments described hereinabove are further intended to explain
best modes known of practicing the invention and to enable
others skilled in the art to utilize the invention in such or other
embodiments and with the various modifications required by
the particular applications or uses of the invention. Accord-
ingly, the description is not intended to limit the invention to
the form or application disclosed herein. Also, it is intended
that the appended claims be construed to include alternative
embodiments.

12
What is claimed is:
1. A method for real-time computation of a Speckle algo-

rithm incorporating a sliding window, comprising:
initializing and setting up a plurality of memory locations;

5 	setting a frame counter to zero;
inputting a present frame of a time sequenced image;
computing a bispectrum of the present, frame;
determining whether a computed bispectrum buffer is full

with accumulated bispectrum computations and per-
10 	forming the following operations:

when the computed bispectrum buffer is not full,
setting a next oldest computed bispectrum frame to be

an oldest computed bispectrum frame,

15 	adding the computed bispectrum of the present frame
to the previous accumulated bispectrum frame
computations and,

if the computed bispectrum buffer is still not full,
incrementing the frame counter and return to the step of

20 	inputting the present frame;
and when the computed bispectrum buffer is full,

subtracting the oldest computed bispectrum frame
from the accumulated bispectrum frame computa-
tions,

25 	setting a next oldest computed bispectrum frame to be
the oldest computed bispectrum frame,

adding the computed bispectrum of the present frame
to the previous accumulated bispectrum frame
computations and,

30 	if the buffer is still not full,
incrementing the frame counter and return to the step of

inputting the present frame;
and when the computed bispectrum buffer is full,

normalizing the accumulated computed bispectrums;
35 	inverting the normalized accumulated bispectrums;

outputting the normalized accumulated inverted bispec-
trums;

incrementing the frame counter; and
returning to the step of inputting the present frame.

40 2. A system for real-time computation of the method as
recited in claim 1, the system comprising:

• host computer;
• PCI bridge;
an oscillator;

45 	a transmitter synthesizer;
• serializer;
• receiver; and
an FPGA,
wherein at least one of the host computer or the FPGA,

50 	either alone or in combination, is configured for:
said computing a bispectrum of the present frame; and
said determining whether a computed bispectrum buffer is

full with accumulated bispectrum computations and per-
forming the following operations:

55 	when the computed bispectrum buffer is not full,
setting a next oldest computed bispectrum frame to be

an oldest computed bispectrum frame,
adding the computed bispectrum of the present frame

to the previous accumulated bispectrum frame
60 	 computations' and,

if the computed bispectrum buffer is still not full,
incrementing the frame counter and returning to the
step of inputting the present frame;

and when the computed bispectrum buffer is full,
65 subtracting the oldest computed bispectrum frame

from the accumulated bispectrum frame computa-
tions,

US 8,300,968 B2
13

setting a next oldest computed bispectrum frame to be
the oldest computed bispectrum frame,

adding the computed bispectrum of the present frame
to the previous accumulated bispectrum frame
computations and,

if the buffer is still not full, incrementing the frame
counter and returning to the step of inputting the
present frame;

and when the computed bispectrum buffer is full,
normalizing the accumulated computed bispectrums;
inverting the normalized accumulated bispectrums;
outputting the normalized accumulated inverted bispec-

trums;
incrementing the frame counter; and
returning to the step of inputting the present frame.
3. The system of claim 2, further comprising:
input and output shielded connectors configured to input

and output video data;
an equalizer and cable driver connected to the input and

output shielded connectors; and
a deserializer,
wherein the deserializer and serializer are connected to

respective outputs of the equalizer and cable driver.
4. The system of claim 3, wherein the FPGA further com-

prises:
a framing receiver and framing transmitter connected to the

outputs from the deserializer and serializer; and
a decoder and encoder connected to the respective outputs

from the framing receiver and framing transmitter; and
an SDRAM and the PCI Bridge connected to the FPGA,
wherein the deserializer is connected to the framing

receiver and the serializer is connected to the framing
transmitter.

5. The system of claim 4, wherein the FPGA comprises a
Speckle engine and the Speckle engine further comprises:

a startup function and parameter register file configured to
control system operation;

an extract tile function connected to a Demean function and
configured to provide inputs to an Apodization window;

a first two-dimensional (2-D) Real-Complex Fast Fourier
Transform (FFT) connected to the outputs of the
Apodization window;

an Intensity function connected to the 2-D Real-Complex
FFT;

a Compute Bispectrum function connected to outputs of
the Intensity function;

an Averaging Unit connected to outputs of the Compute
Bispectrum function;

a second two -dimensional (2-D) Real-Complex FFT con-
nected to outputs of the Averaging Unit; and

an Apodization Gain unit connected to outputs of the sec-
ond two-dimensional (2-D) Real-Complex FFT,

14
wherein the startup function is connected to the parameter

register file, and the Speckle engine, the PCI bridge is
connected to the startup function and the SDRAM is
connected to the Speckle engine.

5 	6. The system of claim 5, wherein at least one of the
2D-FFTs is configured to process real-number inputs in a
range of at least 0 to 1, inclusive.

7. The system of claim 5, wherein the FFT sizes are at least
64x64, 256x256, 512x512 and 1024x1024.

8. The system of claim 5, wherein inverse FFT sizes are at
10 least 64x64, 256x256, 512x512 and 1024x1024 and a range

is constrained at the output.
9. A non-transitory machine -readable medium containing

executable instructions that, when executed by a machine,
15 cause the machine to implement a method for real-time com-

putation of a Speckle algorithm incorporating a sliding win-
dow, comprising:

initializing and setting up a plurality of memory locations;
setting a frame counter to zero;
inputting a present frame of a time sequenced image;

~~ computing a bispectrum of the present frame;
determining whether a computed bispectrum buffer is full

with accumulated bispectrum computations and per-
forming the following operations:
when the computed bispectrum buffer is not full,

25 	
setting a next oldest computed bispectrum frame to be

an oldest computed bispectrum frame,
adding the computed bispectrum of the present frame

to the previous accumulated bispectrum frame

30 	
computations and,

if the computed bispectrum buffer is still not full,
incrementing the frame counter and return to the step of

inputting the present frame;
and when the computed bispectrum buffer is full,

35 subtracting the oldest computed bispectrum frame
from the accumulated bispectrum frame computa-
tions,

setting a next oldest computed bispectrum frame to be
the oldest computed bispectrum frame,

adding the computed bispectrum of the present frame
4o 	

to the previous accumulated bispectrum frame
computations and,

if the buffer is still not full,
incrementing the frame counter and return to the step of

inputting the present frame;
45 	

and when the computed bispectrum buffer is full,
normalizing the accumulated computed bispectrums;
inverting the normalized accumulated bispectrums;
outputting the normalized accumulated inverted bispec-

trums;
So incrementing the frame counter and returning to the step of

inputting the present frame.

	8300968-p0001.pdf
	8300968-p0002.pdf
	8300968-p0003.pdf
	8300968-p0004.pdf
	8300968-p0005.pdf
	8300968-p0006.pdf
	8300968-p0007.pdf
	8300968-p0008.pdf
	8300968-p0009.pdf
	8300968-p0010.pdf
	8300968-p0011.pdf
	8300968-p0012.pdf
	8300968-p0013.pdf
	8300968-p0014.pdf
	8300968-p0015.pdf
	8300968-p0016.pdf
	8300968-p0017.pdf
	8300968-p0018.pdf
	8300968-p0019.pdf
	8300968-p0020.pdf
	8300968-p0021.pdf

