Abstract for DPS Meeting – 2012

CORE

Thermal Reactions of H₂O₂ on Icy Satellites and Small Bodies: Descent with Modification?

Reggie L. Hudson and Mark J. Loeffler Astrochemistry Laboratory NASA Goddard Space Flight Center Greenbelt, MD 20771

Magnetospheric radiation drives surface and near-surface chemistry on Europa. but below a few meters Europa's chemistry is hidden from direct observation. As an example, surface radiation chemistry converts H₂O and SO₂ into H₂O₂ and $(SO_4)^{2-}$, respectively, and these species will be transported downward (Greenberg, Astrobiology, 2010, 10, 275) for possible thermally-driven reactions. However, while the infrared spectra and radiation chemistry of H₂O₂-containing ices are well documented, this molecule's thermally-induced solid-phase chemistry has seldom been studied. Here we report new results on thermal reactions in $H_2O + H_2O_2 + SO_2$ ices at 50 - 130 K. As an example of our results, we find that warming $H_2O + H_2O_2 + SO_2$ ices promotes SO_2 oxidation to $(SO_4)^{2^2}$. These results have implications for the survival of H₂O₂ as it descends, with modification, towards a subsurface ocean on Europa. We suspect that such redox chemistry may explain some of the observations related to the presence and distribution of H₂O₂ across Europa's surface as well as the lack of H₂O₂ on Ganymede and Callisto. [This work was supported by NASA's Exobiology, Outer Planets, and Planetary Geology and Geophysics programs, and The Goddard Center for Astrobiology.]