
Formal Methods in System Design manuscript No.
(will be inserted by the editor)

Optimized Temporal Monitors for SystemC

Deian Tabakov · Kristin Y. Rozier ·

Moshe Y. Vardi

Received: date / Accepted: date

Abstract SystemC is a modeling language built as an extension of C++. Its
growing popularity and the increasing complexity of designs have motivated
research efforts aimed at the verification of SystemC models using assertion-
based verification (ABV), where the designer asserts properties that capture
the design intent in a formal language such as PSL or SVA. The model then
can be verified against the properties using runtime or formal verification
techniques. In this paper we focus on automated generation of runtime moni-
tors from temporal properties. Our focus is on minimizing runtime overhead,
rather than monitor size or monitor-generation time. We identify four issues
in monitor generation: state minimization, alphabet representation, alphabet
minimization, and monitor encoding. We conduct extensive experimentation
and identify a combination of settings that offers the best performance in terms
of runtime overhead.

Keywords SystemC, assertion checkers, monitors, testing

Work supported in part by NSF grants CCF-0613889, CCF-0728882, and Grant EIA-
0216467, BSF grant 9800096, the Shared University Grid at Rice (SUG@R), NASA’s
Airspace Systems Program, a gift from Intel, and a partnership between Rice University,
Sun Microsystems, and Sigma Solutions.

A preliminary version of this work was reported by D. Tabakov and M.Y. Vardi in “Op-
timized temporal monitors for SystemC,” Proc. 1st Int’l Conf. on Runtime Verification,
Lecture Notes in Computer Science 6418, Springer, pp. 436–451, 2010.

Deian Tabakov
Schlumberger Information Solutions, 5599 San Felipe Str. #100, Houston, TX 77056, USA
E-mail: dtabakov@slb.com

Kristin Y. Rozier
NASA Ames Research Center, Moffett Field CA, 94035, USA
E-mail: Kristin.Y.Rozier@nasa.gov

Moshe Y. Vardi
Rice University, 6100 Main Str. MS-132, Houston, TX 77005, USA
E-mail: vardi@cs.rice.edu

https://ntrs.nasa.gov/search.jsp?R=20120016018 2019-08-30T22:49:19+00:00Z

2 Deian Tabakov et al.

1 Introduction

The increasing complexity of hardware designs and systems-on-chip (SoC),
together with shortening timelines from prototype to mass production, have
challenged the traditional RTL–based design procedures. A new paradigm was
needed to allow modeling at higher levels of abstraction, gradual refinement
of the model, and execution of the model during each design stage. SystemC1

has emerged as one of the leading solutions of the “design gap.”

SystemC is a system modeling language built as an extension of C++,
providing libraries for modeling and simulation of systems on chip. It lever-
ages the object-oriented encapsulation and inheritance mechanisms of C++
to allow for modular designs and IP transfer/reuse [24]. Various libraries pro-
vide further functionality, for example, SystemC’s Transaction-Level Modeling
(TLM) library defines structures and protocols that streamline the develop-
ment of high-level models. Thanks to its open-source license, actively involved
community, and wide industrial adoption, SystemC has become a de facto
standard modeling language within a decade after its first release.

Together, the growing popularity of SystemC and the increasing complexity
of designs have motivated research efforts aimed at the verification of SystemC
models using assertion-based verification (ABV), a widely used method for val-
idation of hardware and software models [26]. With ABV, the designer asserts
properties that capture design intent in a formal language, e.g., PSL2 [17] or
SVA3 [45]. The model then is verified against the properties using runtime
verification or formal verification techniques.

Most ABV efforts for SystemC focus on runtime verification (also called
dynamic verification, testing, and simulation). This approach involves execut-
ing the model under verification (MUV) in some environment, while running
monitors in parallel with the model. The monitors observe the inputs to the
MUV and ensure that the behavior or the output is consistent with the as-
serted properties [24]. The complementary approach of formal verification at-
tempts to produce a mathematical proof that the MUV satisfies the asserted
properties. Our focus in this paper is on runtime verification.

A successful ABV solution requires two components: a formal declarative
language for expressing properties, and a mechanism for checking that the
MUV satisfies the properties. There have been several attempts to develop a
formal declarative language for expressing temporal SystemC properties by
adapting existing languages (see [42] for a detailed discussion). Tabakov et
al. [42] argued that standard temporal property languages such as PSL and
SVA are adequate to express temporal properties of SystemC models, after
extending them with a set of Boolean assertions that capture the event-based
semantics of SystemC. Enriching the Boolean layer, together with existing
clock-sampling mechanisms in PSL and SVA, enables specification of proper-

1 IEEE Standard 1666-2005
2 Property Specification Language, IEEE Standard 1850-2007
3 SystemVerilog Assertions, IEEE Standard 1800-2005

Optimized Temporal Monitors for SystemC 3

ties at different levels of abstraction. Tabakov and Vardi [41] then showed how
a nominal change of the SystemC kernel enables monitoring temporal asser-
tions expressed in the framework of [42] with overhead of about 0.05% – 1%
per monitor. (Note that [41] used hand-generated monitors, while this work
focuses on automatically generated monitors.)

The second component needed for assertion-based verification, a mecha-
nism for checking that the MUV satisfies the asserted properties, requires a
method for generating runtime monitors from formal properties. For simple
properties it may be feasible to write the monitors manually (c.f., [20]); how-
ever, in most industrial workflows, writing and maintaining monitors manually
would be an extremely high-cost, labor-intensive, and error-prone process [1].
This has inspired both academia and industry to search for methods to auto-
mate this process.

Formal, automata-theoretic foundations for monitor generation for tempo-
ral properties were laid out in [32], which showed how a deterministic finite
word automaton (DFW) can be generated from a temporal property such that
the automaton accepts the finite traces that violate the property. Many works
have elaborated on that approach, c.f. [2, 3, 14, 18, 19, 23]); see the discussion
below of related work. Many of these works, e.g. [2], handle only safety prop-
erties, which are properties whose failure is always witnessed by a finite trace.
Here, as in [14], we follow the framework of [32] in its full generality and we
consider all properties whose failure may be witnessed by a finite trace. For
example, the failure of the property “eventually q” can never be witnessed by
a finite trace, but the failure of the property “always p and eventually q” may
be witnessed by a finite trace.

A priori it is not clear how monitor size is related to performance, and
most works on this subject have focused on underlying algorithmics, or on
heuristics to generate smaller monitors, or on fast monitor generation. This
paper is an attempt to shift the focus toward optimizing the runtime overhead
that monitor execution adds to simulation time. We believe that this reflects
more accurately the priorities of the industrial applications of monitors [2].

A large model may be accompanied by thousands of monitors [5], most of
which are compiled once and executed many times, so lower runtime overhead
is a crucial optimization criterion, much more than monitor size or monitor-
generation time. In this paper we identify several algorithmic choices that need
to be made when generating temporal monitors for monitoring frameworks im-
plemented in software. (Please note that here we ignore the issue of integrating
the monitor into the monitored code; c.f. [41]). We conduct extensive experi-
mentation to identify the choices that lead to superior performance.

We identify four issues in monitor generation: state minimization, should
nondeterministic automata be determinized online or offline; alphabet repre-

sentation, should alphabet letters be represented explicitly or symbolically; al-

phabet minimization, should mutually exclusive alphabet letters be eliminated;
and monitor encoding, how should the transition function of the monitor be
expressed. These options give us a workflow space of 33 different workflows for
generating a monitor from a nondeterministic automaton.

4 Deian Tabakov et al.

We evaluate the performance of different monitor implementations using a
SystemC model4 representing an adder [41]. Its advantages are that it is scal-
able and creates events at many different levels of abstraction. For temporal
properties we use linear temporal logic formulas. We use a mixture of pattern
and random formulas, giving us a collection of over 1,300 temporal proper-
ties. We employ a tool called CHIMP (CHIMP Handles Instrumentation and
Monitoring of Properties) to manage the transformation of LTL formulas into
monitors using each of the 33 workflows. Our experiments identify a specific
workflow that offers the best performance in terms of runtime overhead.

2 SystemC

Many contemporary systems consist of application-specific hardware and soft-
ware, and tight production cycles make it impossible to wait for the hardware
to be manufactured before starting to design the software. In a typical system-
on-chip architecture [10], for example, a cell phone, there are hardware com-
ponents that are controlled by software. In addition, many hardware design
decisions, for example, numeric precision or the width of communication buses,
are determined based on the needs of the software running on them. This has
led to a design methodology where hardware and software are co-designed in
the same abstract model. The partitioning between what will be implemented
in hardware and what will be written as software is intentionally left blurry
at the beginning, allowing the designers the ability to consider different con-
figurations before committing a functional block to silicon or software.

SystemC is a system-level design framework that is capable of handling
both hardware and software components. It allows a designer to combine com-
plex electronic systems and control units in a single model, to simulate and ob-
serve the behavior, and to check if it meets the performance objectives. In the
strict sense of the word, SystemC is not a new language. In fact, it is a library
of C++ classes and macros that model hardware components, like modules and
channels; provide hardware-specific data types, like 4-valued logic types; and
define both abstract and specific communication interfaces, like Boolean input.
SystemC is built entirely on standard C++, which means that every SystemC
model can be compiled with a C++ compiler. The compiled model has to be
linked with a SystemC simulator (for example, the OSCI-provided reference
implementation) to produce an executable program.

Software typically executes sequentially, partly because most computer ar-
chitectures have a single CPU core, and partly because a single thread of ex-
ecution is easier to manage by the operating system. However, in a hardware
system, many components execute simultaneously. For example, when using a
cellphone to make a call, we activate simultaneously a radio subsystem that
handles two-way communication with the cell tower, a signal processing unit
that converts voice to signal and signal to voice, and a display controller that

4 Note that the comparison is between different monitor implementations and is applicable
to other C or C++ modeling languages.

Optimized Temporal Monitors for SystemC 5

shows details about the conversation on the screen. Simulating such a system
in software requires the ability to simulate a large number of tasks executing
simultaneously, and is critical for the early stages of the design process.

SystemC addresses this issue by providing mechanisms for simulating (in
software) parallel execution. This is achieved by a layered approach where
high-level constructs share an efficient simulation engine [24]. The base layer of
SystemC provides an event-driven simulation kernel that controls the model’s
processes in an abstract manner. The kernel leverages a concept borrowed from
hardware design languages, called delta cycles , to give the executing processes
the illusion of parallel execution.

In SystemC, modules are the most fundamental building blocks. Similar to
C++ objects, modules allow related functionality and data to be incorporated
into individual entities and to remain inaccessible by the other components
of the system unless exposed explicitly. This allows modules to be developed
independently and to be reused or sold in commercial libraries [8]. As an
example, the skeleton of a SystemC module is presented in Listing 1:

1 SC_MODULE(Nand) {
2 // Definitions of processes, internal data, etc
3
4 SC_CTOR(Nand) {
5 // Body of constructor,
6 // Process registration,
7 // Definition of sensitivities, etc.
8 }
9 };

Listing 1 Skeleton code for defining a SystemC module.

In this code fragment, SC_MODULE is one of SystemC’s macros, which
declares a C++ class named “Nand.” Like any other C++ class, a module can
declare local variables and functions. SC_CTOR is another predefined macro
that simplifies the definition of a constructor for the module. A constructor
of a module serves the same purpose as a constructor of a C++ class (i.e.,
initializing local variables, executing functions, etc.), but has some additional
functionality that is specific to SystemC. For example, the processes of the
module have to be declared inside the constructor. This is done using pre-
defined SystemC macros that specify which class functions should be treated
by the SystemC kernel as runnable processes. After declaring each process, the
user can optionally specify its sensitivity list . The sensitivity list may include a
subset of the channels and signals defined in the module, as well as externally
defined clock objects or events. Whenever there is a change of value of any of
the channels or signals listed in the sensitivity list, the corresponding process
is triggered for execution. Listing 2 illustrates these concepts.

1 SC_MODULE(Nand) {
2 // Input signal ports
3 sc_in <bool> A, B;
4 // Output signal port
5 sc_out<bool> F;
6

6 Deian Tabakov et al.

7 // Definitions of processes
8 void some_function() {
9 F.write(!(A.read() && B.read()));

10 }
11 SC_CTOR(Nand) {
12 // Indicate that this function
13 // is a ‘‘method process’’
14 SC_METHOD(some_function);
15 sensitive << A << B;
16 }
17 };

Listing 2 A SystemC module of a NAND gate

This code fragment declares one output and two input signals of type bool.
The function some function() implements the expected functionality of
the NAND gate. The macro SC METHODdeclares it to be a SystemC process.
When triggered, a method process executes from start to finish. In particular,
a method process cannot suspend while waiting for some resource to become
available. In contrast, a thread process may suspend its execution by calling
wait() . The state of the thread process at the moment of suspension is pre-
served, and upon subsequent resumption (for example, when the waited-for
resource becomes available) the execution continues from the point of sus-
pension. Thread processes are declared using the macro SC_THREAD. Both
thread and method processes can define a sensitivity list. Each sensitivity list
declaration applies to the process immediately preceding the declaration. The
sensitive declaration at the end of the module indicates that the method
process some function() should be triggered as soon as one of the input
signals changes its value.

3 Related work

Most related papers that deal with monitoring focus on simplifying the monitor
or reducing the number of states. Using smaller monitors is important for in-
circuit monitoring, for example, for post-silicon verification [5], but for pre-
silicon verification, using lower-overhead monitors is more important. There is
a paucity of prior works focusing on minimizing runtime overhead.

For early work on constructing temporal monitors see [29]. Several papers
focus on building monitors for informative prefixes, which are prefixes that
violate input assertions in an “informative way.” Kupferman and Vardi [32]
define informative prefixes and show how to use an alternating automaton to
construct a nondeterministic finite word automaton (NFW) of size 2O(ψ) that
accepts the informative prefixes of an LTL formula ψ. Kupferman and Lam-
pert [31] use a related idea to construct an NFW automata of size 2O(ψ) that
accepts at least one prefix of every trace that violates a safety property ψ.
Two constructions that build monitors for informative prefixes are by Geilen
[19] and by Finkbeiner and Sipma [18]. Geilen’s construction is based on the
automata-theoretic construction of [22], while that of Finkbeiner and Sipma

Optimized Temporal Monitors for SystemC 7

is based on the alternating-automata framework of [32]. Neither provide ex-
perimental results.

Armoni et al. [2] describe an implementation based on [32] in the context
of hardware verification. Their experimental results focus on both monitor size
and runtime overhead. They showed that the overhead is significantly lower
than that of commercial simulators. Stolz and Bodden [40] use monitors con-
structed from alternating automata to check specifications of Java programs,
but do not give experimental results. For other works that focus on minimiza-
tion see [4, 30, 33].

Giannakopoulou and Havelund [23] apply the construction of [22] to pro-
duce nondeterministic monitors for X–free LTL formulas, and simulate a de-
terministic monitor on the fly. They provide one experimental result from the
early testing of their implementation. A weakness of their approach is that
their LTL semantics distinguishes between finite and infinite traces, which
implies that LTL properties may have different meanings in the context of
dynamic and formal verification.

Morin-Allory and Borione [35] show how to construct hardware modules
implementing monitors for properties expressed using the simple subset [25]
of PSL. Pierre and Ferro [37] describe an implementation based on this con-
struction, and present some experimental results that show runtime overhead,
but do not present any attempts to minimize it. Boulé and Zilic [5] show a
rewriting-based technique for constructing monitors for the simple subset of
PSL. They provide substantial experimental results, but focus on monitor size
and not on runtime overhead.

Chen et al. describe a general framework of Monitoring-Oriented Program-
ming (MOP) [11]. In MOP, runtime monitoring is supported as a fundamental
principle for building reliable software: monitors are automatically synthesized
from specified properties and integrated into the original system to check its
dynamic behaviors.

D’Amorim and Roşu [14] show how to construct monitors for minimal bad

prefixes of temporal properties without any restrictions regarding whether the
property is a safety property or not. They construct a nondeterministic finite
automaton of size 2O(ψ) that extracts the safety content from ψ, and simulate a
deterministic monitor on the fly. They present two optimizations: one reduces
the size of the automaton, while the other searches for a good ordering of the
outgoing transitions so that the overall expected cost of running the monitor
will be smallest. They measure experimentally the size of the monitors for
a few properties, but do not measure their runtime performance. A similar
construction, but without any of the optimizations, is also described by Bauer
et al. [3].

4 Theoretical background

Let AP be a finite set of atomic propositions and let Σ = 2AP be a finite
alphabet. Given a temporal specification ψ over AP , we denote the set of

8 Deian Tabakov et al.

models of the specification with L(ψ) = {w ∈ Σω | w |= ψ}. Let u ∈ Σ∗ denote
a finite word. We say that u is a bad prefix for L(ψ) iff ∀σ ∈ Σω : uσ 6∈ L(ψ)
[32]. Intuitively, a bad prefix cannot be extended to an infinite word in L(ψ).
A minimal bad prefix does not have a bad prefix as a strict prefix.

A nondeterministic Büchi automaton (NBW) is a tuple A = 〈Σ,Q, δ,Q0, F 〉,
where Σ is a finite alphabet, Q is a finite set of states, δ : Q × Σ → 2Q is a
transition function, Q0 ⊆ Q is a set of initial states, and F ⊆ Q is a set of
accepting states. If q′ ∈ δ(q, σ) then we say that we have a transition from
q to q′ labeled by σ. We extend the transition function δ : Q × Σ → 2Q to
δ : 2Q ×Σ∗ → 2Q as follows: for all Q′ ⊆ Q, δ(Q′, a) = ∪q∈Q′δ(q, a), and for
all σ ∈ Σ∗, δ(q, aσ) = δ(δ(q, a), σ). A run of A on a word w = a0a1 . . . ∈ Σω

is a sequence of states q0q1 . . ., such that q0 ∈ Q0 and qi+1 ∈ δ(qi, ai) for some
ai ∈ Σ. For a run r, let Inf(r) denote the states visited infinitely often. A
run r of A is called accepting iff Inf(r) ∩ F 6= ∅. The word w is accepted by
A if there is an accepting run of A on w. For a given Linear Temporal Logic
(LTL) or PSL/SVA formula ψ, we can construct an NBW that accepts pre-
cisely L(ψ) [44]. We use SPOT [16], an LTL-to-Büchi automaton tool, which
is among the best available in terms of performance [39]. Using our framework
for PSL or SVA would require an analogous translator.

A nondeterministic automaton on finite words (NFW) is a tuple A =
〈Σ,Q, δ,Q0, F 〉. An NFW can be determinized by applying the subset con-

struction, yielding a deterministic automaton on finite words (DFW) A′ =
〈Σ, 2Q, δ′, {Q0}, F ′〉, where δ′(Q, a) =

⋃
q∈Q δ(q, a) and F ′ = {Q : Q∩F 6= ∅}.

For a given NFW A, there is a canonical minimal DFW that accepts L(A) [28].
In the remainder of this paper, given an LTL formula ψ, we use ANBW(ψ) to
mean an NBW that accepts L(ψ), and ANFW(ψ) (respectively, ADFW(ψ)) to
mean an NFW (respectively, DFW) that rejects the minimal bad prefixes of
L(ψ).

Building a monitor for a property ψ requires building ADFW(ψ). Our work
is based on the construction by d’Amorim and Roşu [14], which produces
ANFW(ψ). Their construction assumes an efficient algorithm for constructing
ANBW(ψ) and is, therefore, is applicable to properties expressed in any a wide
variety of specification languages (for example, if the property is expressed
in LTL, ANBW(ψ) can be constructed using [16]; for PSL specifications, the
construction of ANBW(ψ) can be done using [9]; etc.) Below we sketch the
construction of [14] and then we show how we construct ADFW(ψ).

Given an NBW A = 〈Σ,Q, δ,Q0, F 〉 and a state q ∈ Q, define Aq =
〈Σ,Q, δ, q, F 〉. Intuitively, Aq is the NBW automaton defined over the struc-
ture of A but replacing the set Q0 of initial states with {q}. Let empty(A) ⊆ Q

consist of all states q ∈ Q such that L(Aq) = ∅, i.e., all states that cannot
start an accepting run. The states in empty(A) are “unnecessary” in A, be-
cause they cannot appear on an accepting run. We can compute empty(A)
efficiently using nested depth-first search [13]. Deleting the states in empty(A)
is done using the function call spot::scc filter() , which is available in
SPOT.

Optimized Temporal Monitors for SystemC 9

To generate a monitor for ψ, d’Amorim and Roşu build ANBW(ψ) and
remove empty(ANBW(ψ)). They then treat the resulting automaton as an
NFW, with all states taken to be accepting states. That is, the resulting NFW
is A = 〈Σ,Q′, δ′, Q0∩Q′, Q′〉, where Q′ = Q−empty(A), and δ′ is δ restricted
to Q′ ×Σ. Let the automaton produced by this algorithm be AdR

NFW
(ψ).

Theorem 1 [14] AdR
NFW

(ψ) rejects precisely the minimal bad prefixes of ψ.

From now on we refer to AdR
NFW

(ψ) simply as ANFW(ψ). ANFW(ψ) is not
useful as a monitor because of its nondeterminism. One way to construct a
monitor from ANFW(ψ) is to determinize it explicitly using the subset con-
struction. In the worst case the resulting ADFW(ψ) is of size exponential of the
size of ANFW(ψ), which is why explicit determinization has rarely been used.
We note, however, that we can minimize ADFW(ψ), getting a minimal DFW.
It is not clear, a priori, what impact this determinization and minimization
will have on runtime overhead.

An alternative way of constructing a monitor from ANFW(ψ) that avoids
the potential for exponential blow up of the number of states is to use ANFW(ψ)
to simulate a deterministic monitor on the fly. d’Amorim and Roşu describe
such a construction in terms of nondeterministic multi-transitions and binary
transition trees [14]. Instead of introducing these formalisms, here we use in-
stead the approach in [2, 43], which presents the same concept in automata-
theoretic terms. The idea in both papers is to perform the subset construc-
tion on the fly, as we read the inputs from the trace. Given ANFW(ψ) =
〈Σ,Q, δ,Q0, Q〉 and a finite trace a0, . . . , an−1, we construct a run P0, . . . , Pn
of ADFW(ψ) as follows: P0 = {Q0} and Pi+1 =

⋃
s∈Pi

δ(s, ai). The run is ac-
cepting iff Pi = ∅ for some i ≥ 0 (i.e., no transition is enabled), which means
that we have read a bad prefix. Notice that each Pi is of size linear in the
size of ANFW(ψ), thus we have avoided the exponential blowup of the deter-
minization construction, with the price of having to compute transitions on
the fly [2, 43].

We do not consider the property as failing if eventualities are not satisfied
by the end of the simulation. Doing so would require changing the semantics
of the specification and would require special treatment of the last state. Our
approach maintains the same semantics for dynamic and formal verification
runs and only bad prefixes are reported as failures.

The workflows that we use to generate monitors can be grouped into two
types, summarized in Fig. 1.

5 Monitor generation

We now describe various issues that arise when constructing ADFW(ψ).

10 Deian Tabakov et al.

LTL NBW

DFW

C/C++
 Monitor

SPOT CHIMP

BRICS

Automaton CHIMP

Fig. 1 The two types of workflows we used to generate monitors. The focus of our work is
on the paths from NBW to a monitor; we use SPOT as a pre-processor to generate pruned
NBWs from LTL formulas.

5.1 State minimization

As noted above, we can construct ADFW(ψ) on the fly. We discuss in detail
below how to express ADFW(ψ) as a collection of C++ expressions. The alter-
native is to feed ANFW(ψ) into a tool that constructs a minimal equivalent
ADFW(ψ). We use the BRICS Automaton tool [34]. Clearly, determinization
and minimization, as well as subsequent C++ compilation, may incur a non-
trivial computational cost. Still such a cost might be justifiable if the result
is reduced runtime overhead, as assertions have to be compiled only once,
but then run many times. A key question we want to answer is whether it is
worthwhile to determinize ANFW(ψ) explicitly, rather than on the fly.

5.2 Alphabet representation

In our formalism, the alphabet Σ of ANFW(ψ) is Σ = 2AP , where AP is
the set of atomic propositions appearing in ψ. In practice, tools that generate
ANBW(ψ) (SPOT in our case) often use B(AP), the set of Boolean formulas
over AP , as the automaton alphabet: a transition from state q to state q′

labeled by the formula θ is a shortcut to denote all transitions from q to q′

labeled by σ ∈ 2AP, when σ satisfies θ. When constructing ADFW(ψ) on the
fly, we can use formulas as letters. Automata-theoretic algorithms for deter-
minization and minimization of NFWs, however, require comparing elements
of Σ, which makes it impractical to use Boolean formulas for letters. We need
a different way, therefore, to describe our alphabet.5 Below we show two ways
to describe the alphabet of ANFW(ψ) in terms of 16-bit integers.

5.2.1 Assignment-based representation

The explicit approach is to represent Boolean formulas in terms of their satisfy-
ing truth assignments. Let AP = {p1, p2, . . . , pn} and let F(p1, p2, . . . , pn) be a
Boolean function. An assignment to AP is an n-bit vector a = [a1, a2, . . . , an].
An assignment a satisfies F iff F(a1, a2, . . . , an) evaluates to 1. Let An be

5 BRICS Automaton represents the alphabet of the automaton as Unicode characters,
which have one-to-one correspondence to the set of 16-bit integers.

Optimized Temporal Monitors for SystemC 11

the set of all n-bit vectors and let I : An → Z+ return the integer whose
binary representation is a, i.e., I(a) = a12

n−1 + a22
n−2 + . . . + an2

0. We
define sat(F) = {I(a) : a satisfies F}. Thus, the explicit representation of
the automaton ANFW(ψ) = 〈B(AP), Q, δ,Q0, F 〉 is Aabr

NFW
(ψ)= 〈{0, . . . , 2n −

1}, Q, δabr, Q0, F 〉, where q′ ∈ δabr(q, z) iff q′ ∈ δ(q, σ) and z ∈ sat(σ).

5.2.2 BDD-based representation

The symbolic approach to alphabet representation leverages the fact that Or-
dered Binary Decision Diagrams (BDDs) [6, 7] provide canonical representa-
tions of Boolean functions. A BDD is a rooted, directed, acyclic graph with
one or two terminal nodes labeled 0 or 1, and a set of variable nodes of out-
degree two. The variables respect a given linear order on all paths from the
root to a leaf. Each path represents an assignment to each of the variables on
the path. For a fixed variable order, two BDDs are the same iff the Boolean
formulas they represent are the same.

The symbolic approach uses SPOT’s spot::tgba reachable iterator
breadth first::process link() function call to get references to all
Boolean formulas that appear as transition labels in ANFW(ψ). The formulas
are enumerated using their BDD representations (using SPOT’s spot::tgba
succ iterator::current condition() function call), and each unique
formula is assigned a unique integer. We thus obtain Abdd

NFW
(ψ) by replacing

transitions labeled by Boolean formulas with transitions labeled by the corre-
sponding integers. While the size of B(AP) is doubly exponential in |AP |, the
automaton ANBW(ψ) is exponential in |ψ|, so the number of Boolean formulas
used in the automaton is at most exponential in |ψ|.

5.2.3 From NFW to DFW

We provide both Aabr
NFW

(ψ) and Abdd
NFW

(ψ) as inputs to BRICS Automaton ,
producing, respectively, minimized Aabr

DFW
(ψ) and Abdd

DFW
(ψ). We note that

neither of these two approaches is a priori a better choice. LTL–to–automata
tools use Boolean formulas rather than assignments to reduce the number of
transitions in the generated nondeterministic automata. However, when using
Abdd

DFW
(ψ) as a monitor, the trace we monitor is a sequence of truth assign-

ments, and Abdd
DFW

(ψ), while deterministic with respect to the BDD encoding
of the transitions, is not deterministic with respect to truth assignments to
atomic propositions. As a consequence, there is no guarantee that at each step
of the monitor at most one state is reachable.

5.3 Alphabet minimization

While propositional temporal specification languages are based on Boolean
atomic propositions, they are often used to specify properties involving non-
Boolean variables. For example, we may have the atomic formulas (a == 0) ,

12 Deian Tabakov et al.

(a == 1) , and (a > 1) in a specification involving the values of a variable
int a. Notice that in this example not all assignments in 2AP are consistent.
For example, the assignment (a == 0) && (a == 1) is not consistent, and
a transition guarded by (a == 0) && (a == 1) is never enabled. Note
that such a guard can be generated even if the guard is not a subformula in
the specification. By eliminating inconsistent assignments we may be able to
reduce the number of letters in the alphabet exponentially without in any way
changing the correctness of the monitor. The advantage of this optimization
is that by identifying transitions that always evaluate to false we can exclude
them from the generated monitor and thus improve its run-time performance.
Identifying inconsistent assignments requires calling an SMT (Satisfiability
Modulo Theory) solver [36]. Here we would need an SMT solver that can
handle arbitrary C++ expressions that evaluate to type bool. Not having
access to such an SMT solver, we use the compiler as an improvised SMT
solver.

A set of techniques called constant folding allows compilers to reduce con-
stant expressions to a single value at compile time (see, e.g., [12]). When an
expression contains variables instead of constants, the compiler uses constant

propagation to substitute values of variables in subsequent subexpressions in-
volving the variables. In some cases the compiler is able to deduce that an ex-
pression contains two mutually exclusive subexpressions, and issues a warning
during compilation. We construct a function that uses conjunctions of atomic
formulas as conditionals for dummy if/then expressions, and compile the
function. (We use gcc 4.0.3 .) To gauge the effectiveness of this optimiza-
tion we apply it using two sets of conjunctions. Full alphabet minimization uses
all possible conjunctions involving atomic formulas or their negations, while
partial alphabet minimization uses only conjunctions that contain each atomic
formula, positively or negatively.

We compile the function and then parse the compiler warnings that identify
inconsistent conjunctions. Prior to compiling the Büchi automaton we augment
the original temporal formula to exclude those conjunctions from considera-
tion. For example, if (a == 0) && (a == 1) is identified as an inconsistent
conjunction, we augment the property ψ to ψ ∧ G(!((a == 0) ∧ (a == 1))).

5.4 Monitor encoding

We describe seven ways of encoding automata as C++ monitors. Not all can be
used with all automata directly, so we identify the transformations that need
to be applied to an automaton before each encoding can be used.

The strategy in all encodings based on automata that are nondeterministic
with respect to truth assignments (i.e., ANFW(ψ) and minimal Abdd

DFW
(ψ)) is

to construct the run P0, P1, . . . of the monitor using two bit-vectors of size |Q|:
current[] and next[] . Initially next[] is zeroed, and current[j] = 1
iff qj ∈ Q0. Then, after sampling the state of the program, we set next[k] = 1
iff current[j] = 1 and if there is a transition from qj to qk that is enabled

Optimized Temporal Monitors for SystemC 13

by the current program state. When we are done updating next[] , we as-
sign it to current[] , zero next[] , and then repeat the process at the next
sample point. Intuitively, current[] keeps track of the set of automaton
states that are reachable after seeing the execution trace so far, and next[]
maintains the set of automaton states that are reachable after completing the
current step of the automaton.

Notice that when the underlying automaton is deterministic with respect
to truth assignments (i.e., Aabr

DFW
(ψ)), after each step there are precisely 1 or

0 reachable states. In those cases it is inefficient to use bit-vector encoding
of the set of reachable states, because this set is guaranteed to be single-
ton. Thus, when constructing monitors from deterministic automata, we use
int current and int next to keep track of the run of the automaton.
Initially, current = j iff qj is the initial state. Then we set next = k iff
the transition from qj to qk is enabled at the first sample point; since the
automaton is deterministic, at most one transition is enabled. We continue in
this fashion until the simulation ends or until none of the transitions in the
monitor is enabled, indicating a bad prefix.

The details of the way we update current[] (respectively, current)
and next[] (respectively, next) are reflected in the different encodings. As
a running example, we show how to construct a monitor for the property
ϕ = G(p → (q ∧ Xq ∧ XXq)). The first step is to use SPOT to construct a
NBW automaton that accepts all traces satisfying ϕ. Next, we use SPOT to
construct ANFW(ϕ), which is presented in Figure 2.

2

0 1

p ∧ q

¬p ∧ q

p ∧ q

¬p ∧ q

¬p

p ∧ q

Fig. 2 ANFW(ϕ) constructed from the specification ϕ = G(p→ (q∧Xq∧XXq)) using the
algorithm of d’Amorim and Roşu. Double circles represent accepting states, and state 2 is
the initial state.

5.4.1 Nondeterministic encodings

Two novel encodings, which we call front nondet and back nondet , ex-
pect that the automaton transitions are Boolean formulas, and do not as-

14 Deian Tabakov et al.

sume determinism. Thus, front nondet and back nondet can be used with
ANFW(ψ) directly. They can also be used with Aabr

DFW
(ψ) and Abdd

DFW
(ψ), once

we convert back the transition labels from integers to Boolean formulas as fol-
lows. In Aabr

DFW
(ψ), we calculate the assignment corresponding to each integer,

and use that assignment to generate a conjunction of atomic formulas or their
negations. In Abdd

DFW
(ψ) we relabel each transition with the Boolean function

whose BDD is represented by the integer label.

The front nondet encoding uses an explicit if to check if each state s
of current[] is enabled. For each outgoing transition t from s it then uses
a nested if with a conditional that is a verbatim copy of the transition label
of t to determine if the destination state of t is reachable from s. Listing 3
illustrates this encoding.

1 /**
2 * front_nondet encoding
3 */
4 test_monitor0::step() {
5 if (status == MON_UNDETERMINED) {
6 // Property has not been determined to fail so far
7 num_steps++; // Current length of execution trace
8
9 for (int i = 0; i < 3; i++) { //Loop through all of the states

10 current[i] = next[i]; // saving the next state and
11 next[i] = 0; // clearing the next state vector
12 }
13
14 if (current[0]) { //if the current state is state 0
15 if(!(p) && (q)) //if transition labeled !(p)&&(q) is enabled
16 next[1] = 1; //state 1 is a possible next state
17 if((p) && (q)) //if transition labeled (p)&&(q) is enabled
18 next[0] = 1; //state 0 is a possible next state
19 } // if
20
21 if (current[1]) { //if the current state is state 1
22 if((p) && (q)) //if transition labeled (p)&&(q) is enabled
23 next[0] = 1; //state 0 is a possible next state
24 if(!(p) && (q)) //if transition labeled !(p)&&(q) is enabled
25 next[2] = 1; //state 2 is a possible next state
26 } // if
27
28 if (current[2]) { //if the current state is state 2
29 if((p) && (q)) //if transition labeled (p)&&(q) is enabled
30 next[0] = 1; //state 0 is a possible next state
31 if(!(p) && (q)) //if transition labeled !(p)&&(q) is enabled
32 next[2] = 1; //state 2 is a possible next state
33 if(!(p) && !(q)) //if transition labeled !(p)&&!(q) is enabled
34 next[2] = 1; //state 2 is a possible next state
35 } // if
36
37 // Check if there were enabled transitions
38 bool not_stuck = false;
39 for (int i = 0; i < 3; i++) { //Loop through all of the states
40 not_stuck = not_stuck || next[i];
41 }
42

Optimized Temporal Monitors for SystemC 15

43 if (! not_stuck) {
44 // None of the transitions were enabled
45
46 #ifdef MONITOR_REPORT_FAIL_IMMEDIATELY
47 SC_REPORT_WARNING("Property failed", "Critical error") ;
48 std::cout << "Property failed after " << num_steps
49 << " steps" << std::endl;
50 #endif
51 status = MON_FAIL; //flag the specification failure
52 }
53 } // if (status == MON_UNDETERMINED)
54 } // step()

Listing 3 Illustrating front nondet encoding of the automaton in Figure 2.

The back nondet encoding uses a disjunction that represents all of the
ways in which a state in next[] can be reached from the currently reachable
states. Listing 4 illustrates this encoding.

1 /**
2 * back_nondet encoding
3 */
4 test_monitor0::step() {
5 if (status == MON_UNDETERMINED) {
6 // Property has not been determined to fail so far
7 num_steps++; // Current length of execution trace
8
9 for (int i = 0; i < 3; i++) { //Loop through all of the states

10 current[i] = next[i]; // saving the next state and
11 next[i] = 0; // clearing the next state vector
12 }
13
14 //Determine which states are enabled next time
15 // based on the current state and the enabled transition(s)
16 next[0] = (current[2] && ((p) && (q))) ||
17 (current[1] && ((p) && (q))) ||
18 (current[0] && ((p) && (q)));
19
20 next[1] = (current[0] && (!(p) && (q)));
21
22 next[2] = (current[2] && (!(p) && (q))) ||
23 (current[1] && (!(p) && (q))) ||
24 (current[2] && (!(p) && !(q)));
25
26 // Check if there were enabled transitions
27 bool not_stuck = false;
28 for (int i = 0; i < 3; i++) { //Loop through all of the states
29 not_stuck = not_stuck || next[i];
30 }
31
32 if (! not_stuck) {
33 // None of the transitions were enabled
34
35 #ifdef MONITOR_REPORT_FAIL_IMMEDIATELY
36 SC_REPORT_WARNING("Property failed", "Critical error") ;
37 std::cout << "Property failed after " << num_steps
38 << " steps" << std::endl;
39 #endif

16 Deian Tabakov et al.

40 status = MON_FAIL; //flag the specification failure
41 }
42 } // if (status == MON_UNDETERMINED)
43 } // step()

Listing 4 Illustrating back nondet encoding of the automaton in Figure 2.

5.4.2 Deterministic encodings

Three novel deterministic encodings, which we call front det switch , front
det ifelse , and back det , expect that the automaton has been deter-
minized using assignment-based encoding. Thus, these three encodings can be
used only with Aabr

DFW
(ψ). Note that we work with Aabr

DFW
(ψ) directly and do

not convert the automaton alphabet from integers back to Boolean functions.
Instead, at the beginning of each step of the automaton we use the state of
the MUV (i.e., the values of all public and private variables, as exposed by
the framework of [42]) to derive an assignment a to the atomic propositions
in AP (ψ). We then calculate an integer representing the relevant model state
mod st = I(a), where a is the current assignment, and use mod st to drive
the automaton transitions.

Referring to the running example automaton presented in Figure 2, we
first show how to convert the Boolean expressions on the transitions to inte-
gers using assignment-based integer representation. Table 1 shows the integer
encoding of all possible assignments of values to p and q. We then construct
Aabr

NFW
(ϕ) in Figure 3. Determinizing and minimizing Aabr

NFW
(ϕ) using BRICS

Automaton produces Aabr
DFW

(ϕ), which in this case is identical to Aabr
NFW

(ϕ).

p q int
0 0 0
0 1 1
1 0 2
1 1 3

Table 1 Assignment-based encoding for the transitions of the ANFW(ψ) in Figure 2.

The back det encoding is similar to back nondet in that it encodes the
automaton transitions as a disjunction of the conditions that allow a state in
next[] to be enabled. The difference is that here we use an integer instead
of a vector to keep track of the (at most one) state reachable in the current
step of the automaton, and the transitions are driven by mod st instead of by
Boolean functions. See Listing 5 for an illustration of this encoding.

1 /**
2 * back_det encoding
3 */
4 test_monitor0::step() {
5 if (status == MON_UNDETERMINED) {

Optimized Temporal Monitors for SystemC 17

2

0 1

3

1

3

1

0, 1

3

Fig. 3 Aabr

NFW
(ϕ) for ϕ = G(p → (q ∧ Xq ∧ XXq)). Determinizing Aabr

NFW
(ϕ) using BRICS

Automaton produces Aabr

DFW
(ϕ), which is then minimized. The minimized Aabr

DFW
(ϕ) in this

case is identical to Aabr

NFW
(ϕ).

6 // Property has not been determined to fail so far
7 num_steps++; // Current length of execution trace
8
9 //shift the next state into the current state position

10 current = next;
11
12 next = -1; //clear the next state
13
14 // Calculate the system state index
15 // using the enabled alphabet characters
16 int system_state_index = 0;
17 system_state_index += (p) ? (1 << 1) : 0;
18 system_state_index += (q) ? (1 << 0) : 0;
19
20 //Determine which state is enabled next time
21 // based on the current state and the enabled transition
22 if (((current == 2) && (system_state_index == 3)) ||
23 ((current == 1) && (system_state_index == 3)) ||
24 ((current == 0) && (system_state_index == 3)))
25 { next = 0;}
26 else if (((current == 0) && (system_state_index == 1)))
27 { next = 1;}
28 else if (((current == 2) && (system_state_index == 1)) ||
29 ((current == 1) && (system_state_index == 1)) ||
30 ((current == 2) && (system_state_index == 0)))
31 { next = 2;}
32
33 // Check if there were enabled transitions
34 bool not_stuck = (next != -1);
35 if (! not_stuck) {
36 // None of the transitions were enabled
37
38 #ifdef MONITOR_REPORT_FAIL_IMMEDIATELY
39 SC_REPORT_WARNING("Property failed", "Critical error") ;
40 std::cout << "Property failed after " << num_steps
41 << " steps" << std::endl;

18 Deian Tabakov et al.

42 #endif
43 status = MON_FAIL; //flag the specification failure
44 }
45 } // if (status == MON_UNDETERMINED)
46 } // step()

Listing 5 Illustrating back det encoding of the automaton in Figure 3.

The front det switch and front det ifelse encodings are similar,
but differ in the C++ constructs used to take advantage of the determinism
in the automaton. Applying front det switch encoding to the automaton
in Figure 3 is illustrated in Listing 6, and front det ifelse encoding is
illustrated in Listing 7.

1 /**
2 * front_det_switch encoding
3 */
4 test_monitor0::step() {
5 if (status == MON_UNDETERMINED) {
6 // Property has not been determined to fail so far
7 num_steps++; // Current length of execution trace
8
9 //shift the next state into the current state position

10 current = next;
11
12 next = -1; //clear the next state
13
14 // Calculate the system state index
15 // using the enabled alphabet characters
16 int system_state_index = 0;
17 system_state_index += (p) ? (1 << 1) : 0;
18 system_state_index += (q) ? (1 << 0) : 0;
19
20 //Determine which state is enabled next time
21 // based on the current state and the enabled transition
22 switch (current) {
23 case 0: //if the current state is state 0...
24 switch (system_state_index) {
25 case 1: next = 1; break;
26 case 3: next = 0; break;
27 } // inner switch/case
28 break; // the outer case
29
30 case 1: //if the current state is state 1...
31 switch (system_state_index) {
32 case 3: next = 0; break;
33 case 1: next = 2; break;
34 } // inner switch/case
35 break; // the outer case
36
37 case 2: //if the current state is state 2...
38 switch (system_state_index) {
39 case 3: next = 0; break;
40 case 1: next = 2; break;
41 case 0: next = 2; break;
42 } // inner switch/case
43 break; // the outer switch/case

Optimized Temporal Monitors for SystemC 19

44 } // switch (current)
45
46 // Check if there were enabled transitions
47 bool not_stuck = (next != -1);
48 if (! not_stuck) {
49 // None of the transitions were enabled
50
51 #ifdef MONITOR_REPORT_FAIL_IMMEDIATELY
52 SC_REPORT_WARNING("Property failed", "Critical error") ;
53 std::cout << "Property failed after " << num_steps
54 << " steps" << std::endl;
55 #endif
56 status = MON_FAIL; //flag the specification failure
57 }
58 } // if (status == MON_UNDETERMINED)
59 }

Listing 6 Illustrating front det switch encoding of the automaton in Figure 3.

1 /**
2 * front_det_ifelse encoding
3 */
4 test_monitor0::step() {
5 if (status == MON_UNDETERMINED) {
6 // Property has not been determined to fail so far
7 num_steps++; // Current length of execution trace
8
9 //shift the next state into the current state position

10 current = next;
11
12 next = -1; //clear the next state
13
14 // Calculate the system state index
15 // using the enabled alphabet characters
16 int system_state_index = 0;
17 system_state_index += (p) ? (1 << 1) : 0;
18 system_state_index += (q) ? (1 << 0) : 0;
19
20 if (current == 0) { //if the current state is state 0...
21 if (system_state_index == 1) { next = 1; }
22 else if (system_state_index == 3) { next = 2; }
23 } // if (current == ...)
24
25 else if (current == 1) { //if the current state is state 1...
26 if (system_state_index == 1) { next = 1; }
27 else if (system_state_index == 3) { next = 2; }
28 else if (system_state_index == 0) { next = 1; }
29 } // if (current == ...)
30
31 else if (current == 2) { //if the current state is state 2...
32 if (system_state_index == 3) { next = 2; }
33 else if (system_state_index == 1) { next = 0; }
34 } // if (current == ...)
35
36 // Check if there were enabled transitions
37 bool not_stuck = (next != -1);
38 if (! not_stuck) {
39 // None of the transitions were enabled

20 Deian Tabakov et al.

40
41 #ifdef MONITOR_REPORT_FAIL_IMMEDIATELY
42 SC_REPORT_WARNING("Property failed", "Critical error") ;
43 std::cout << "Property failed after " << num_steps
44 << " steps" << std::endl;
45 #endif
46 status = MON_FAIL; //flag the specification failure
47 }
48 }
49 }

Listing 7 Illustrating front det ifelse encoding of the automaton in Figure 3.

5.5 Deterministic table-based encodings

In the encodings discussed above, the transition function of the automaton is
encoded using if or switch statements. The final two encodings, described
below, are based on table look-up. The key to a table look-up monitor en-
coding is to create a table, such that given the current state and the current
assignment, we can look up the next state in the table. Given the current state
and the system state index mod st, we can transition to the next state in one
operation, avoiding overhead associated with large nested if statements or
switch statements.

We illustrate both table-based encodings using the determinized, mini-
mized automaton Aabr

DFW
(ϕ) presented in Figure 3 and the associated integer

encodings of all possible assignments of values to p and q in Table 1. We can
construct a look-up table as illustrated in Table 2.

alphabet representation
0 1 2 3

current state
0 fail 1 fail 0
1 fail 2 fail 0
2 2 2 fail 0

Table 2 Look-up table corresponding to the automaton in Fig. 3. Given the current state
and the integer representation of the alphabet, find the next state or detect failure. For
example, if the current state is 0 and the alphabet representation is 3, the next state is state
0.

Two novel deterministic encodings, which we call front det file table
and front det memory table , expect that the automaton has been deter-
minized using assignment-based encoding. Like the other deterministic encod-
ings, these two encodings can be used only with Aabr

DFW
(ψ). Again, we work

with Aabr
DFW

(ψ) directly and do not convert the automaton alphabet from in-
tegers back to Boolean functions; for table encodings we take advantage of
the fact that the automaton alphabet integers can be stored easily in a state-
transition look-up table.

Optimized Temporal Monitors for SystemC 21

As we did for the encodings of Section 5.4.2, we use the state of the MUV
(i.e., the values of all public and private variables, as exposed by the framework
of [42]) at the beginning of each step of the automaton to derive an assign-
ment a to the atomic propositions in AP (ψ). Again, we calculate an integer
representing the relevant model state mod st = I(a), where a is the current
assignment.

The encodings front det file table and front det memory table
are similar, but differ in the way the state-transition look-up table is stored
and used by the monitor.

5.5.1 The file-based table encoding

In the front det file table encoding we store the automaton Aabr
DFW

(ϕ)
in a text file using the LBT format [38]. Briefly, the LBT file format is a text-
based encoding of automata. It iteratively describes each state (whether it is
accepting, initial, both or neither), together with a unique state ID. Each out-
going transition is listed immediately after the state description, and includes
the destination state ID and a transition letter/guard.

When the monitor is instantiated, it uses an LBT parser that is automati-
cally included with the monitor’s code to parse the automaton from the file and
to construct the look-up table. Applying front det file table encoding
to the automaton in Figure 3 is illustrated in Listing 8.

1 /**
2 * front_det_file_table encoding: constructor
3 */
4 test_monitor::test_monitor() {
5 next = 2; // initial state id
6 current = -1;
7 //other settings go here...
8
9 // LBT encoding of the automaton implemented by this monitor

10 const char* automaton_file = "./A_DFW.lbt";
11
12 int size_of_alphabet = 4;
13
14 // Variable "table", below, is anum_states x size_of_alphabet 2-D
15 // array declared in the header as a class variable
16 table = (new lbt_parser())->parse_to_table(automaton_file,
17 size_of_alphabet);
18 } // end constructor
19
20 /**
21 * front_det_file_table encoding: simulate a step of the monitor.
22 */
23 test_monitor::step() {
24 if (status == MON_UNDETERMINED) {
25 // Property has not been determined to fail so far
26 num_steps++; // Current length of execution trace
27
28 // Shift the next state into the current state position
29 current = next;
30

22 Deian Tabakov et al.

31 // Calculate the system state index
32 // using the enabled alphabet characters
33 int system_state_index = 0;
34 system_state_index += (p) ? (1 << 1) : 0;
35 system_state_index += (q) ? (1 << 0) : 0;
36
37 // The table is a 2-d array declared in the constructor
38 // Look up the next state
39 next = table[current][system_state_index];
40
41 // Check if there were enabled transitions
42 bool not_stuck = (next != -1);
43 if (! not_stuck) {
44 // None of the transitions were enabled
45
46 #ifdef MONITOR_REPORT_FAIL_IMMEDIATELY
47 SC_REPORT_WARNING("Property failed", "Critical error") ;
48 std::cout << "Property failed after " << num_steps
49 << " steps" << std::endl;
50 #endif
51 status = MON_FAIL; //flag the specification failure
52 }
53 } // if (status == MON_UNDETERMINED)
54 } //end step

Listing 8 Illustrating front det file table encoding of the automaton in Figure 3.

One advantage of using the file-based table encoding is that it separates
the code implementing the monitor from the definition of the automaton. Such
decoupling allows the monitor to be compiled and linked with the MUV before
the LBT representation of the automaton is even created. It further allows
monitored properties to be changed on the fly, without having to recompile
the MUV, by simply replacing the contents of the LBT file.

5.5.2 The memory table encoding

In the front det memory table encoding we declare the state-transition
look-up table explicitly in the monitor’s constructor. The table is declared
directly as a one-dimensional, row-major array, forgoing the need for a LBT
parser library or a file containing the automaton. Applying the front det memory
table encoding to the automaton in Figure 3 is illustrated in Listing 9.

1 /**
2 * front_det_memory_table encoding: constructor
3 */
4 test_monitor::test_monitor() {
5 next = 0; // initial state id
6 current = -1;
7 //other settings go here...
8
9 //Explicitly declare the transition table as a row-major 1-D array

10 int local_table[] = {-1, 1, -1, 0, -1, 2, -1, 0, 2, 2, -1, 0};
11
12 // Variable "table", below, is a num_states x size_of_alphabet 1-D
13 // array declared in the header as a class variable. We memcpy

Optimized Temporal Monitors for SystemC 23

14 // local_table to table to avoid a limitation of C++.
15 std::memcpy(table, local_table, 12 * sizeof(int));
16 } // end constructor
17
18 /**
19 * front_det_memory_table encoding: simulate a step of the monitor.
20 */
21 test_monitor0::step() {
22 if (status == MON_UNDETERMINED) {
23 // Property has not been determined to fail so far
24 num_steps++; // Current length of execution trace
25
26 //shift the next state into the current state position
27 current = next;
28
29 // Calculate the system state index
30 // using the enabled alphabet characters
31 unsigned int system_state_index = 0;
32 system_state_index += (p) ? (1 << 1) : 0;
33 system_state_index += (q) ? (1 << 0) : 0;
34
35 // Look up the next state in the table
36 next = table[current * 4 + system_state_index];
37
38 // Check if there were enabled transitions
39 bool not_stuck = (status == MON_PASS) || (next != -1);
40 if (! not_stuck) {
41 // None of the transitions were enabled
42
43 #ifdef MONITOR_REPORT_FAIL_IMMEDIATELY
44 SC_REPORT_WARNING("Property failed", "Critical error") ;
45 std::cout << "Property failed after " << num_steps
46 << " steps" << std::endl;
47 #endif
48 status = MON_FAIL; //flag the specification failure
49 }
50 } // if (status == MON_UNDETERMINED)
51 } //end step

Listing 9 Illustrating front det memory table encoding of the automaton in Figure 3.

Note that in this encoding the variable table is a class variable of type
int[] with the same capacity as the number of elements in local table .
A limitation of the current C++ standard (C99) does not allow arrays to be
initialized explicitly after declaration, thus we use local table to initialize
the array, and std::memcpy to copy the array from local table to table .

5.6 Workflow space

The different options allow 33 possible combinations for generating a mon-
itor, summarized in Table 3. The first decision is whether state minimiza-
tion is required. If it is not required, one of the three alphabet minimization
options is applied, and one of the two non-deterministic monitor encodings
(front nondet or back nondet) is used to create the final monitor.

24 Deian Tabakov et al.

When using state minimization it is necessary to select the alphabet repre-
sentation (BDD- or assignment-based) to be using during minimization. The
three alphabet minimization options can be selected independently of the
alphabet representation selection. Recall that BDD-based minimization pro-
duces automata that are non-deterministic with respect to assignments, there-
fore only the two non-deterministic monitor encodings are available. Alterna-
tively, if assignment-based minimization is employed, all non-deterministic and
deterministic encodings (seven total) can be used.

In summary, there are six workflows that require no state minimization,
six workflows that use BDD-based state minimization, and 21 workflows that
use assignment-based state minimization.

State
Minimization

Alphabet
Representation

Alphabet
Minimization

Monitor
Encoding

no Not required

none

partial

full

front nondet

back nondet

yes

BDDs
front nondet

back nondet

assignments

front nondet

back nondet

front det ifelse

front det switch

back det

front det file table

front det memory table

Table 3 The workflow space for generating monitors.

6 Experimental setup

6.1 SystemC model

Our experimental evaluation is based on the Adder6 model presented in [41].
The Adder implements a squaring function by using repeated incrementing by
1. We used the Adder to calculate 1002 with 1,000 instances of a monitor for
the same property. Since we are mostly concerned with monitor overhead, we
focus on the time difference between executing the model with and without
monitoring. We established a baseline for the model’s runtime by compiling
the Adder model with a virgin installation of SystemC (i.e., without the mon-
itoring framework of [41]) and averaging the runtime over 10 executions. To

6 Source code available at http://www.cs.rice.edu/CS/Verification/Software/
software.html

Optimized Temporal Monitors for SystemC 25

calculate the monitor overhead we averaged the runtime of each simulation
over 10 executions and subtracted the baseline time. Notice that the overhead
as calculated includes the cost of the monitoring framework and the slow-down
due to all 1,000 monitors.

6.2 Properties

We used specifications constructed using both pattern formulas and randomly
generated formulas. We used LTL formulas, as we have access to explicit-state
LTL-to-automata translators (SPOT, in our case). Note, however, that the
framework is applicable to any specification language that produces NBWs and
is not restricted to LTL formulas. Minimization of finite-state automata was
performed by BRICS Automaton . SPOT, BRICS Automaton , and CHIMP,
the tool that manages the different workflows, are available for download7.

We adopted the pattern formulas used in [21] and presented below:

c1(n) :=
n∨

i=1

GFpi

c2(n) :=

n∧

i=1

GFpi

qq(n) :=

n∧

i=1

(Fpi ∨ Gpi+1)

lu(n) := (. . . (p1Up2)) . . .Upn)Upn+1

ru(n) := p1U(p2U(. . . (pnUpn+1) . . .))

rr(n) :=

n∧

i=1

(GFpi ∨ FGpi+1)

ss(n) :=

n∨

i=1

Gpi

In addition to these formulas we also used bounded F and bounded G

formulas, and a new type of nested U formulas, presented below:

f1(n) := G(p→ (q ∨ Xq ∨ . . . ∨XX . . .Xq))

f2(n) := G(p→ (q ∨ X(q ∨ X(q ∨ . . . ∨Xq) . . .)))

g1(n) := G(p→ (q ∧ Xq ∧ . . . ∧XX . . .Xq))

g2(n) := G(p→ (q ∧ X(q ∧ X(q ∧ . . . ∧Xq) . . .)))

uu(n) := G(p1 → (p1U(p2 ∧ p2U(p3 . . . (pn ∧ pnUpn+1)))) . . .)

In our experiments we replaced the generic propositions pi in each pat-
tern formula with atomic formulas (a==100ˆ2-100(n-i-1)) , where a is
a variable representing the running total in the Adder. For each pattern we
scaled up the formulas until all 33 workflows either timed out or crashed. Most
workflows can be scaled up to n = 5, except for the bounded properties, which
can be scaled to n = 17. We identified 127 pattern formulas for which at least
one workflow could complete the monitoring task.

7 http://www.cs.rice.edu/CS/Verification/Software/sof tware.html

26 Deian Tabakov et al.

The random formulas that we used were generated following the framework
of [15], using the implementation from [39]. For each formula length there are
two parameters that control the number of propositions used and the proba-
bility of selecting a U or a V operator (formula length is calculated by adding
the number of atomic propositions, the number of logical connectives, and the
number of temporal operators). We varied the number of atomic propositions
between 1 and 5, the probability of selecting a U or a V was one of {0.3, 0.5,
0.7, 0.95}, and we varied the formula length from 5 to 30 in increments of 5.
We used the same style of atomic propositions as in the pattern formulas. For
each combination of parameters we generated 10 formulas at random, giving
us a total of 1200 random formulas.

7 Results for non-table-based workflows

The results described in this section are based on experiments on Ada, Rice’s
Cray XD1 compute cluster.8 Each of Ada’s nodes has two dual core 2.2 GHz
AMD Opteron 275 CPUs and 8GB of RAM. We ran with exclusive access to
a node so all 8GB of RAM were available for use. We allowed 8 hours (the
maximal job time on Ada) of computation time per workflow per formula for
generating a Büchi automaton, automata-theoretic transformations, generat-
ing C++ code, compilation, linking with the Adder model using the monitoring
framework presented in [41], and executing the monitored model 10 times.

We first evaluate the individual effect of each optimization. For each for-
mula we partition the workflow space into two groups: those workflows that
use the optimization and those that do not. We form the Cartesian product
of the overhead times from both groups and present them on a scatter plot.

7.1 State minimization

Fig. 4 shows the effect of determinization and state minimization on the au-
tomaton size. We observe that in most cases minimizing the automata (i.e.,
minimizing Aabr

DFW
(ϕ) and Abdd

DFW
(ϕ)) produces smaller automata than the

equivalent ANFW(ϕ). It is known [28] that in the worst case, nondeterministic
automata are exponentially more succinct than the corresponding minimal de-
terministic automata. Our experimental results show that the worst case blow
up is avoided for the types of formulas that are likely to be used in practice,
and, in fact, for some formulas we see three orders of magnitude smaller deter-
ministic automata. This observation goes against the traditional justification
for constructing monitors from nondeterministic rather than deterministic au-
tomata.

In Fig. 5 we show the effect of state minimization on the runtime overhead.
A few outliers notwithstanding, using state minimization lowers the runtime
overhead of the monitor.

8 http://www.rcsg.rice.edu/ada

Optimized Temporal Monitors for SystemC 27

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

Automaton size with state minimization (log)

A
ut

om
at

on
 s

iz
e

w
ith

ou
t s

ta
te

 m
in

im
iz

at
io

n
(lo

g)

Fig. 4 The size of the determinized/minimized automaton in most cases is smaller than
the size of the corresponding nondeterministic automaton. Points fall above the diagonal
when this is the case.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

Overhead with state minimization (seconds)(log)

O
ve

rh
ea

d
w

ith
ou

t s
ta

te
 m

in
im

iz
at

io
n

(s
ec

on
ds

)(
lo

g)

Fig. 5 Monitor overhead with and without state minimization. State minimization lowers
the overhead by orders of magnitude. Points fall above the diagonal when monitor overhead
with state minimization is lower.

7.2 Alphabet Representation

Fig. 6 shows that using assignments leads to better performance than BDD-
based alphabet representation. Our data show that in most cases, using assign-

28 Deian Tabakov et al.

ments leads to smaller automata, which again suggests a connection between
monitor size and monitor efficiency.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

Overhead when using assignments (seconds)(log)

O
ve

rh
ea

d
w

he
n

us
in

g
B

D
D

s
(s

ec
on

ds
)(

lo
g)

Fig. 6 Using assignments for alphabet representation leads to better performance than
using BDDs. Points fall above the diagonal when assignment-based representation is better.

7.3 Alphabet minimization

Our data shows that partial– and full– alphabet minimization typically slow
down the monitor (see Figure 7). We think that the reasons behind this are
two-fold. On one hand, the performance of gcc as a decision engine to dis-
cover mutually exclusive conjunctions is not very good (in our experiments
it was able to discover only 10%–15% of the possible mutually exclusive con-
junctions). On the other hand, augmenting the formula increases the formula
size, but SPOT does not take advantage of the extra information in the for-
mula and typically generates bigger Büchi automata. If we manually augment
the formula with all mutually exclusive conjunctions we do see smaller Büchi
automata, so we believe this optimization warrants further investigation.

7.4 Monitor encoding

Finally, we compared the effect of the different monitor encodings (Fig. 8). Our
conclusion is that no encoding dominates the others, but two (front nondet

Optimized Temporal Monitors for SystemC 29

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

Overhead without alphabet minimization (seconds)(log)

O
ve

rh
ea

d
w

ith
 a

lp
ha

be
t m

in
im

iz
at

io
n

(s
ec

on
ds

)(
lo

g)

Fig. 7 Effect of alphabet minimization on monitor overhead. Points fall below the diagonal
when alphabet minimization results in lower overhead. We do not see a significant advantage
to using alphabet minimization, but this may be due to the particular tool chain that we
used.

and front det switch) show the best performance relative to all others,
while back det has the worst performance. Comparing front nondet and
front det switch directly to each other (Fig. 9) indicates that front det
switch delivers better performance for all but a few formulas.

7.5 Best non-table-based workflow

The final check of our conclusion is presented in Figure 10, where we plot the
performance of the winning workflow against all other workflows. There are a
few outliers, but overall the workflow gives better performance than all others.

Based on the comparison of individual optimizations we conclude that
front det switch encoding with assignment–based state minimization and
no alphabet minimization is the best overall workflow.

8 Results for table-based workflows

Soon after we completed the experiments described in Section 7, the com-
pute cluster Ada was decommissioned, thus preventing us from evaluating the
table-based encodings on the same hardware. In order to make an objective
comparison between the different encodings, we re-ran all original experiments
and new experiments involving the table-based encodings, on the Shared Uni-
versity Grid at Rice (SUG@R), Rice’s Intel Xeon compute cluster.9 Each of

9 http://rcsg.rice.edu/sugar/

30 Deian Tabakov et al.

10
0

10
−2

10
0

10
2

back_det

A
ll

ot
he

r
en

co
di

ng
s

10
0

10
−2

10
0

10
2

front_nondet

A
ll

ot
he

r
en

co
di

ng
s

10
0

10
−2

10
0

10
2

back_nondet

A
ll

ot
he

r
en

co
di

ng
s

10
0

10
−2

10
0

10
2

front_det_ifelse

A
ll

ot
he

r
en

co
di

ng
s

10
0

10
−2

10
0

10
2

front_det_switch

A
ll

ot
he

r
en

co
di

ng
s

Fig. 8 Comparison of the monitor overhead when using different encodings. Each subplot
shows the performance when using one of the encodings (x-axis) vs. all other encodings (y-
axis). Points fall above the diagonal when the featured encoding results in lower overhead.

Optimized Temporal Monitors for SystemC 31

10
−2

10
−1

10
0

10
−2

10
−1

10
0

Overhead of front_det_switch (seconds)(log)

O
ve

rh
ea

d
of

 fr
on

t_
no

nd
et

 (
se

co
nd

s)
(lo

g)

Fig. 9 Comparison of the monitor overhead when using the two best encodings
(front det switch and front nondet). Points fall above the diagonal when we see better
performance using front det switch , which is the case for all but a few formulas.

SUG@R’s 134 SunFire x4150 nodes has two quad-core Intel Xeon processors
running at 2.83GHz and 16GB of RAM per processor. SUG@R is running Red
Hat Enterprise 5 Linux, 2.6.18 kernel. We ran with exclusive access to a node
so all 16GB of RAM were available for use. As before, we allowed 8 hours of
computation time per workflow per formula for generating Büchi automata,
automata-theoretic transformations, generating C++ code, compilation, link-
ing with the Adder model using the monitoring framework presented in [41],
and executing the monitored model 10 times.

First we confirmed that the conclusions based on the initial experiments
on Ada remain valid when applied to the experimental results obtained on
SUG@R. For example, we compared the performance of the winning workflow
identified in Section 7 against the performance of the 27 non-table workflows.
The results are presented in Fig. 11. We observe that the front det switch
encoding with assignment–based state minimization and no alphabet min-
imization dominates the other non-table-based workflows on SUG@R, thus
validating our earlier conclusion.

Next we consider the performance of the two table-based workflows. Each
was run on the same set of formulas as the other workflows. First we show
the runtime overhead when using the file-based table encoding, compared to
the overhead of all non-table-based encodings (Fig. 12). Although for some
formulas the file-based table encoding shows significantly smaller overhead, for
others it shows much larger overhead. Our interpretation of this data is that
the cost of accessing the disk to read the file containing the automaton incurs
an overhead that cannot be offset by the workflow’s runtime performance.

32 Deian Tabakov et al.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

Overhead of front_det_switch + assignments (seconds)(log)

O
ve

rh
ea

d
of

 o
th

er
 c

on
fig

ur
at

io
ns

 (
se

co
nd

s)
(lo

g)

Fig. 10 Best overall performance for non-table-based workflows. Points fall above the diag-
onal when the front det switch encoding, with minimization, assignment-based alphabet
representation, and without alphabet minimization results in lower monitor overhead.

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

Overhead of front_det_switch + minimize + assignments (seconds)(log)

O
ve

rh
ea

d
of

 a
ll

ot
he

r
co

nf
ig

ur
at

io
ns

 (
se

co
nd

s)
(lo

g)

Fig. 11 Comparison of the monitor overhead when using the front det switch encoding
with assignment–based state minimization and no alphabet minimization (x-axis) vs. all
other encodings (y-axis). Points fall above the diagonal when the winning workflow identified
on Ada also dominates the (non-table-based) workflows when executing on SUG@R.

We evaluate the performance of the memory-based table encoding in a
similar manner (Fig. 13). We see that avoiding disk access improves the per-
formance significantly over the file-based table encoding. This observation
is confirmed by direct comparison between file-based and memory-based ta-

Optimized Temporal Monitors for SystemC 33

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

Overhead of file−based table encoding (seconds)(log)

O
ve

rh
ea

d
of

 a
ll

ot
he

r
co

nf
ig

ur
at

io
ns

 (
se

co
nd

s)
(lo

g)

Fig. 12 Comparison of the monitor overhead when using the front det file table en-
coding (x-axis) vs. all other encodings (y-axis). Points fall above the diagonal when the
front det file table encoding results in lower monitor overhead.

ble encoding (Fig. 14). For all formulas evaluated by the two workflows, the
memory-based encoding is at least as fast (in most cases, significantly faster)
than the file-based encoding.

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

Overhead of memory−based table encoding (seconds)(log)

O
ve

rh
ea

d
of

 a
ll

ot
he

r
co

nf
ig

ur
at

io
ns

 (
se

co
nd

s)
(lo

g)

Fig. 13 Comparison of the monitor overhead when using the front det memory table
encoding (x-axis) vs. all other encodings (y-axis). Points fall above the diagonal when the
front det memory table encoding results in lower monitor overhead.

This data indicates that the memory-based table encoding is very com-
petitive, but it is not clear whether its performance is better than the wining
workflow identified in Section 7. Direct comparison of the runtime overhead is

34 Deian Tabakov et al.

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

Overhead of memory−based table encoding (seconds)(log)

O
ve

rh
ea

d
of

 fi
le

−
ba

se
d

ta
bl

e
en

co
di

ng
 (

se
co

nd
s)

(lo
g)

Fig. 14 Comparison of the monitor overhead when using the front det memory table
encoding (x-axis) vs. the front det file table (y-axis). Points fall above the diagonal
when the memory-based table encoding results in lower overhead.

presented in Fig. 15. Our conclusion is that for the majority of formulas the
runtime overhead of the winning workflow identified earlier is smaller. Thus,
the front det switch encoding with assignment–based state minimization
and no alphabet minimization remains the best overall workflow that we have
evaluated.

10
−2

10
−1

10
−2

10
−1

Overhead of front_det_switch + minimize + assignments (seconds)(log)

O
ve

rh
ea

d
of

 m
em

or
y−

ba
se

d
ta

bl
e

en
co

di
ng

 (
se

co
nd

s)
(lo

g)

Fig. 15 Comparison of the monitor overhead when using front det memory table encod-
ing (x-axis) vs.the best encoding identified earlier (y-axis). The latter shows better runtime
overhead, indicated by points falling above the diagonal. Although there are more than 900
data points in this figure, most of them are on top of each other.

Optimized Temporal Monitors for SystemC 35

9 Discussion and future work

In this paper we focus on minimization of monitor runtime. We identify the
exploration space consisting of monitor encodings, alphabet encodings, tran-
sition representation, and other possible optimizations. We use off-the-shelf
components (SPOT, BRICS Automaton , gcc) to perform some of the trans-
formations, and a custom tool (CHIMP) to manage the different workflows.
Together with the specification formalism proposed in [42], and the monitor-
ing framework described in [41], this work provides a general ABV solution for
temporal monitoring of SystemC models. Since the starting point is ANBW(ψ),
the techniques presented here are easy to integrate with a wide variety of spec-
ification languages. For example, it is easy to see that by applying [9] we can
easily extend the scope of this work to efficient monitoring of PSL properties.
We have identified a workflow that generates low-overhead monitors and we
believe that it can serve as a good default setting.

Although the two table-based workflows have higher runtime overhead,
they offer other important advantages. Both table-based workflows allow us
to reduce the size of the monitor from hundreds of thousands of lines of code
in some cases, to hundreds of lines of code. This avoids compilation problems
and reduces the compilation time significantly. Another advantage of using the
file-based table encoding is the flexibility to change the monitored properties
without recompiling the MUV. The focus of this paper is on runtime overhead
and exploring these issues is beyond its scope, but we believe that they are
worthy of further consideration.

Practical use of our tool may involve monitoring tasks that are different
than the synthetic load that we used for our tests. Recent developments in the
area of self-tuning systems show that even highly optimized tools can be im-
proved by orders of magnitude using search techniques over the workflow space
(c.f., [27]). One possible extension of our work is to apply different optimiza-
tions to different types of formulas. For example, our data shows that when the
minimized automaton (Abdd

DFW
(ψ) or Aabr

DFW
(ψ)) has more states than the un-

minimized automaton (ANFW(ψ)), generating a monitor using ANFW(ψ) leads
to smaller runtime overhead. This observation can be used as a heuristic, and
further investigation may reveal that for different classes of formulas different
workflows yield the best results. Thus, we have left the user full control over
the tool workflow.

Acknowledgements We thank Alexandre Duret-Lutz for his code patch replacing the
functionality of spot::prune scc , which we used to upgrade from SPOT 0.4, used in the
experiments executed on Ada, to SPOT 0.7.1 used in the experiments executed on SUG@R.
We also thank Patrick Meredith and Dmitry Korchemny for suggesting that we consider
table look-up encodings. Finally, we thank the anonymous reviewers for their comments and
feedback.

36 Deian Tabakov et al.

References

1. Abarbanel, Y., Beer, I., Gluhovsky, L., Keidar, S., Wolfsthal, Y.: Focs: Automatic gen-
eration of simulation checkers from formal specifications. In: CAV’00: Proc. of the 12th
International Conference on Computer Aided Verification, pp. 538–542 (2000)

2. Armoni, R., Korchemny, D., Tiemeyer, A., Vardi, M., Zbar, Y.: Deterministic dynamic
monitors for linear-time assertions. In: Proc. Workshop on Formal Approaches to Test-
ing and Runtime Verification, Lecture Notes in Computer Science, vol. 4262. Springer
(2006)

3. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In:
FSTTCS’06: Foundations of Software Technology and Theoretical Computer Science,
26th International Conference, volume 4337 of LNCS, pp. 260–272. Springer (2006)

4. Bodden, E., Hendren, L.J., Lam, P., Lhoták, O., Naeem, N.A.: Collaborative runtime
verification with tracematches. J. Log. Comput. 20(3), 707–723 (2010)

5. Boulé, M., Zilic, Z.: Generating Hardware Assertion Checkers. Springer Publishing
Company, Incorporated (2008)

6. Bryant, R.: Graph-based algorithms for Boolean-function manipulation. IEEE Trans.
on Computers C-35(8) (1986)

7. Bryant, R.: Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Computing Surveys 24(3), 293–318 (1992)

8. Bunker, A., Gopalakrishnan, G., McKee, S.A.: Formal Hardware Specification Lan-
guages for Protocol Compliance Verification. ACM Transactions on Design Autom. of
Elec. Sys. 9(1), 1–32 (2004)

9. Bustan, D., Fisman, D., Havlicek, J.: Automata construction for PSL. Tech. rep., The
Weizmann Institute of Science (2005)

10. Chang, H., Cooke, L., Hunt, M., Martin, G., McNelly, A.J., Todd, L.: Surviving the SOC
revolution: a guide to platform-based design. Kluwer Academic Publishers, Norwell,
MA, USA (1999)

11. Chen, F., Jin, D., Meredith, P., Roşu, G.: Monitoring oriented programming - a project
overview. In: Proceedings of the Fourth International Conference on Intelligent Com-
puting and Information Systems (ICICIS’09), pp. 72–77. ACM (2009)

12. Cooper, K.D., Torczon, L.: Engineering a Compiler. Morgan Kaufmann (2004)
13. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory efficient algorithms

for the verification of temporal properties. Formal Methods in System Design 1, 275–288
(1992)

14. d’Amorim, M., Ro̧su, G.: Efficient monitoring of ω-languages. In: Proc. 17th Interna-
tional Conference on Computer Aided Verification, pp. 364–378 (2005)

15. Daniele, M., Giunchiglia, F., Vardi, M.Y.: Improved automata generation for linear
temporal logic. In: CAV ’99: Proc. 11th Int. Conf. on Computer Aided Verification, pp.
249–260. Springer-Verlag, London, UK (1999)

16. Duret-Lutz, A., Poitrenaud, D.: SPOT: An extensible model checking library using
transition-based generalized Büchi automata. Modeling, Analysis, and Simulation of
Computer Systems 0, 76–83 (2004). DOI http://doi.ieeecomputersociety.org/10.1109/
MASCOT.2004.1348184

17. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Springer, New York, Inc.,
Secaucus, NJ, USA (2006)

18. Finkbeiner, B., Sipma, H.: Checking finite traces using alternating automata. Form.
Methods Syst. Des. 24(2), 101–127 (2004). DOI http://dx.doi.org/10.1023/B:FORM.
0000017718.28096.48

19. Geilen, M.: On the construction of monitors for temporal logic properties. Electr. Notes
Theor. Comput. Sci. 55(2) (2001)

20. Geist, D., Biran, G., Arons, T., Slavkin, M., Nustov, Y., Farkas, M., Holtz, K., Long,
A., King, D., Barret, S.: A methodology for the verification of a “system on chip”. In:
DAC ’99, Proc. 36th Design Automation Conference, pp. 574–579. ACM, New York,
NY (1999). DOI http://doi.acm.org/10.1145/309847.310001

21. Geldenhuys, J., Hansen, H.: Larger automata and less work for LTL model checking.
In: In Model Checking Software, 13th Int. SPIN Workshop, volume 3925 of LNCS, pp.
53–70. Springer (2006)

Optimized Temporal Monitors for SystemC 37

22. Gerth, R., Peled, D., Vardi, M., Wolper, P.: Simple on-the-fly automatic verification of
Linear Temporal Logic. In: P. Dembiski, M. Sredniawa (eds.) Protocol Specification,
Testing, and Verification, pp. 3–18. Chapman & Hall (1995)

23. Giannakopoulou, D., Havelund, K.: Automata-based verification of temporal properties
on running programs. In: Int. conf. on Automated Software Engineering, p. 412. IEEE,
Washington, DC, USA (2001)

24. Grotker, T., Liao, S., Martin, G., Swan, S.: System Design with SystemC. Kluwer
Academic Publishers, Norwell, MA, USA (2002)

25. working group, I..: Standard for property specification language (PSL). IEC 62531:2007
(E) pp. 1–156 (2007). DOI 10.1109/IEEESTD.2007.4408637

26. Gupta, A.: Assertion-based verification turns the corner. IEEE Design and Test of
Computers 19, 131–132 (2002). DOI http://doi.ieeecomputersociety.org/10.1109/MDT.
2002.10025

27. Hoos, H.H.: Computer-aided design of high-performance algorithms. Tech. rep., Uni-
versity of British Columbia (2008)

28. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Computa-
tion. Addison-Wesley (1979)

29. Jard, C., Jeron, T.: On-line model-checking for finite linear temporal logic specifica-
tions. In: Automatic Verification Methods for Finite State Systems, Proc. International
Workshop, Grenoble, vol. 407, pp. 189–196. LNCS, Springer-Verlag, Grenoble (1989)

30. Jin, D., Meredith, P., Griffith, D., Roşu, G.: Garbage collection for monitoring para-
metric properties. In: Programming Language Design and Implementation (PLDI’11),
pp. 415–424. ACM (2011). DOI doi:10.1145/1993316.1993547

31. Kupferman, O., Lampert, R.: On the construction of fine automata for safety proper-
ties. In: ATVA’06: Proc. of the International Symposium on Automated Technology for
Verification and Analysis, pp. 110–124 (2006)

32. Kupferman, O., Vardi, M.: Model checking of safety properties. Formal methods in
System Design 19(3), 291–314 (2001)

33. Meredith, P., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP runtime
verification framework. International Journal on Software Techniques for Technology
Transfer (2011). To appear; http://dx.doi.org/10.1007/s10009-011-0198-6

34. Møller, A.: dk.brics.automaton (2004). Http://www.brics.dk/automaton/
35. Morin-Allory, K., Borrione, D.: Proven correct monitors from PSL specifications. In:

DATE’06: Proc. Conf. on Design, automation and test in Europe, pp. 1246–1251. Eu-
ropean Design and Automation Association (2006)

36. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS’08: Tools and Al-
gorithms for the Construction and Analysis of Systems, 14th International Conference,
pp. 337–340 (2008)

37. Pierre, L., Ferro, L.: A tractable and fast method for monitoring SystemC TLM
specifications. IEEE Transactions on Computers 57, 1346–1356 (2008). DOI http:
//doi.ieeecomputersociety.org/10.1109/TC.2008.74

38. Rönkkö, M.: LBT: LTL to Büchi conversion. Available online (1999). URL http:
//www.tcs.hut.fi/Software/maria/tools/lbt/ . Accessed March 29, 2011

39. Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. In: Proc. 14th Int. SPIN confer-
ence on Model checking software, pp. 149–167. Springer, Berlin, Heidelberg (2007)

40. Stolz, V., Bodden, E.: Temporal assertions using AspectJ. Electron. Notes Theor. Com-
put. Sci. 144(4), 109–124 (2006). DOI http://dx.doi.org/10.1016/j.entcs.2006.02.007

41. Tabakov, D., Vardi, M.: Monitoring temporal SystemC properties. In: Proc. 8th Int’l
Conf. on Formal Methods and Models for Codesign, pp. 123–132. IEEE (2010)

42. Tabakov, D., Vardi, M., Kamhi, G., Singerman, E.: A temporal language for SystemC.
In: FMCAD ’08: Proc. Int. Conf. on Formal Methods in Computer-Aided Design, pp. 1–
9. IEEE Press (2008). URL http://portal.acm.org/citation.cfm?id=1517446

43. Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata constructions.
In: LPAR’05, 12th Int. Conf. on Logic for Programming, Artificial Intelligence, and
Reasoning, pp. 396–411 (2005)

44. Vardi, M., Wolper, P.: Reasoning about infinite computations. Information and Com-
putation 115(1), 1–37 (1994)

45. Vijayaraghavan, S., Ramanathan, M.: A Practical Guide for SystemVerilog Assertions.
Springer, New York, NY, USA (2005)

