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Abstract

A numerical accuracy analysis of the radiative transfer equation (RTE) solution based on
separation of the diffuse light field into anisotropic and smooth parts is presented. The analysis
uses three different algorithms based on the discrete ordinate method (DOM). Two methods,
DOMAS and DOM2+, that do not use the truncation of the phase function, are compared against
the TMS-method. DOMAS and DOM2+ use the Small-Angle Modification of RTE and the sin-
gle scattering term, respectively, as an anisotropic part. The TMS method uses Delta-M method
for truncation of the phase function along with the single scattering correction. For reference, a
standard discrete ordinate method, DOM, is also included in analysis. The obtained results for
cases with high scattering anisotropy show that at low number of streams (16, 32) only DOMAS
provides an accurate solution in the aureole area. Outside of the aureole, the convergence and
accuracy of DOMAS, and TMS is found to be approximately similar: DOMAS was found more
accurate in cases with coarse aerosol and liquid water cloud models, except low optical depth,

while the TMS showed better results in case of ice cloud.
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1. Introduction

This paper continues analysis of the scalar radiative transfer equation (RTE) with highly
asymmetric phase function in the framework of discrete ordinates method (DOM) (Chandrasek-
har, 1950; Stamnes and Swanson, 1981). In our recent paper (Korkin et. al, 2011), a particular
attention was paid to the methods based on decomposition of the diffuse light field into a smooth
(regular) part and analytically expressed anisotropic part without truncation of the phase func-
tion. With anisotropy subtraction, the regular part of the signal, which requires a numerical solu-

tion, is essentially smoothed as a function of angles.



In DOM, the view zenith angle (VZA) anisotropy of the signal is expressed via an even
number 2N of linear differential equations in the system. Each ordinate corresponds to one equa-
tion, and there are N ordinates per hemisphere. The azimuthal dependence of radiance is ex-
pressed via Fourier series with M harmonics, where the system of N linear equations is solved
independently for each m = 0...M (Thomas and Stamnes, 1999) providing solution in i = 1...N

discrete points —1<p, <+L; p, #0, +1.

Our previous work (Korkin et. al, 2011) showed that anisotropy subtraction using a
Small-Angle Modification of RTE, implemented in code DOMAS, accelerated azimuthal con-
vergence of solution significantly, by a factor of 3. However, contrary to our expectations, this
method did not improve convergence in zenith angle, meaning that a large number of streams
would still be required for high accuracy computations with very asymmetric phase functions.
It's worth mentioning that accuracy comparison for different number of streams N in (Korkin et.
al, 2011) used cubic spline interpolation to yield solution at selected angles. This method was
criticized by Karp (1981) as limiting the computational accuracy. A convenient form of compu-
tation for an arbitrary angle using integration of the source function was introduced in DOM by
Kourganoff (1952). The current work employs the idea of “natural” interpolation by including

the required view angles as dummy nodes —1<p, <+1 into DOM scheme with zero weighting
coefficients w, =0 (Chalhoub and Garcia, 2000). This new approach yields the high accuracy

solution with low number of streams. Below, we provide code details and a comparison with
other approaches for three cases with high scattering anisotropy, including coarse aerosol frac-
tion and liquid water and ice cloud models.

This paper is structured as follows: Section (2) defines the problem and describes the
main characteristics of the methods compared in the paper. The definition of the scenarios for
numerical tests is given in Section (3) followed by discussion of the results in Section (4). The

paper is concluded with the summary.

2. Definition of the problem
For simplicity, we consider the boundary problem for the scalar RTE and plane-parallel
homogeneous atmosphere illuminated at the right angle (Chandrasekhar, 1950)
oI(t,p)
ot
I(t,n")=0; I(ty,n ) =0.

1
©, r ! ! o
n +1(t, 1) =7° [ PG (x, 1) du +7°p(u, Dexp(-1),
-1

(1)

Here, /(t,p) is the radiance given as a function of optical depth T (0<t<7,) and a cosine of

VZA p = cosf. The surface is assumed to be black. The media scattering properties are given by
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the single scattering albedo ®, and phase function p(u,pn’). Z-axis is pointed downwards, so

that 0° <06 <90° (n" >0) and 90° <6 <180°(u <0) correspond to transmitted and reflected

radiation, respectively.

The phase function is expanded in Legendre series
KIYI!I).‘
plp) =D 2k +Dx B (WA W), (2)
k=0

where P, (n) is the Legendre polynomial of degree k, x, are expansion moments, and K is

the maximum expansion order necessary for accurate representation of the phase function which
will be denoted hereafter as K if the number of term involved is less then K.
The discrete ordinate method is often used to solve Eq.(1). Using the double-Gauss qua-

drature (Sykes, 1951), the scattering integral in Eq.(1) is expressed as‘a sum in the form
1 N N
Ip(u, I (t 1 )dp' = Y w, p(u, )1 () + D w, (a1 (t,1u) 3)
—1 Jj=1 J=1

where w, are the weighting coefficients, ;are the nodes (zeros) of the Legendre polynomial

P, (n). Equation (3) yields the system of 2N linear differential equations for Eq.(1). While pa-
rameters K in Eq.(2) and N in Eq.(3) seem to be independent, it was shown that N = K/2 gives
numerically stable results (7homas and Stamnes, 1999). Thus N = K/2 is assumed in Section 2.
The right-hand side of the RTE Eq.(1) is called the source function (Chandrasekhar,
1950). The free term of the source function contains all K,,,, moments of the phase function

%p(u,l) exp(—T) = %exp(—r)f 2k +1)x, P(WP.(1), (4)

regardless of the number of moments K of the phase function under the scattering integral. The
acronym DOM will be used further in this paper for the traditional discrete ordinate method de-
fined by Egs.(1) - (4) without any modifications. Note, that for the azimuthally independent case
the single scattered radiation is included in DOM exactly.

Large particles as in clouds, snow, coarse aerosol fraction etc. cause a strong forward
scattering and peaks in the backscattering directions. In these cases, K-parameter in Eq.(2) is
large, ~10° as well as the number 2N of DOM equations. At large N, the matrix of the system
easily becomes ill-conditioned, and it's solution is time consuming.

Presently, there are two main approaches to solve the RTE problem with high scattering
anisotropy. The first one uses different truncation approximations of phase function. These me-
thods were recently analyzed by Rozanov and Lyapustin (2010). The error caused by truncation

of the phase function is significantly reduced by the postprocessing correction in the single scat-



tering (Nakajima and Tanaka, 1988; Muldashev et al., 1999) or the source function integration
(Dave and Armstrong, 1974). The second approach singles out the anisotropic part of the light
field without changing the phase function (Romanova, 1962; Irvine, 1968; Budak et al. 2010).

In this paper we compare three different methods. The first one singles out the anisotropic
part of radiance, /,(t,n), using the Small-Angle Modification (Gaudsmit and Saunderson,
1940; Budak and Sarmin, 1990):

() =1,(t, )+ 1 (T 1) . )

Importantly, /,(t,p) has an analytical expression. With major anisotropy of signal thus re-

moved, the RTE for the smooth regular part, /,(t, 1) , becomes more amenable for the numerical

solution than the original Eq. (1). The resulting code DOMAS was described in (Korkin et al.,
2011).

In the second method the single scattering approximation is treated as the anisotropic part

I, (t,n)=1,(t,1) (van de Hulst, 1948; Sobolev, 1975)

I(Tau)zll(rau)-l-[h(rau) (6)
The second and the higher scattering orders, taken together, represent the regular part in this

case: I,(t,n)=1,,(t,1). The computational details of this method, called DOM2+, were also

given in (Korkin et al., 2011). Egs.(5) and (6) transform the RTE boundary problem as follows
(Lenoble, 1985)
8[12 (T’ M) 0‘)0 1 ’ ’ '
L2t I (T, p) =— LW (T, )du + 041, (T, ),
R L () 2_jlp<uu)k( W)dw' + Q{1 (v, )} -
Ip(tw)=0; 1(tg,u ) =1, (T, ).

Following Eq.(4), the free term of the source function, Q{] 4 (r,u)} , contains the exact

phase function (Eq.(2)) with all K, moments included. The number of expansion moments K of
the phase function under the scattering integral should be taken equal to the number of ordinates
2N on sphere.

Finally, the third method used in this work is TMS (Nakajima and Tanaka, 1988). TMS
uses Delta-M truncation approach (Wiscombe, 1977) and a postprocessing routine to correct the
single scattering solution. In the framework of Delta-M method, the RTE boundary problem
Eq.(1) is solved using the scaled optical depth and SSA

T ==, /)t o == o /(1-0f), (8)

as well as truncated phase function with K < K,,,,, moments, which is also renormalized as:



P (W, K) =2 Qk+Dx, BWA W), x, =5~ )/ (1-1). )

k=0
In Egs. (8) and (9), f is the first truncated moment of the phase function, f =x,,, . IfK

= Kuax then f= 0. The number of considered moments, K, is twice the number of streams N per
hemisphere. Unlike in Egs.(1) and (7), Delta-M method uses K moments of the phase function
both under the scattering integral and in the free term of the source function Eq.(4).

In order to obtain the angular distribution of the radiance, TMS uses the following routine

TMS

(W)~ s () =1, (T, 00, p s W)= (T, 00, W+ (T, pow),  (10)
where 7, ,,(t",0,,p", 1) and 1,(1",0,, p’, u) are the Delta-M and single scattering solutions of

Eq.(1), respectively, with optical parameters and phase function p° given by Eqs.(8) and (9) re-

spectively. 1,(t", 0", p, 1) is the solution of Eq.(1) in the single scattering approximation with

optical depth 1~ scaled following Eq.(8), rescaled single scattering albedo o, =o,/(1-®,f),

and the exact phase function p given by Eq.(2). Rozanov and Lyapustin (2010) found that the
TMS method provides the best overall accuracy for the intensity computations among different
techniques based on truncation of the phase function.

In this work, we used previously developed codes DOMAS and DOM2+ upgraded with
the dummy node interpolation technique described above. For comparison, we also used our own
straightforward implementation of DOM (Eqgs.(1) and (4)) and of TMS instead of commonly
used codes DISORT (ftp://climatel.gsfc.nasa.gov/wiscombe/Multiple Scatt/) or Rstar
(http://www.ccsr.u-tokyo.ac.jp/~clastr/). All DOM-based codes feature standard numerical tech-
niques including a singular-value decomposition (Karp et al., 1980; Stamnes and Swanson, 1981)
and a scaling transformation (Karp et al., 1980) for conditioning the matrix of the system. The
codes DOMAS, DOM2+, and DOM were tested in our previous paper (Korkin et al., 2011). Our
implementation of the TMS method was tested against DOM by assuming K = K, (no trunca-
tion). The observed agreement was within the computational accuracy.

After definition of scenarios in Section 3, these three approaches, Egs.(5), (6) and (10),

are analyzed in Section 4. The traditional approach of solving RTE Eq.(1) is discussed as well.

3. Definition of Test Cases

The accuracy of the methods was investigated using three types of phase functions with
different scattering anisotropy. The first two cases are defined in the code comparison study of
Kokhanovsky (2010). A lognormal size distribution at wavelength A=412 nm were used for both

of these cases. The expansion moments are available at www.iup.physik.uni-bremen.de/~alexk.
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The first case represents the coarse aerosol fraction with effective radius », = 0.3pum, variance ¢
= 0.92um, real refractive index m = 1.339, and size integration limits A» = 0.005pum ...30pm.
The case is characterized by the average scattering cosine x; = 0.79 and K., = 917 (918 total,
see Eq.(2)).

The second case represents the cloud with the following parameters: 7, = Spum, ¢ =
0.4pm, m =1.339, Ar=0.005pm ...100um, x; = 0.86 and K,,,,x = 1671.

The third case represents the cirrus cloud or snow crystals based on the model of random
fractal crystals (Mishchenko et al., 2006, pp.352-353). The expansion moments are available at
http://www.giss.nasa.gov/staff/mmishchenko/brf/. For this model the power law distribution of
project-area-equivalent-sphere radii was assumed (Mishchenko et al., 2006, p.128, Eq.(5.3.14))
with 7, = 50um, 6 = 0.2um, m = 1.311, A=650nm, x; = 0.75, and K., = 1999.The phase func-
tions for the defined three cases are shown in Figure 1.

The results were analyzed for a nearly conservative case @, =1-—10"° and a wide range of

optical depth 7o = 0.1, 1, 10 for each of the phase functions.

The relative error &(t,1), %, as a function of VZA was the focus of our analysis:

]e(Ts M) _I(Ta “’)|
1, (z, )

where 7,(t,u) is the “exact solution”.-The “exact solution” is defined as the solution of the

e(t,p) =

100%, (11)

boundary problem, Eq.(1), with all K,,,,+1 terms of the phase function taken into account, and
with 2N = K, +1 streams in Eq.(3). Namely, 2N = 918, 1672, 2000 was assumed for the aero-
sol, water cloud and ice cloud respectively.

Note that N = 240 streams per hemisphere, Delta-M, and single scattering correction
were used for the same aerosol case in SCIATRAN code in the benchmark test of codes (Kokha-
novsky et al., 2010) that included polarization effects. N = 180 streams were assumed for Pstar in
order to generate accurate results for aerosol scattering. For the cloud case SCIATRAN used N =
360 streams and Pstar used N = 180 streams. No significant difference was reported between
SCIATRAN and Pstar. In our case, all expansion moments were used for the aerosol and cloud
case (2N = 918 and 1672), respectively, to generate the baseline solution using standard code
DOM. The obtained “exact solutions” for the three cases are plotted in Figure 2 as functions of 1o

and VZA.

4. Results and Discussion
The results of analysis for the aerosol, liquid water and ice cloud models are presented in

Figures 3-5, respectively. They show the logarithm of relative error as a function of 1o and VZA
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for the transmitted (VZA = 0°...80°) and reflected (VZA =100°...180°) radiance for codes
DOMAS, TMS, and DOM2+. The results for DOM as compared with the exact solution are giv-
en for the reference as well. The results are displayed for two cases N = 16 and 32 to show the
convergence of solution. The figures show that code DOMAS has a significant advantage over
other methods in the aureole area. Even for the most difficult case of ice crystals (Figure 5), the
relative error of DOMAS does not exceed 0.1% for N = 32. One exception is the case with low
optical depth 1o = 0.1 where DOM2+ has a more accurate result.

Note, that the obtained results for DOM2+ demonstrate the systematical error component
similar to the standard DOM but with significantly smaller values. It shows that using the single
scattering field as a source leads to regular part which is not "enough regular". Truncation of the
regular part of DOM2+ using the Delta-M technique may improve the performance of DOM2+.

For all considered cases, the error of TMS in the sun direction was relatively high. For
the particular case of ice crystals and N = 32, the error reached 4%, 40%, and 2000% at o= 0.1,
1 and 10 respectively. For the aerosol case, it was 0.7%, 4%, and 12% for the same optical
depths at N =32. The described error of TMS in the aureole area may slightly affect the accuracy
in other directions if the surface reflection is considered.

Outside of the aureole region, DOMAS and TMS provide a generally comparable accura-
cy for both reflected and transmitted radiance. For example, DOMAS performs slightly better
overall for the aerosol and liquid cloud cases, while TMS shows a better accuracy for the case of
ice crystals, especially at low optical depth 7o =0.1.

As a summary of this analysis, an average error over all angles,

E(T) = S(T’ “1) P (12)

1 <&
L5
is provided in Tables 1, 2, and 3 for the aerosol case and liquid water and ice cloud models, re-
spectively. The tables show additional results with different number of streams N= 8§ and 64 than
those presented in figures. The average represents L = 81 values with 1 degree step for
0° <SZA <80° for the transmitted radiation and 100° <SZA <180° for the reflected tradition.
The overall best result is highlighted in gray.

In case with coarse fraction of aerosol (Tables 1b, ¢c), DOMAS provided the best result
for any considered number of streams and any optical depth, except for the thin layer (1o=0.1,
Table 1a), where DOM2+ was on average the best for any number of streams. Also, DOM2+ is a
perfect method for the case of thin water cloud and low (8, 16) number of streams (Table 2a).

In cases with water and ice clouds, moderate (tp=1, Tables 2b and 3b) and high (ty=10,

Tables 2¢ and 3c¢) optical depths, and low number of streams (8, 16), TMS provided the most

accurate results for the reflected radiation. In the same cases, DOMAS was the best for the
7



transmitted radiation. Note that for the case of ice crystals and 8 streams per hemisphere, TMS
was the only method that provided the numerically stable solution. Also, the TMS method pro-
vided the best result for 8-32 streams in case with thin ice cloud (Table 3a)

In case with water cloud, 32 and 64 streams, DOMAS showed the best average result
both for the transmitted and reflected radiation at moderate and high optical depths (Tables 2b,
2¢). In case with ice crystals and large number of streams (64), DOMAS was more accurate only
at moderate optical depth (Table 3b) with relatively insignificant improvement over TMS for the
reflected radiation. For a thick cloud with ice crystals (Table 3¢) TMS and DOMAS provided the
best results for the reflectance and transmittance, respectively.

Computational time and memory use are two other important dimensions of numerical
codes. Given the number of streams, N, all considered methods solve the system of 2N linear eq-
uations resulting in the same singular value decomposition part of the codes. The main differenc-
es appear in treatment of the source function and the bottom boundary condition.

Let us consider the case of liquid water cloud with 1= 10 and N = 16 as an example. The
relative error for this case is shown by the red line in Figute 4. The accurate DOM solution with
N=K/2 streams (DOM(exact)) took 48 seconds in the MathWorks Matlab environment running
on Intel Pentium T4300, 2.1GGz machine with 4Gb RAM under Microsoft Windows 7. Assum-
ing this time as 1000 in relative units, the time of the other methods is:

DOM(exact) / DOMAS / TMS / DOM2+/DOM =1000/16/1/15/2. (13)
The TMS method shows the best performance with the single scattering correction taking only
2% of the total time. The computer time generally grows along with the complexity of the source
function related computations which amounts to 20%, 63% and 84% of the total time for DOM,
DOMAS and DOM2+, respectively.

Conclusions

This paper continued analysis of RTE with strongly anisotropic scattering, comparing ap-
proaches based on decomposition of the diffuse light field into a regular and anisotropic part.
The TMS method, that uses the Delta-M method for truncation of the phase function along with
the single scattering correction, was also included in our analysis. It is shown numerically that
with anisotropy subtraction, the regular part of the signal, which requires a numerical solution, is
essentially smoothed as a function of view zenith angle. The algorithm DOMAS, that singles out
the anisotropic radiance in the forward scattering peak using the Small-Angle Modification of
RTE, gives accurate results in the aureole area where TMS was shown to have a peak of error. If
the reflecting ground surface is considered, this peak of error reduces the accuracy of the result at

any view zenith angle beyond the aureole area. Outside of the aureole area, the convergence and
8



accuracy of DOMAS and TMS is found to be approximately similar: DOMAS was found more
accurate in cases with coarse aerosol and liquid water cloud models, except low optical depth,
while the TMS showed better results in case of ice clouds. In case with optically thin aerosol
layer or water cloud, DOM2+ showed accurate results for a low number of streams.

The memory requirement is found comparable for all of the discussed methods. The best
computational efficiency has been demonstrated by the TMS method due to the analytical sim-

plicity of the source function.
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Table 1a: Mean Relative Error, %, for optical depth 7o = 0.1
DOM DOM
N)| HS AS TMS o DOM
. W 0.7960 0.4443 0.3766 1.5447
p 0.1817 0.2352 0.0956 1.5864
1 W 0.2077 0.1472 0.0933 1.1249
u 0.0504 0.0943 0.0292 0.9198
3 W 0.0270 0.0241 0.0089 0.6735
p 0.0065 0.0315 0.0048 0.4185
6 W 0.0015 0.0025 0.0003 0.1779
p 0.0003 0.0110 0.0003 0.1156
Table 1b: Mean Relative Error, %, for optical depth 7y =1
DOM DOM
N, HS AS TMS o DOM
W 0.3098 0.3254 0.8248 710'823
8
ot 0.0741 13031 1.0754 912'832
1 i 0.0360 0.1135 0.3726 6.4296
u 0.0146 0.6164 0.4021 7.5713
3 i 0.0032 0.0383 0.1002 2.8152
u 0.0012 0.1795 0.1024 3.2824
6 i 0.0005 0.0054 0.0095 0.7921
u 0.0001 0.0276 0.0094 0.9268
Table 1¢c: Mean Relative Error, %, for optical depth 7y =10
DOM DOM
N HS AS TMS o DOM
W 0.1315 0.0805 6.5087 427'155
8
ot 0.0749 3.8765 410.886 335.031
1 " 0.0196 0.0279 2.1218 416'5 13
p 0.0103 0.8915 3.6423 921'481
3 i 0.0020 0.0087 0.3288 7.0701
u 0.0010 0.1745 0.5839 9.2676
6 pn 0.0005 0.0012 0.0214 1.9744
u 0.0001 0.0329 0.0387 2.5949
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Table 2a: Mean Relative Error, %, for optical depth 7o = 0.1
DOM DOM
N HS AS T™MS o DOM
g pn 1.0840 0.2479 0.5959 2.6603
p 0.2011 0.1758 0.1581 2.5550
1 pn 0.4536 0.3181 0.2860 2.1873
u 0.1120 0.1760 0.0943 2.1805
3 pn 0.1504 0.1519 0.0591 3.0376
p 0.0312 0.1367 0.0529 2.0271
6 pn 0.0148 0.1139 0.1140 5.5597
p 0.0033 0.1664 0.0409 1.9635
Table 2b: Mean Relative Error, %, for optical depth 7y =1
DOM DOM
N HS AS TMS o DOM
W 15387 0.4384 2.0589 414'708
8
ot 0.2359 111369 2.8039 219'476
| pn 0.4649 0.3555 2.0003 215'771
' 0.0102 1.1251 2.2606 217'612
3 pn 0.1324 0.2633 1.9490 613.443
p 0.0219 1.1164 1.8501 815’260
6 W 0.0103 0.2727 2.1346 13330
u 0.0024 0.8652 1.5551 9.6011
Table 2c: Mean Relative Error, %, for optical depth 7, =10
DOM DOM
N HS AS TMS o DOM
" 0.7246 0.1508 716.697 141.224
8
ut 0.1933 526.485 626.915 251.994
| " 0.2382 0.1078 314.755 738.977
o 0.0296 215.274 123.460 748.816
3 W 0.0514 0.0672 110.115 533.946
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16.351 42.821
5.1885 8 9
0.0559 1.8227 018'340
0.6998 3.1250 323'468
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Table 3a: Mean Relative Error, %, for optical depth 7o = 0.1
DOM DOM
N HS AS TMS o DOM
. pn - 0.1179 - -
p - 0.0945 - -
1 n 1.8685 0.0188 1.2173 2.4418
p 0.3873 0.0754 0.2593 2.3467
3 n 0.7519 0.0207 0.5628 2.2796
p 0.1422 0.0724 0.1218 2.3214
6 n 0.1823 0.0109 0.0999 23671
p 0.0350 0.0806 0.0492 2.1538
Table 3b: Mean Relative Error, %, for optical depth 7o =1
DOM DOM
N HS AS TMS o DOM
. : - 0.1090 - -
’ - 0.8765 - -
1 i 0.2080 0.0556 2.3336 216'718
ot 0.1556 0.7920 2.8423 019‘528
3 i 0.0981 0.0429 2.0994 716’460
p 0.0763 0.7558 2.7598 819'382
; P 0.0329 0.0360 2.1134 515 719
p 0.0186 0.8193 2.5319 018'042
Table 3c: Mean Relative Error, %, for optical depth 7, =10
DOM DOM
N HS AS TMS 2t DOM
W - 0.0367 - -
8 R 46.720
u - 5 - -
1 w 0.1027 0.0176 717.785 842.367
ut 0.0766 833.874 229.750 454.812
- 17.203 41.799
3 1) 0.0538 0.0133 6 4
+ 27.181 29.327 54.692
u 0.0275 6 7 4
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- 14.937 39.136
. i 0.0254 g g

4 . 16.333 27.878 51.957
H 6 4 7

16



Highlights

(a) DOMAS is accurate in the aureole area even for a low number of streams;

(b) Beyond the aureole, the accuracy of DOMAS and TMS is similar;

(c) DOM2+ has a good accuracy for a thin cloud/aerosol layer at a low number of streams;

(d) All codes have comparable memory requirements, and TMS requires least computer time.
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