

Enhanced MgF₂ and LiF Over-coated Al Mirrors for FUV Space Astronomy

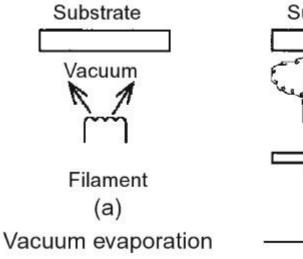
By

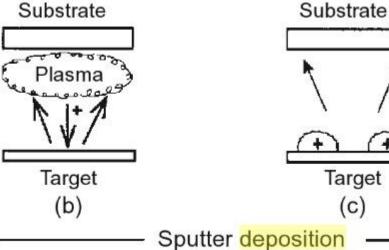
Manuel Quijada

Outlines

- Motivation: The need for better performing coatings in the Far-Ultraviolet (FUV)
- Enhanced UV coating development for the Thermospheric Temperature Imager (TTI)
- More recent research efforts:
 - Preparation of 2-meter coating chambers
 - Study of other low-absorptions dielectric coatings for FUV applications
- Conclusions
- Acknowledgements

Enhanced FUV Coating Applications



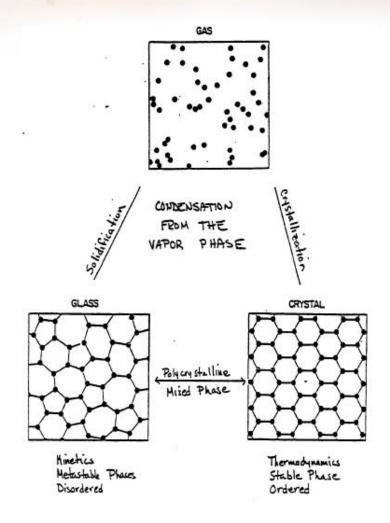

- Distant and faint objects are typically searched for in cosmic origin studies:
 - Origin of large scale structure
 - The formation, evolution, and age of galaxies
 - The origin of stellar and planetary systems
- Astronomical observations in the Far Ultraviolet (FUV) spectral region are some of the more challenging
- Very limited option of reflecting coatings to use at FUV wavelengths:
 - Modest reflectivity offered by those coatings
 - Al+MgF₂ [typically 82% at Lyman-alpha, 1216 Å) that are used on reflecting surfaces of FUV instrumentation
- Improved reflective coatings for optics at FUV could yield dramatically more sensitive instruments.
- Permit more instrument design freedom

Optical Coating Deposition Processes

Plasma

PVD

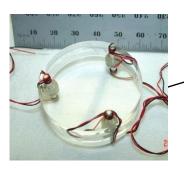
- Material is heated until it reaches vapor form
- Material is deposited on the substrate where it condenses
- Typical deposition rates are 10-100 Å/Sec.

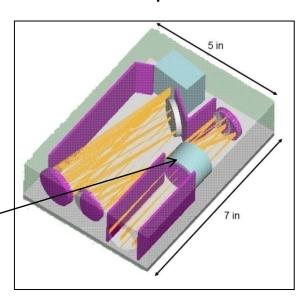

Sputtering

(c)

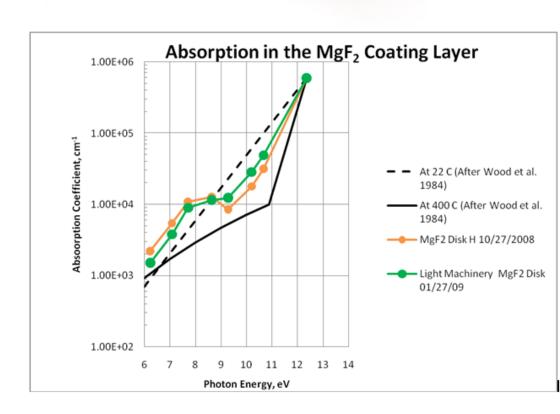
- Non-thermal evaporation process
- Atoms from a target are ejected by momentum transfer from energetic atom-size particles
- Particles are energized by an ion gun
- Deposition rate are much lower than PVD 1-5 Å/Sec.

Solidification vs. Crystallization




TTI Mission Concept

- Imager to provide global-scale remote measurements of thermospheric temperature profile of atomic oxygen at an altitude of 200-400 KM
- Wavelength range: 135.4 to 135.6 nm (0.0004 nm resolution)
- Fabry-perot Etalon cavity:

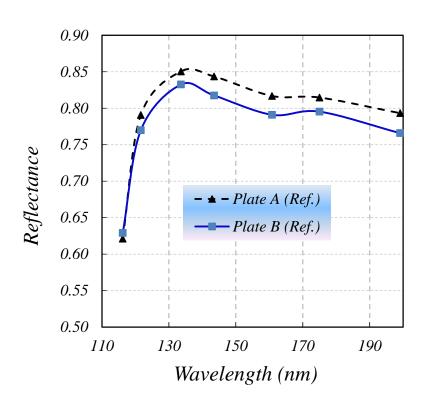

- GSFC effort to develop Al+MgF2 coatings to meet requirements:
 - · High reflectance & low absorption

High-Temperature Deposition Al+MgF2

3-step coating process:

- ✓ Al coat the substrate at room temperature to the planned layer thickness
- ✓ As soon as possible after the AI deposition, overcoat the AI layer and substrate at room temperature with a thin 4-5 nm layer of MgF₂ in order to protect the AI from oxidation and contamination.
- ✓ Heat the substrate to maximum temperature and overcoat the thin MgF2 , Al, and substrate with the planned thickness of MgF2.

TTI Etalon Plate Performance


Reflectance

0.10 0.09 0.08 0.07 Transmittance 0.07 0.08 0.09 – Plate A (Trans.)

0.01

0.00

110

TTI Etalon plate 6a (Thicknesses: Al 277 A; MgF2 300A)

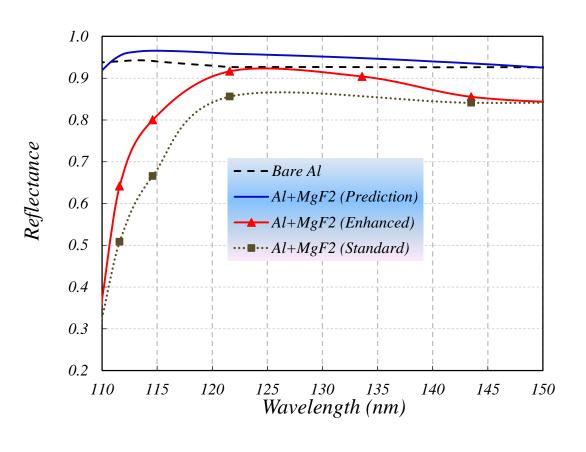
TTI Etalon plate 6b (Thicknesses: Al 278 A; MgF2 310A)

130

150

Wavelength (nm)

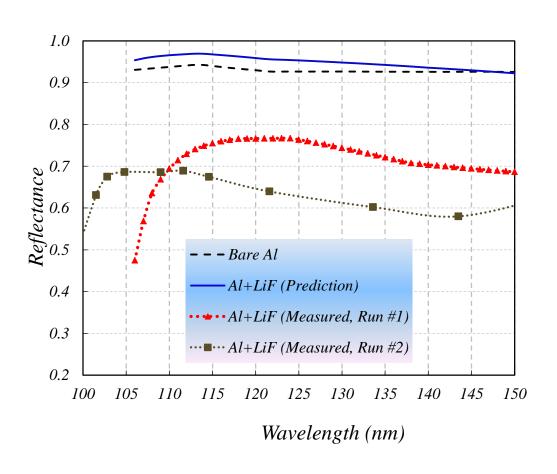
Plate B (Trans.)


170

190

Transmittance

Evaporated Al+MgF2 Mirror Performance



- Predicted vs. measured reflectance of bare Al and Al+MgF₂ reflectance (Al: 50.0 nm; MgF2: 25.0nm)
- Enhanced performance is obtained by heating (~220 ° C) substrate during MgF2 deposition
- Reflectance is > 80% even at 115.0 nm

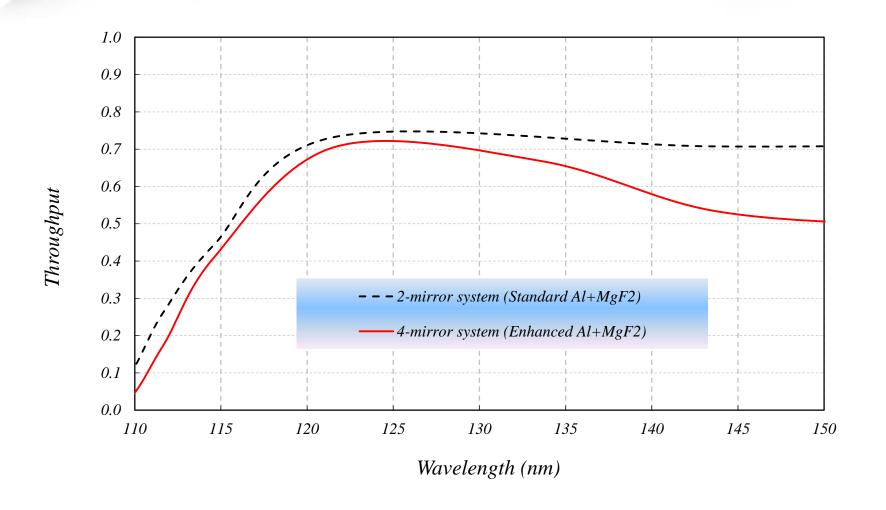
Evaporated Al+LiF Mirror Performance

- Predicted vs. measured reflectance of bare Al and Al+LiF reflectance
- Enhanced performance is obtained by heating substrate during LiF deposition.

Recent Results 1-meter Chamber

Run AMC1207

	Ref AMCT0902A slide AMC1207A center of 14" diam		optic slide AMC1207B 8" from center of optic		
Wavelength (A)					
*1216	*0.830850419	*0.863613442	*0.840455289		
1162	0.62643581	0.655861189	0.741373332		
1216	0.823922691	0.863135491	0.855357016		
1608	0.845185596	0.881918126	0.818922628		


Run AMC1208

	Ref AMCT0902A	AMC1208 3" from center of chambe		
Wavelength (A)				
*1216	*0.811149486	*0.890760365		
1162	0.623358305	0.809512748		
1216	0.814559749	0.896448174		
1608	0.815977285	0.843056068		

note: * indicates initial measurement

Throughput Performance for 2- and 4-meter Systems

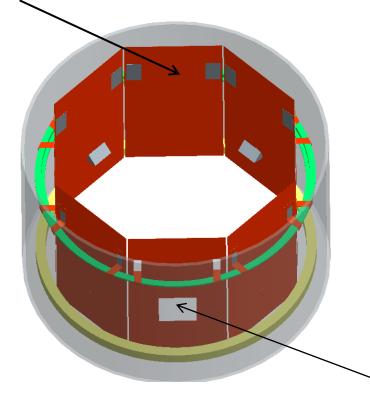
GSFC 2-meter Coating Facility

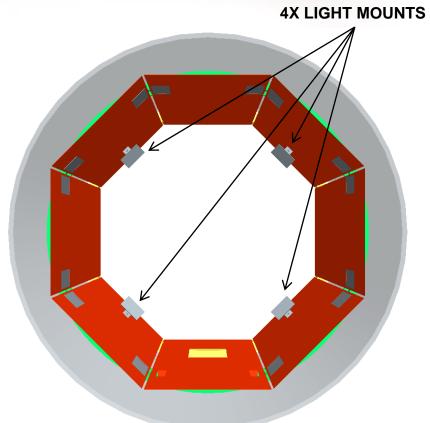
- ➤ Design and fabrication of internal heat shields for 2-meter Chamber.
- ➤ Optimized coating parameter for high FUV reflectance of a distribution of slides in center and out to a ~0.5 meter radius.

FIREBALL primary mirror loading

Mirror mounted in 2-meter chamber prior to coating

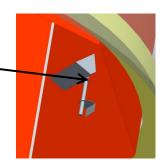
Missions supported: Astronomical Observatory (OAO) & Ultraviolet Explorer (IUE)

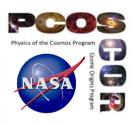

FUSE, HST (COSTAR, GHRS & COS)


2-meter Chamber Heat Panel Concept

Physics of the Cosmos Program
Cosmic Organs
Program
Program
Cosmic Organs
Program
Prog

- These wall panels were made out of stainless steel and were designed to easily interface with the existing internal configuration of the chamber.
- We are still in the design phase of the top shields for future installation in the chamber dome.
- We recently test fit the wall panels in the co.


8 PANELS



ADJUSTABLE LIGHT MOUNT

SINGLE VIEWPORT 10" X 10" SQUARE

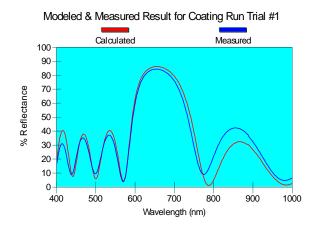
Halogen-Quartz Lamp Heater Equipment

Quartz Lamp Heater Assembly

Power Supply System

FUV Reflecting Dielectric Coatings

- Choose a high-index (H) and low-index (L) pair combination
- Form a pair of (H,L) layers with thicknesses equal to a Quarter-Wave Optical thickness at the design wavelength.
- Repeat the stack above until desired reflectance is achieved.

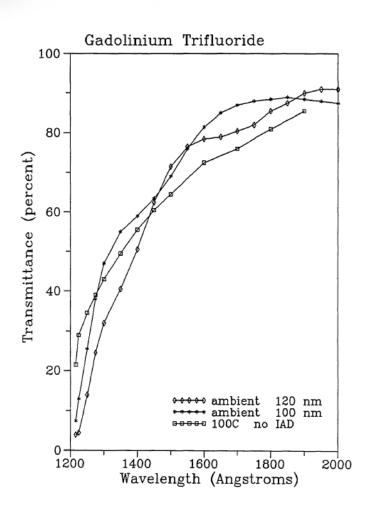


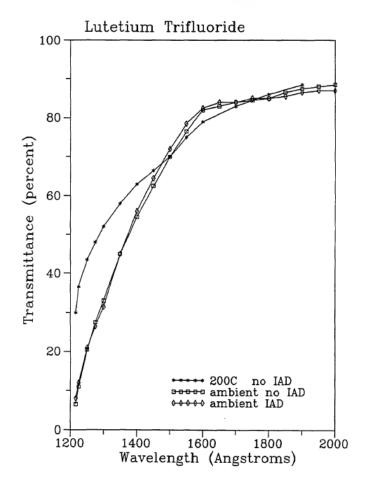
Note: The larger the difference between (n_H-n_L) the better contrast and fewer layers needed to achieve a given R

Options for coating materials:

L: $MgF_2(n\sim1.38)$

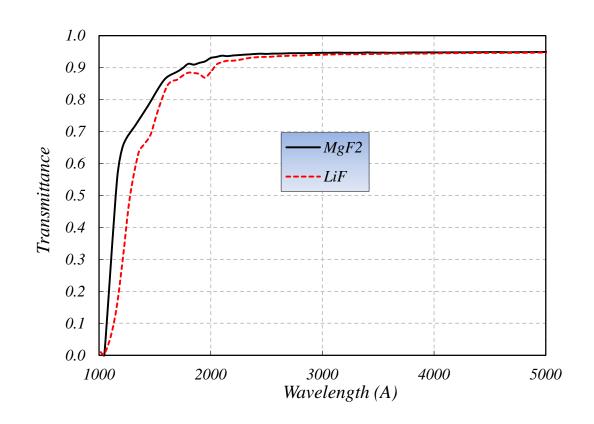
H: ?


Evaporation Details for Lanthanide Trifluorides

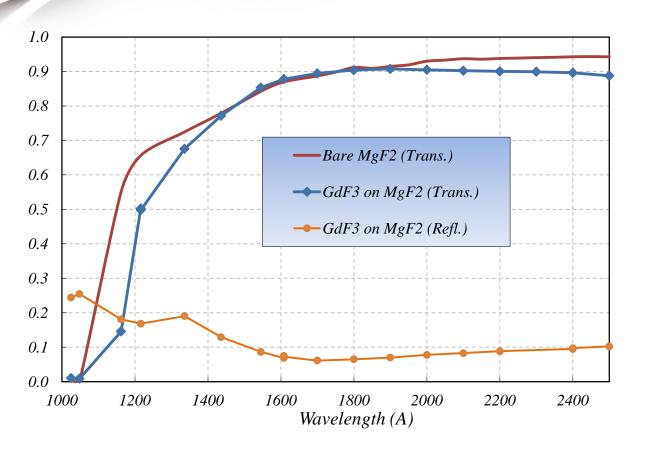

LnF ₃	VENDOR & FORM	PURITY	PRICE per gram	BOAT (5 mil canoe)	RATE Å/sec	MELT COMMENTS
PrF ₃	Cerac 3-6mm fused 1/8-1/4" pieces	99.9 vac. dep. grade	\$1.60	W (no Mo,Ta)	6	bright green smooth melt large, shiny grains
SmF ₃	•	•	\$ 1.62	Мо	6	pale yellow uneven melt small, dull grains
EuF ₃	•		\$16.00	Pt sheet 2 mil (no Mo,Ta)	4	light brown smooth melt large, shiny grains
GdF ₃			\$1.70	Мо	6	white, grey uneven melt small, shiny grains
TbF ₃			\$ 7.50	Ta	4	white, grey smooth melt small, shiny grains
DyF ₃			\$1.60	Та	6	dark grey smooth melt small, shiny grains
HoF ₃		•	\$2.30	Та	6	pink smooth melt large, shiny grains
ErF ₃		"	\$1.90	Та	6	pink smooth melt large, dull grains
TmF ₃		•	\$ 18.30	Мо	6	white, grey smooth melt large, dull grains
YbF ₃		•	\$2.40	Mo (no Ta)	3	tan smooth melt large, dull grains
LuF,	Aesar crystalline lump	99.99 elec.grade low oxy	\$37.00 \$45.00	Mo Mo	6 6	white whiter smooth melt large, dull grains

Ref.: Linda Jeanne Lingg, Ph.D. Thesis University of Arizona (1990).

Two FUV Candidate Materials: GdF₃ & LuF₃


Substrates Characterization

Optical Transmission



MgF₂ & LiF substrates have been procured

GdF3 Film on MgF2 Substrate

- 430 A GdF3 film on MgF2 substrate
- Measured T & R will enable characterization of n & k

Ion Beam Sputtering Coating Chamber

- Upgrade chamber with a two-gas flow controller system.
- Received shipment of Krypton gas cylinder to be used in the ion-beam sputtering deposition of MgF2 and LiF coatings.
- Making preparation to start making test coating runs to "break-in" MgF2 targets.
- Placed order of new magnets to refurbish ion gun in order to increase deposition rate.

Conclusion

- ➤ Reported gains in FUV reflectivity of Al+MgF₂ and Al+LiF mirrors by employing a 3-step process during PVD coating deposition of these materials.
- ➤ Preparations under way to transfer process to a large 2-meter chamber for allowing coating up to 1 meter diameter optics.
- ➤ Characterization of lanthanide trifluoride material candidates to determine their FUV transparency for development of dielectric coatings.
- ➤ Advantages of having better performing coatings will add more flexibility to a system design that is certain to improve overall performance.
- ➤ Increasing system throughput is a very cost effective way to achieve more science and often is less costly than simply using a larger primary mirror.

Acknowledgements

Steve Rice & Felix Threat (Coating Technicians)

John Lehan (Materials Engineer)

Eric Mentzell (TTI Optical Designer)

John Sigwarth (TTI PI)

Funding agency: SAT grant from the NASA Cosmic Origin Program office