
Concha M. Reid
Glenn Research Center, Cleveland, Ohio

Advanced Materials and Component Development 
for Lithium-Ion Cells for NASA Missions

NASA/TM—2012-217689

September 2012

https://ntrs.nasa.gov/search.jsp?R=20120015394 2019-08-30T22:37:55+00:00Z



NASA STI Program . . . in Profi le

Since its founding, NASA has been dedicated to the 
advancement of aeronautics and space science. The 
NASA Scientifi c and Technical Information (STI) 
program plays a key part in helping NASA maintain 
this important role.

The NASA STI Program operates under the auspices 
of the Agency Chief Information Offi cer. It collects, 
organizes, provides for archiving, and disseminates 
NASA’s STI. The NASA STI program provides access 
to the NASA Aeronautics and Space Database and 
its public interface, the NASA Technical Reports 
Server, thus providing one of the largest collections 
of aeronautical and space science STI in the world. 
Results are published in both non-NASA channels 
and by NASA in the NASA STI Report Series, which 
includes the following report types:
 
• TECHNICAL PUBLICATION. Reports of 

completed research or a major signifi cant phase 
of research that present the results of NASA 
programs and include extensive data or theoretical 
analysis. Includes compilations of signifi cant 
scientifi c and technical data and information 
deemed to be of continuing reference value. 
NASA counterpart of peer-reviewed formal 
professional papers but has less stringent 
limitations on manuscript length and extent of 
graphic presentations.

 
• TECHNICAL MEMORANDUM. Scientifi c 

and technical fi ndings that are preliminary or 
of specialized interest, e.g., quick release 
reports, working papers, and bibliographies that 
contain minimal annotation. Does not contain 
extensive analysis.

 
• CONTRACTOR REPORT. Scientifi c and 

technical fi ndings by NASA-sponsored 
contractors and grantees.

• CONFERENCE PUBLICATION. Collected 
papers from scientifi c and technical 
conferences, symposia, seminars, or other 
meetings sponsored or cosponsored by NASA.

 
• SPECIAL PUBLICATION. Scientifi c, 

technical, or historical information from 
NASA programs, projects, and missions, often 
concerned with subjects having substantial 
public interest.

 
• TECHNICAL TRANSLATION. English-

language translations of foreign scientifi c and 
technical material pertinent to NASA’s mission.

Specialized services also include creating custom 
thesauri, building customized databases, organizing 
and publishing research results.

For more information about the NASA STI 
program, see the following:

• Access the NASA STI program home page at 
http://www.sti.nasa.gov

 
• E-mail your question to help@sti.nasa.gov
 
• Fax your question to the NASA STI 

Information Desk at 443–757–5803
 
• Phone the NASA STI Information Desk at
 443–757–5802
 
• Write to:

           STI Information Desk
           NASA Center for AeroSpace Information
           7115 Standard Drive
           Hanover, MD 21076–1320



Concha M. Reid
Glenn Research Center, Cleveland, Ohio

Advanced Materials and Component Development 
for Lithium-Ion Cells for NASA Missions

NASA/TM—2012-217689

September 2012

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Prepared for the
Energy Tech 2012
sponsored by the Institute of Electrical and Electronics Engineers
Cleveland, Ohio, May 29–31, 2012



Acknowledgments

All of the work presented in this paper was funded by the National Aeronautics and Space Administration, Enabling Technology 
Development and Demonstration Program High Effi ciency Space Power Systems Project (formerly the Exploration Technology 
Development Program, Energy Storage Project). Numerous people participated in the synthesis of materials, generation of data, and 
interpretation of results. Contributions from Richard Baldwin, William Bennett and Brianne Scheidegger, NASA Glenn Research 
Center; Judith Jeevarajan, NASA Johnson Space Center; and William West, Marshall Smart, Kumar Bugga, and Jessica Soler, 
NASA Jet Propulsion Lab are gratefully acknowledged. Contributors via efforts funded through NASA Research Announcement 
NNC08ZP022N include the following: Nader Hagh and Ganesh Skandan; NEI Corporation; Arumugam Manthiram, University 
of Texas at Austin; Christopher Lang, Physical Sciences, Inc.; Justin Golightly, Lockheed Martin Space Systems Company; 
Gleb Yushin, Georgia Institute of Technology; Igor Luzinov, Clemson University; Boris Ravdel, Yardney Technical Products; 
Brett Lucht, University of Rhode Island, and support staff at these companies and universities.

Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Available electronically at http://www.sti.nasa.gov

Trade names and trademarks are used in this report for identifi cation 
only. Their usage does not constitute an offi cial endorsement, 
either expressed or implied, by the National Aeronautics and 

Space Administration.

Level of Review: This material has been technically reviewed by technical management. 

This report contains preliminary fi ndings, 
subject to revision as analysis proceeds.



NASA/TM—2012-217689 1 

Advanced Materials and Component Development for Lithium-Ion 
Cells for NASA Missions 

 
Concha M. Reid 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 
Human missions to Near Earth Objects, such as asteroids, planets, moons, liberation points, and 

orbiting structures, will require safe, high specific energy, high energy density batteries to provide new or 
extended capabilities than are possible with today’s state-of-the-art aerospace batteries. The Enabling 
Technology Development and Demonstration Program, High Efficiency Space Power Systems Project 
battery development effort at the National Aeronautics and Space Administration (NASA) is continuing 
advanced lithium-ion cell development efforts begun under the Exploration Technology Development 
Program Energy Storage Project. Advanced, high-performing materials are required to provide improved 
performance at the component-level that contributes to performance at the integrated cell level in order to 
meet the performance goals for NASA’s High Energy and Ultra High Energy cells. NASA’s overall 
approach to advanced cell development and interim progress on materials performance for the High 
Energy and Ultra High Energy cells after approximately 1 year of development has been summarized in a 
previous paper. This paper will provide an update on these materials through the completion of 2 years of 
development. The progress of materials development, remaining challenges, and an outlook for the future 
of these materials in near term cell products will be discussed.  

1.0 Introduction 
NASA is developing High Energy (HE) and Ultra High Energy (UHE) advanced lithium-ion (Li-ion) 

cells with the goals of attaining specific energies of 180 watt-hours per kilogram (Wh/kg) and 260 Wh/kg, 
respectively, when measured at C/10 and 0 °C, in cells that are inherently safe. The HE cell goals are 
being addressed through the development of advanced cathode components, flame retardant electrolytes, 
safety devices, and optimized cell designs. The newly developed components will be combined with a 
commercial graphite anode from Mitsubishi Chemical Corporation (MPG-111) that can achieve a specific 
capacity of 330 milliampere-hours per gram (mAh/g) at C/10 and 0 °C and a commercial battery-grade 
separator to comprise an HE cell design. The UHE cell goals will be achieved through the development of 
advanced anodes and combining them with the cathode, safety device, and separator utilized in the HE 
cell. A flame retardant electrolyte specially formulated to be compatible with the advanced anode will be 
used in the UHE cell design. Background information on the cell chemistries, their components, and cell 
designs are documented in prior papers by Reid and Bennett and by Reid (Refs. 1 and 2). 

A table of Key Performance Parameters (KPPs) is shown in Table 1. These KPPs establish target 
criteria for the performance of cell components and Li-ion cells, and project the expected performance of 
a battery-level system comprised of the cells under development. State-of-the art (SOA) is based on 
aerospace design Li-ion cells and batteries developed by Yardney Technical Products for operation on the 
Mars Exploration Rovers (MER).  
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TABLE 1.—KEY PERFORMANCE PARAMETERS 
Performance 

parameter 
State of the Art Current value Threshold valuea Goala 

No fire or 
flame 

Instrumentation/controllers 
used to prevent unsafe 
conditions. There is no non-
flammable electrolyte in SOA 

Preliminary results indicate 
a small reduction in 
performance using safer 
electrolytes and cathode 
coatings 

Tolerant to electrical and 
thermal abuse such as 
over-temperature, over- 
charge, reversal, and short 
circuits with no fire or 
thermal runawayc 

Tolerant to electrical and 
thermal abuse such as 
over-temperature, over- 
charge, reversal, and short 
circuits with no fire or 
thermal runawayc 

Battery-level 
specific 
energy,b 
(Wh/kg) 

90 Wh/kg at C/10 and 30 °C 
83 Wh/kg at C/10 and 0 °C 
(MER rovers) 

160 at C/10 and 30 °C (HE) 
170 at C/10 and 30 °C (UHE) 
80 Wh/kg at C/10 and 0 °C 
(predicted) 

135 Wh/kg at C/10 and 
0 °C “High-Energy” 
150 Wh/kg at C/10 and 
0 °C “Ultra-High Energy” 

150 Wh/kg at C/10 and 
0 °C “High-Energy” 
220 Wh/kg at C/10 and 
0 °C “Ultra-High Energy”

Cell-level 
specific 
energy, 
(Wh/kg) 

130 Wh/kg at C/10 and 30 °C 
118 Wh/kg at C/10 and 0 °C 

199 at C/10 and 23 °C (HE) 
213 at C/10 and 23 °C (UHE) 
100 Wh/kg at C/10 and 0 °C 
(predicted) 

165 Wh/kg at C/10 and 
0 °C “High-Energy” 
180 Wh/kg at C/10 and 
0 °C “Ultra-High Energy” 

180 Wh/kg at C/10 and 
0 °C “High-Energy” 
260 Wh/kg at C/10 and 
0 °C “Ultra-High Energy”

Cathode-level 
specific 
capacity, 
(mAh/g) 

180 mAh/g 252 mAh/g at C/10 and 25 °C 
190 mAh/g at C/10 and 0 °C 

260 mAh/g at C/10 and 
0 °C  

280 mAh/g at C/10 and 
0 °C  

Anode-level 
specific 
capacity, 
(mAh/g) 

280 mAh/g (MCMB) 330 at C/10 and 0 °C (HE) 
1200 mAh/g at C/10 and 0 °C 
for 10 cycles (UHE) 

600 mAh/g at C/10 and 
0 °C  
“Ultra-High Energy” 

1000 mAh/g at C/10  0 °C
“Ultra-High Energy” 

Battery-level 
energy density 

250 Wh/l n/a 270 Wh/l “High-Energy” 
360 Wh/l “Ultra-High” 

320 Wh/l “High-Energy” 
420 Wh/l “Ultra-High” 

Cell-level 
energy density 

320 Wh/l n/a 385 Wh/l “High-Energy” 
460 Wh/l “Ultra-High” 

390 Wh/l “High-Energy” 
530 Wh/l “Ultra-High” 

Operating 
temperature 

–20 to +40 °C 0 to +30 °C 0 to 30 °C 0 to 30 °C 

aAssumes prismatic cell packaging for threshold values. Goal values include lightweight battery packaging. 
bBattery values are assumed at 100% depth-of-discharge (DoD), discharged at C/10 to 3.0 volts/cell, and at 0 °C operating conditions. 
cOver-temperature up to 110 °C; reversal 150% excess discharge at 1C; pass external and simulated  internal short tests; overcharge 100% at 1C 
for Goal and 80% at C/5 for Threshold Value. 
 
 

NASA Research Announcement (NRA) contracts that were initiated specifically to develop 
components targeted for the HE and UHE cells have concluded after a two-year period of effort. 
Electroactive materials, electrodes, sample coupons, and electrolytes were delivered to NASA at intervals 
of 6, 11, 18, and 23 months (mo.) into their development and were independently assessed by NASA 
Glenn Research Center (GRC), Johnson Space Center (JSC), and/or Jet Propulsion Laboratory (JPL) 
according to standard procedures established for this development project. These materials will be 
referred to as 6, 11, 18, and 23 mo. deliverables/materials. The progression of the performance of the 
materials over the development timeframe will be discussed in this paper. Comparisons of the materials’ 
performance relative to the goal values will be discussed, parameters that are on target with the goal 
criteria will be highlighted, and areas where technical advancement is still required will be identified. 
Additionally, projected characteristics of cells incorporating these materials will be presented.  
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2.0 High Energy Cell  
2.1 Cathodes 

Advanced cathodes are critical to the development of high specific energy HE and UHE cells. 
Layered transition metal oxide materials containing lithium, nickel, manganese, and cobalt 
(Li[LiNMC]O2) are being developed with the goal to attain 280 mAh/g when discharged at C/10 and 0 °C 
to 3.0 volts (V). The cathode materials discussed in this paper were developed at the University of Texas 
at Austin (UTA) and at NEI Corporation (NEI).  

UTA’s focus has been to systematically investigate solid solutions of (1-z)[Li1/3Mn2/3]O2-zLi[Ni1-x-y 
MnxCoy]O2 to identify and optimize lithium-rich, layered compositions that can meet the goals stated 
above. The composition Li[Li0.2Mn0.54Ni0.13Co0.13]O2 was targeted as the stoichiometry that could 
potentially offer the desired specific capacity. Improvement in irreversible capacity loss (ICL) (reduction 
of), discharge capacity, and rate capability were achieved through surface modifications (e.g., application 
of coatings) using solution-based processes and blending the base material with lithium-free insertion 
hosts (Ref. 3). NEI’s approach to cathode development has been the design and synthesis of two-
dimensional layered electrodes based on a composite of Li[Li1/3Mn2/3]O2 and Li[Mn1/3Ni1/3Co1/3]O2 
(Ref. 4). 

UTA and NEI materials were independently assessed at NASA JPL using a standard set of test 
conditions in 2032-type coin cell half cells with a Li metal electrode, 1.0 molar (M) lithium 
hexafluorophoshate (LiPF6) in ethylene carbonate:diethyl carbonate:dimethyl carbonate (EC:DEC:DMC) 
electrolyte in a 1:1:1 ratio by volume (baseline electrolyte), and a 20 micron (µm) thick Tonen Setela 
(Toray Tonen) separator, unless otherwise noted. Cathode test procedures are given in Table 2.  

The performance against key metrics that are fundamental to the overall characterization of the 
cathodes has been exhibiting gradual improvement over the course of 2 years. The “best” values 
demonstrated for these parameters are compared to the goal values on the “spider plot” shown in Figure 1. 
Best values are defined as the highest value of the particular parameter achieved over the two-year 
development period. Hence, values are not necessarily for the same material. Table 3 quantitatively lists 
the best and goal values and the materials from which the best values were measured. In addition, it lists 
the values of all the parameters for the most recent deliverables from each developer. Values reported are 
for the average of four cells, with the exception of the UTA 11 mo. material, whose value is the average 
of two cells. The parameters shown include first cycle reversible capacity, specific capacity, temperature 
performance, tap density, rate capability, and cycle life. The following paragraphs describe the data for 
these parameters in more detail.  
 

TABLE 2.—CATHODE TEST PROCEDURES 
Test stage Test conditions 

Formation At 23 °C, charge at C/20 to 4.8 V, hold voltage, and allow current to taper to C/50. Rest for 
15 min. Discharge at C/20 to 2V. Perform for 5 cycles.  

20 °C Characterization At 20 °C, charge at C/10 to 4.8 V, hold voltage, and allow current to taper to C/50.  Rest for 
15 min. Discharge at C/10 to 2V. Perform for 10 cycles. 

0 °C Characterization First charge is performed at 20 °C. All other charges are performed at 0 °C. Charge at C/10 to 
4.8 V, hold voltage, and allow current to taper to C/50.  Rest for 15 min. Soak for a minimum 
of 2 hours after a temperature change. At 0 °C, discharge at C/10 to 2V. Perform for 10 cycles.  

30 °C Characterization Soak at 30 °C for a minimum of 2 hours after a temperature change. Charge at C/10 to 4.8 V, 
hold voltage, and allow current to taper to C/50.  Rest for 15 min. Discharge at C/10 to 2V. 
Perform for 10 cycles. 
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improving the reversible capacity from the 50 to 75 percent values exhibited in early deliverables to 
NASA.  

2.1.2 Specific Capacity 
Specific capacity at 20 and 0 °C are plotted as a percentage of the specific capacity goals at C/10 and 

3.0 V and the respective temperature. Specific capacity at 20 °C is reported for the first cycle following 
formation. Discharge was continued to 2.0 V and values were measured and reported at 3.0 V. Studies 
performed internally at NASA JPL have shown that there is a slightly higher rate of capacity fade with 
certain Li[LiNMC]O2 materials when they are cycled between 4.7 and 2.0 V as opposed to between 4.7 
and 3.0 V. However, cycling to 2.0 V provides valuable information on the residual capacity remaining 
between 3.0 and 2.0 V.  

The best specific capacity measured at 20 °C and C/10 from 4.7 to 3.0 V is 238 mAh/g, which is 
77 percent of the goal value of 311 mAh/g. Since project goals were established for 0 °C operation, the 
room temperature (RT) goal was derived from the 0 °C specific capacity goal, based on the desire to 
retain at least 90 percent of RT capacity when operating at 0 °C. In this paper, temperatures between 
20 and 23 °C are considered RT.  

Testing at 0 °C is performed after cycling ten times at 20 °C. Specific capacity at 0 °C is reported for 
the first discharge at 0 °C, after a charge at 20 °C. As with the 20 °C cycling, discharge was continued to 
2.0 V and values were measured and reported at 3.0 V. At 0 °C and C/10 from 4.7 to 3.0 V, 135 mAh/g 
was obtained, only 48 of the goal value of 280 mAh/g. Since capacity at 0 °C is measured on the 11th 
operational cycle (after 20 °C cycling), some capacity fade occurred prior to obtaining the measurement 
at 0 °C. Experimentally, an 18-24 mAh/g decrease was typically observed from the first 20 °C discharge 
to the tenth 20 °C discharge. If the specific capacity delivered at 0 °C is adjusted for the capacity loss due 
to earlier cycling, the value approaches 57 percent of the goal. 

2.1.3 Temperature Performance 
Temperature performance is measured as the percentage of RT capacity retained at 0 °C. Excessive 

capacity loss at lower temperatures can limit the practical design of a battery that must operate at those 
temperatures. In such a case, in order to supply enough operational capacity, a battery may need to be 
oversized to compensate for the decrease in delivered capacity at low temperatures. Alternately, thermal 
management must be designed in as part of the battery system to maintain the operating point at a warmer 
temperature. Either of these options may increase the mass of the battery system unless the battery load 
can be handled as part of a larger, integrated thermal management system, for example, as part of a 
vehicle’s thermal management system.  

Nonetheless, it is desirable to retain as much of the RT capacity when operating at 0 °C as possible. A 
goal of 90 percent was established for temperature performance based on what is reasonably practical 
given current SOA Li-ion cell performance. The specific capacity goals discussed in the previous section 
already take into account a 10 percent difference in temperature performance from 20 to 0 °C. Therefore, 
if 0 °C goals are met yet temperature performance is <90 percent, it is acceptable since in such a case the 
20 °C performance would exceed its goal. 

2.1.4 Tap Density 
Tap density (TD), a measure of how well powders are able to be packed closely together, is a key 

attribute to measure in the determination of a material’s suitability for the fabrication of cathodes from 
raw powders. To determine tap density, powders are placed in a graduated cylinder and taps are applied 
by automated equipment to compress the powder. The mass per unit volume is then measured on the 
compressed sample. The TD of the powders should ideally be > 1.5-1.6 grams per cubic centimeter (g/cc) 
for manufacturability of cathodes of practical thickness on production equipment at Saft America, 
NASA’s industrial partner for building HE and UHE cells.  
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Low tap density also impedes a material’s ability to achieve high energy density, independently of 
production processes (Ref. 13). Materials that do not compress well contain more air between their 
particles, so they have high porosity when packed. These materials are unable to highly loaded (loading = 
capacity per unit area), since not enough material can occupy a unit area, resulting in low energy density.  

2.1.5 Rate Capability 
Rate capability is a measure of a material’s ability to charge and/or discharge at specified currents. 

Rate capability was not routinely measured on cathodes. Studies were performed on early materials (NEI 
6 mo.) to baseline the rate performance of this class of layered Li[LiNMC]O2 materials. There is no 
specific requirement for rate capability at C/5 as compared to C/10 for the HE and UHE cells. However, 
for practical operation in a cell, the cathode should retain a significant portion of the C/10 capacity when 
operating at C/5. A target of 95 percent of the C/10 performance was set for the C/5 performance.  

2.1.6 Cycle Life 
Cycle life is the amount of cycles a cell delivers under specified conditions. Cycle life can vary 

depending upon how an electrode/cell is utilized. For these materials, the cycle life goals specify that the 
cathode should deliver at least 250 cycles until the point that 80 percent of its initial capacity is reached. 
Cycle life assessments are only performed on materials that demonstrate acceptable characteristics in 
other areas, however, NASA has collected limited data on selected deliverables to baseline this 
performance. Eighty-one cycles to 80 percent of initial capacity were projected from 60 cycles of data 
collected on experimental coated materials tested in coin cell half cells at UTA. A constant per cycle 
decrease in ampere-hour capacity was used for this projection.  

Literature reports similar trends in capacity fade for this class of materials. Li et al. report 80 cycles to 
80 percent of first cycle capacity when cycling at C/5 at 20 °C between 4.8 and 2.5 V (Ref. 5). They show 
that a rapid decrease in capacity occurs within the first 30 cycles, then the rate of fade decreases 
substantially for 70 more cycles. This is similar to the effect seen in some UTA coated materials. Li et al. 
also observed that this rapid decrease in capacity during early cycling occurred independently of 
discharge rate.  

NEI also reports rapid fade in their “V2” materials (11 and 18 mo. deliverables) during early cycling 
before cycling stabilizes (Ref. 6). Hagh et al., attribute this phenomenon to an impedance rise rather than 
to intrinsic capacity loss. This suggests that if the impedance rise mechanism that occurs in early cycling 
can be overcome, less fade and better cycling stability can be obtained, which will extend cycle life. 

2.1.7 Discussion 
While NMC materials have potential to offer much higher specific capacity than traditional Li-ion 

cathodes such as lithium cobalt oxide (LiCoO2), the Li[Li1/3Mn2/3]O2 component of the NMC material has 
insulating properties that impacts its electronic conductivity. Additionally, a thick SEI layer is formed at 
the higher operating voltages, leading to slow kinetics and impacting the rate of lithium ion diffusion and 
charge transfer. These factors all lead to lower rate capability in the NMC cathode than is typically seen 
with other Li-ion chemistries (Ref. 14). Temperature performance is also much worse with NMC 
materials than with other lithium-ion chemistries, attributable to slow kinetics at low temperatures. 

Figure 2 and Figure 3 contain spider plots that show the progression of the material properties as 
measured by the parameters discussed above for 6, 11, 18, and 23 mo. materials from UTA and NEI. 
Values plotted in each graph pertain to a single material. Although clear progress in materials 
development has been demonstrated over the past 2 years, component performance has still not achieved 
the goals necessary to enable the performance targets for the HE and UHE cells. For cathodes, most 
notably, specific capacity and cycle life are well below necessary targets. Results for specific capacity 
versus cycle number for representative materials delivered from each company are shown in Figure 4.  
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TABLE 6.—SUMMARY OF ANODE BEST VALUES AND LATEST VALUES 
Metric Goal Best values Values for latest materials 

  Value Material GTRC 23 mo. LMSSC 23 mo. 
Total reversible capacity  

(after 2-3 cycles) (%) 
89 70 GTRC 23 mo. 70 4 

Specific capacity, RT, C/10 
(mAh/g) 

1110 1660 LMSSC 6 mo. 1598 1209 

Specific capacity, 0 °C, C/10 
(mAh/g) 

1000 1528 GTRC 23 mo. 1528 1186 

RT capacity retention at 0 °C (%) 90 107 GTRC 18 mo. 96 98 
Loading (mAh/cm2) 3.7 3.0 GTRC 11 mo. 0.9 2.7 
Rate Capability at C/2 as 

compared to C/10 (%) 
93 103 GTRC 18 mo. 94 81 

Coulombic Efficiency (%) 99.5 98.8 GTRC 23 mo. 98.8 97.9 
Projected Cycle Life (cycles to 

80% of initial capacity) 
250 ~365 at C/2. 96% of 

initial capacity has 
been demonstrated 
through 130 cycles. 

GTRC 23 mo. ~365 at C/2. 96% of 
initial capacity has 
been demonstrated 
through 130 cycles. 

~23 at C/10 

 

3.1.1 Reversible Capacity 
Reversible capacity for anodes is measured after the second or third formation cycle (after the second 

cycle for the 23 mo. materials). The percentage of reversible capacity is equivalent to (100 percent minus 
the percentage of the cumulative ICL). The cumulative percent ICL is calculated by the formulas:  

 

	  

 

	%	
	

100 

 
 
where n = number of cycles (n = 2 or 3), chargei = ith cycle insertion capacity, and dischargei = ith cycle 
deinsertion capacity. 

 

The goal for cumulative reversible capacity of the anode is 89 percent, or inversely, the cumulative 
ICL should ideally be no greater than 11 percent. This value is based on the irreversible capacity of MPG-
111 as measured by Saft America and independently confirmed by GRC. The results of NASA internal 
measurements show that the GTRC 23 mo. material exhibited a cumulative reversible capacity of 
70 percent after the second formation cycle as compared to only 4 percent for the LMSSC 23 mo. 
material.  

GTRC’s initial average charge capacity (first formation cycle) was 2184 and 1739 mAh/g was 
delivered on discharge. On the second formation cycle 1827 mAh/g was inserted, and 1733 mAh/g was 
deinserted. As seen, the average percentage ICL on the second formation cycle improved to ~5 percent as 
compared to ~26 percent on the first cycle, resulting in a 30 percent cumulative percent ICL. 

The LMSSC material attained a much higher specific insertion capacity on the first formation charge 
than the GTRC material, demonstrating an average of 3762 mAh/g. However, an average 35 percent ICL 
was measured for this cycle in which full insertion and de-insertion of Li was performed, almost 
10 percent higher than the GTRC material. In subsequent cycles, LMSSC procedures called for voltage 
limits that allowed only partial insertion of Li. On the next cycle, an average of 1508 mAh/g was inserted, 
but only 1266 mAh/g was reversible, resulting in a 19 percent ICL on the second cycle and a cumulative 
ICL of 96 percent after the first two cycles. 
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23 mo. material was a close second, achieving 1598 mAh/g. At 0 °C and C/10, 1528 mAh/g was obtained 
on the same material, which also far exceeded the 1000 mAh/g goal value. While this material exhibited 
excellent capacity retention at 0 °C, rate capability, and cycling stability, coulombic efficiency, ICL, and 
loading still need improvement. Project goals were established for 0 °C operation. Room temperature 
(RT) goals were calculated as the expected minimum specific capacity, based on the desire to retain at 
least 90 percent of RT capacity when operating at 0 °C. 

3.1.3 Temperature Performance 
Temperature performance is measured as the percentage of RT capacity retained at 0 °C. A goal of 

90 percent was established for temperature performance based on what is reasonably practical given 
current SOA Li-ion cell performance. With the exception of the first set of deliverables from both 
contracts, all subsequent materials have demonstrated excellent temperature performance. The best values 
column in Table 6 indicates a value of 107 percent for the percentage of RT capacity retained at 0 °C 
since the capacity of the GTRC 23 mo. material tends to improve with cycling.  

3.1.4 Loading  
Loading is a measure of capacity per unit area. The target loading for the NASA anodes is 

~3.7 mAh/cm2. Currently the LMSSC and GTRC anodes have very low loading as compared to that 
found in practical cells that are designed to offer high capacity at moderate discharge rates. Low loading 
will necessitate larger electrode area to provide the equivalent capacity as electrodes with higher loading, 
which adversely impacts energy density. Specific energy will also suffer, as larger areas of current 
collector and possibly larger cell housings (i.e., inactive components) will be needed to accommodate 
impractically sized electrodes. Through our studies, trends showed that higher loaded anodes tended to 
have lower coulombic efficiency and cycle life. This is an area for further study and optimization.  

3.1.5 Rate Capability 
Rate capability testing is performed at C/5 and C/2 and compared to specific capacity achieved at 

C/10. A target of 93 percent of the C/10 performance was established for C/2 performance. The Si:C-
based anodes have demonstrated excellent rate capability. The rate capability for recent deliverables has 
consistently measured between 94 and >100 percent (the specific capacity of the GTRC 23 mo. material 
improved with cycling).  

3.1.6 Cycle Life 
Cycle life assessments are performed at 23 °C in half-cells vs. Li/Li+. The goal for the UHE cell is 

200 cycles at 100 percent DoD to 80 percent of initial capacity when cycled at C/2. To attain 200 cycles 
on the cell level, 250 cycles is desired from the components. Cycle life of the LMSSC material is assessed 
at C/10 due to the high fade observed in early cycling. Figure 13 shows results of cycle life testing for 
GTRC and LMSSC 23 mo. materials. Here, initial capacity is defined as the capacity delivered on the first 
discharge of continuous cycling (cycle 10 for the LMSSC material and cycle 16 for the GTRC material). 
The LMSSC material displays poor cycling stability, achieving only 23 cycles to our defined point of 
failure. Further, it only achieves 37 cycles prior to its specific capacity falling below the anode threshold 
value of 600 mAh/g, the minimum success criteria. The GTRC material demonstrated >45 cycles with 
virtually no fade, and as previously discussed, the specific capacity tended to improve with cycling. 
Ninety-six percent of the initial capacity is measured after 130 cycles. Cycling on this material is still in 
progress. Using a linear extrapolation based on the rate of fade, approximately 365 cycles are projected to 
80 percent of the initial capacity. 

In order to improve cycling stability of the Si-based anodes, <10 percent by weight of VC was added 
to the baseline electrolyte in both GTRC and LMSSC cells. While a beneficial effect on cycling stability 
was seen in the GTRC material, the performance of the LMSSC material did not improve with the 
addition of VC. 
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Appendix—Nomenclature 

°C degrees Celsius 
C carbon 
DEC diethyl carbonate 
DMC dimethyl carbonate 
DMMP dimethyl methyl phosphonate 
DoD depth-of-discharge 
EC ethylene carbonate 
EMC ethyl methyl carbonate 
g/cc grams per cubic centimeter 
GRC Glenn Research Center 
GTRC Georgia Tech Research Corporation 
HE High Energy 
ICL irreversible capacity loss 
JPL Jet Propulsion Laboratory  
JSC  Johnson Space Center 
KPP key performance parameters 
LiBOB  lithium bis(oxalato) borate 
LiCoPO4 lithium cobalt phosphate 
Li-ion lithium-ion 
LiPF6 lithium hexafluorophosphate  
LMSSC Lockheed Martin Space Systems Company  
Li[LiNMC]O2 lithium nickel manganese cobalt oxide 
M molar 
mAh/g milliampere-hours per gram 
MCMB mesocarbon microbeads 
MER Mars Exploration Rovers 
mo. month(s) 
mV millivolts 
NASA National Aeronautics and Space Administration 
NEI NEI Corporation 
PSI Physical Sciences, Incorporated 
RT room temperature 
SEI solid electrolyte interface 
SET self-extinguishing time 
Si silicon 
Si:C silicon:carbon 
SOA state-of-the-art 
TD tap density 
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TPP triphenyl phosphate 
UHE Ultra High Energy 
µm micrometer 
UTA University of Texas at Austin 
V volts 
VC vinylene carbonate 
Wh/kg watt-hours per kilogram 
Wh/L watt-hours per liter 
YTP/URI Yardney Technical Products/University of Rhode Island 



NASA/TM—2012-217689 25 

References 
1. C.M. Reid and W.R. Bennett, “A Study on Advanced Lithium-Based Battery Cell Chemistries to 

Enhance Lunar Exploration Missions,” National Aeronautics and Space Administration Glenn 
Research Center, Cleveland, OH, NASA/TM—2010-216791, September 2010. 

2. C.M. Reid, “Progress in Materials and Component Development for Advanced Lithium-ion Cells for 
NASA’s Exploration Missions,” National Aeronautics and Space Administration Glenn Research 
Center, Cleveland, OH, NASA/TM—2011-217209, September 2011. 

3. A. Manthiram, High-energy density cathodes for next generation lithium-ion batteries, Final Report to 
NASA Glenn Research Center from The University of Texas at Austin for contract NNC09CA08C, 
March 2011. 

4. N.M. Hagh, F. Badway, M. Moorthi, G. Skandan, W. West, R. Bugga, C. Reid, Improvements in 
Energy Density and Stability of Advanced Cathode Materials for NASA’s Applications, NASA 
Aerospace Battery Workshop, November 16-18, 2010. 

5. J. Li, R. Klopsch, M.C. Stan, S. Nowak, M. Kunze, M. Winter, and S. Passerini, Synthesis and 
electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with 
improved rate capability, J. Power Sources, 196 (2011) 4821-4825. 

6. N.M. Hagh, F. Badway, K. Martin, M. Moorthi, and G. Skandan, High Energy Density Cathode 
Materials for Li-Ion Battery Applications, 44th Power Sources Conference, Las Vegas, NV, June 14-
17, 2010. 

7. N.M. Hagh, G.G. Amatucci, A new solid-state process for synthesis of LiMn1.5Ni0.5O4−δ spinel, J. 
Power Sources, 195 (2010) 5005-5012. 

8. J.M. Zheng, X.B. Wu, and Y. Yang, A comparison of preparation method on the electrochemical 
performance of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion battery, Electrochimica 
Acta 56 (2011) 3071-3078. 

9. M.C. Smart, F.C. Krause, W.C. West, J. Soler, L. Whitcanack, and R.V. Bugga, “Development of 
Electrolytes With Improved Safety Characteristics,” Final FY10 Report for the NASA Exploration 
Technology Development Program Energy Storage Project, September, 2010. 

10. C.M. Lang, A. Newman, K. Constantine, and J. Ma, Improved Cathode Material Safety via a Metal 
Phosphate Coating, NASA Aerospace Battery Workshop, Huntsville, AL, November, 2009. 

11. M.N. Obrovac and L.J. Krause, Reversible Cycling of Crystalline Silicon Powder, J. Electrochem. 
Soc. 154 (2007) A103-A108. 

12. W.R. Bennett, “Forecasts for Hypothetical Li-Ion Cells Using FY2010 Data for ETDP Electrodes,” 
National Aeronautics and Space Administration Glenn Research Center, Cleveland, OH, 
NASA/TM—2011-TBD, 2011 (to be published). 

13. R. Staniewicz, personal communication, September 2011. 
14. J. Liu, Q. Wang, B. Reeja-Jayan, and A. Manthiram, Carbon-coated high capacity layered 

Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes, Electrochemistry Communications, 12 (2010) 750-753. 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188  
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this 
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. 
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB 
control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 
01-09-2012 

2. REPORT TYPE 
Technical Memorandum 

3. DATES COVERED (From - To) 

4. TITLE AND SUBTITLE 
Advanced Materials and Component Development for Lithium-Ion Cells for NASA Missions 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 
Reid, Concha, M. 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 
WBS 152964.04.01.01.01.03 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
National Aeronautics and Space Administration 
John H. Glenn Research Center at Lewis Field 
Cleveland, Ohio 44135-3191 

8. PERFORMING ORGANIZATION
    REPORT NUMBER 
E-18372 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
National Aeronautics and Space Administration 
Washington, DC 20546-0001 

10. SPONSORING/MONITOR'S
      ACRONYM(S) 
NASA 

11. SPONSORING/MONITORING
      REPORT NUMBER 
NASA/TM-2012-217689 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Unclassified-Unlimited 
Subject Categories: 15, 20, and 44 
Available electronically at http://www.sti.nasa.gov 
This publication is available from the NASA Center for AeroSpace Information, 443-757-5802 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
Human missions to Near Earth Objects, such as asteroids, planets, moons, liberation points, and orbiting structures, will require safe, high 
specific energy, high energy density batteries to provide new or extended capabilities than are possible with today’s state-of-the-art 
aerospace batteries. The Enabling Technology Development and Demonstration Program, High Efficiency Space Power Systems Project 
battery development effort at the National Aeronautics and Space Administration (NASA) is continuing advanced lithium-ion cell 
development efforts begun under the Exploration Technology Development Program Energy Storage Project. Advanced, high-performing 
materials are required to provide improved performance at the component-level that contributes to performance at the integrated cell level in 
order to meet the performance goals for NASA’s High Energy and Ultra High Energy cells. NASA’s overall approach to advanced cell 
development and interim progress on materials performance for the High Energy and Ultra High Energy cells after approximately 1 year of 
development has been summarized in a previous paper. This paper will provide an update on these materials through the completion of 2 
years of development. The progress of materials development, remaining challenges, and an outlook for the future of these materials in near 
term cell products will be discussed. 
15. SUBJECT TERMS 
Lithium batteries; Storage batteries; Electric batteries; Electrochemical cells; Energy storage; Space missions; Spacecraft power 
supplies; Electric power supplies 
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

      ABSTRACT 
 
UU 

18. NUMBER
      OF 
      PAGES 

32 

19a. NAME OF RESPONSIBLE PERSON 
STI Help Desk (email:help@sti.nasa.gov) 

a. REPORT 
U 

b. ABSTRACT 
U 

c. THIS 
PAGE 
U 

19b. TELEPHONE NUMBER (include area code) 
443-757-5802 

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18






	E-18372 Cover
	E-18372TM
	E-18372 RDP
	blank-back of RDP



