

### **OSEM Development Options**

#### More elaborate technique

- Requires explicit material typing and shape determination for each survey object

#### More streamline technique

 Examines fragments from satellite explosion experiments in laboratory to develop relationship between photometric return and estimated size

### JSC ODPO considering both

## **Semi-Analytic OSEM**

- Described in oral presentation last week
- For each object, to estimate size the following would be required:
  - Orbit determination
    - Requires follow-up tracking on multiple nights
    - Needed for object reacquisition at will
    - Needed to estimate area-to-mass ratio and thus separate some similar materials with similar colors
  - Four-color photometry to estimate material type and thus albedo
    - Requires 10-20 short tracks at different times
  - Open-aperture photometry to estimate object shape
    - Requires 20-40 short tracks at different times

## **Semi-Analytic OSEM Material Type Estimation**

#### Material differentiation parameters/calculations

- B-R versus R-I separates the majority of tested material types
- B-R versus B-V separates many of the remaining pairs that did not have a strong enough I-band return to calculate R-I
- AGOM differences separate the remaining ambiguous cases

### Problems

- Space reddening model needs to be developed
- Additional laboratory work required
  - Four-color photometry of additional materials to complete needed portfolio
  - Albedo calculations for all materials in portfolio
- Alignment between laboratory and telescope measurements
  - Historically not all that wonderful; additional calibration activities required

### **Semi-Analytic OSEM Shape Estimation**

- Hall et al. (2007): distinctive shape-dependent pattern to brightnessversus-phase intensity plots
- Identification of candidate shape can be effected by comparison to gallery of simulated shape responses
  - 2007 study used two-dimensional Kolmogorov-Smirnov test

### Proposed enhancements in present effort

- Examine just sliver (or slivers) of phase response
  - Reduces distribution-matching problem to single dimension
- Use particular portion of CDF curve to reduce sensitivity to BRDF

### Problems

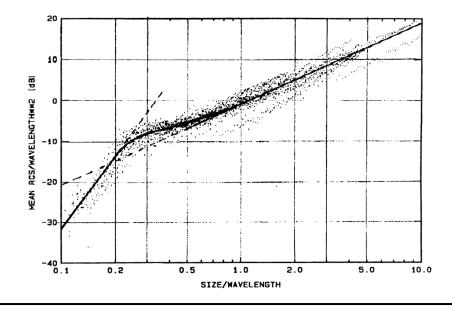
- Needs more verification: shape gallery needs expansion, BRDF independence needs broader exercise, choice of "sliver" needs more investigation, entire phenomenon needs verification in laboratory
- Shape confusion (e.g., cube and cylinder)
- Somewhat large data requirements (40 measurements for two-sigma separation)

## **Semi-Analytic OSEM: Evaluation**

### Approach appears viable

#### However, number of substantial outstanding items

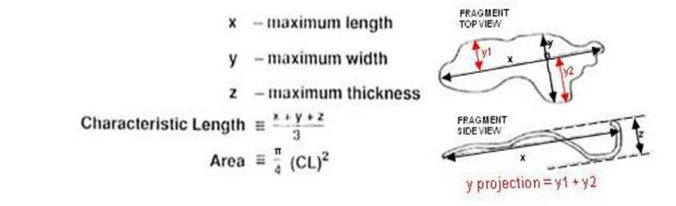
- Significant laboratory investment
- Significant verification activities with actual survey data required
- Significant survey activities
  - Perhaps larger collections than expected
- Space weathering effect modeling


#### Is there a more streamlined approach?

- Obviate at least some of the above outstanding items
- Enable more efficient surveys

#### Possibility: OSEM modeled after JSC Radar SEM

### **Radar OSEM: Basic Rubric**


- Simulated hyperkinetic destruction of satellite in vacuum chamber
- Collected pieces and subjected them to individual analysis
  - "Observed" each piece with radar in special observation facility
  - Articulated full range of aspect angles and full range of radar frequencies
  - Recorded resultant RCS of each aspect/frequency configuration
- Collected results and plotted in dimensionless format
  - RCS /  $\lambda^2$ ; size /  $\lambda$
  - Results follow basic theory of Rayleigh, Mie, and optical regions



JSC ODPO NISOI Presentation Page 7

## **Size Estimation Possibilities**

- Single-number size value for each piece an average of three orthogonal axes
  - Primary axis is longest segment that can be inscribed in the shape
  - Secondary axis is either the longest segment normal to the primary axis that can be inscribed in the shape or the longest "projected" orthogonal axis
  - Tertiary axis follows same rubric as for secondary



From Hill and Luna (2012)

 Single number for object "size" always problematic; other potential options include object average/maximum projected area (for CA risk assessment)

# **OSEM Fragment Source**

Several recent satellite destruction experiments

- SOCIT 4 (1 ~1m functional payload; materials from early 90's)
- Kyushu University (six ~30cm microsats; modern materials)
- ESOC 2(1 rocket body; pressure explosion)
- Additional experiments planned

### Fragments for many of these in JSC possession

- Inventoried by shape, material, size

### Verification of size scalability required

- In principle, optical response is scalable with size
  - Should be able to characterize one shape-material sample in laboratory and scale to multiple sizes
- However soot collection and edge effects may negate scalability
  - Must verify scalability in laboratory
- Inventory examination to yield shapes and materials of interest

- Governed by expected detectable size of surveys

### Shape-material pairs to be examined in the laboratory

## **OSEM Laboratory Activity**

#### • Each fragment examined in full suite of aspect and phase angles

- 10-degree increments in aspect (two-axis)
- 5-degree increments in phase (some boundary limitations)

### Radiometric measurements:

- Four-color photometry (BVRI)
- Open-aperture photometry equivalent (perhaps V-band)
- Spectroscopy, if time permits

## **OSEM** Data Reduction

- Envisioned optical approach would generate several functional relationships
  - -Size = f (open aperture)
  - Size = f (four-color photometry)
  - Size = f (open aperture, four-color photometry)
  - Size = f (open aperture, AGOM)
  - Size = f (open aperture, AGOM, four-color photometry)

### • Each would include an error analysis

- So each would return a size estimate and an estimation variance
- Presumption is that more florid inputs (*e.g.*, color photometry) will return an estimate with a smaller estimation variance

## **Advantages/Disadvantages of Laboratory Approach**

### Advantages

- Easier to develop
- Surveys simplified—less data required
- Analogy with radar SEM maintained

### Disadvantages

- Not as accurate: presumption is that selected fragments adequately represent debris population
- Space reddening problem still requires solution

### **Back-up slides**

#### Available telescopic data

- MODEST survey (Broad R filter)
  - \*2002-2003 NASA Technical Report
  - \*2004-2006 NASA Technical Report
  - \*2007-2009 NASA Technical Report
- Survey and chase using MODEST and CTIO 0.9-m
  - \*AMOS 2007, Seitzer
- Filter photometry data using single telescope MODEST/CTIO 0.9-m (BVRI)
  - \*AMOS 2010, Seitzer
- Synchronous photometry (MODEST in R and CTIO 0.9 m B)
  - \*AMOS 2010, Seitzer
- Magellan survey (fainter, smaller sizes)
  - \*AMOS 2011, Seitzer
- Magellan spectroscopy
  - \*AMOS 2012, Seitzer