

HAL 9000 Design Influences

- Command Procedure Transfer to On-Board Execution only
- System Monitoring Transfer to Autonomous On-Board Monitoring
- Procedure Development Transfer to On-Board Development
 - Procedure Test and Qualification Transfer to On-Board
- Planning Development and Implementation Transfer to On-Board
- Crew Autonomy Enabler
- Comm to Earth Light Time Delay Risk Mitigation
- Permanent Loss of Comm Risk Mitigation
- Assured Crew Return Enabler
- Safety Integration Transfer to On-Board Operations and Planning
- •Increase Crew Time for Science
- Single Crew Command Functionality
 - Functions
- Procedures
- Activities

Planning Engine (HAL 9000 Executive) Architecture

HAL 9000 Real Time Architecture

Executive Component (Planning Engines)

Execution Component (Timeliner-TLXTM Engines)

Vehicle Component (Notional Avionics)

Planning Executives Key Points

- Divides operations planning into their respective disciplines
- Employs an iterative plan approval process that is configurable and autonomous
- •Each Executive contains specific "intelligence" about planning its subsystems
 - Planning Logic Modules can be modified in flight
- Flight Rule, Regulations and Condition check insertion into real-time planning
- Safety integrated as a planning discipline (also integrated into execution)
- The Planning Executive becomes the operator in most cases
- Crew self planning
 - Crew Procedure Authoring
- Monitors and Reacts to unplanned events autonomously (re-plan)
- Priority definitions can vary depending upon the targeted system to operate
 - Adjustable granularity in priorities (Priority Leveling)
 - Relaxed Crew environment (anytime priority)
- Continuous Resource Verification
- Embedded real-time operations restrictions (Flight, Safety and Condition Rules)

Design Reference Missions

- Assists in the analysis of the HAL 9000 planning and execution capabilities
 - •How do you relocate ground operations to on-board?
 - •What additional tools are needed to drive inputs to planning?
 - •What level of autonomy is appropriate for the crew?
 - •What embedded functionality is missing?
 - •What changes to crew skill sets are required?
 - •How much mitigation can be achieved for communication light time delays?
 - •How much mitigation can be achieved for permanent loss of communications?
 - •How do you integrate Safety to be a real-time player?
 - •What impacts to the Execution Component will be realized from un-converged plan execution?
 - •Just a few of the questions we are asking ourselves

Re-Supply Design Reference Mission

Key Points from Operations Flow

- * Guidance Navigation and Control requires trajectory data for course, speed and vehicle orientation (external system provision)
- * Propulsion Executive requires translation intelligence (Thruster firings)
- * Crew modified an existing GNC Activity (auto-procedure) and added it to the plan

New GNC Activity generated a new Propulsion Plan
New Propulsion Plan generated a new Power Plan
New GNC Activity generated a new Communications Plan (Vehicle re-orientation)

New Communications Plan generated a new Power Plan
Activity resources identified in real-time from Knowledge Pack data
within the core link list structures

* Communication Executive requires intelligence for vehicle/transponder selection during vehicle maneuvers

Jupiter Assured Crew Return Design Reference Mission

- Key Points from Operations Flow
- Candidate new plan contains the added GNC Activity
- Candidate new plan contains the Maneuvering Arm Activity
- •Safety, HAL Main and Propulsion Executives reject the new plan encountering resource constraints specified in the Flight Rules and Safety Rules

 Mission restrictions implemented in real-time for planning and execution Programmatic Safety and Flight Rule implementation (3 separate annunciations)
- Flight Rules and Safety Rules can be modified during flight or......
- •Crew can override and implement the Candidate New Plan (emergency)
 Non-Converged Plan will generate ECW Messages and potential stop of
 execution (requires further investigation for auto-procedure inhibits that are
 available in the system)
- Maneuvering Arm Activity added successfully

DRM Summary

- •Predefined Activities (auto-procedures), with known resource allocations ease the planning convergence
- •Activities that have unknown resource allocations (an initial estimate by the developer and an activity that has <u>not</u> been executed before), only has the duration time of the activity for resource utilization estimates until it has been executed at least once (Activity History)
 - •Requires detailed resource utilization intelligence for vehicle maneuvering activities
 - Different Maneuver's will require different resource allocations
 - Could have pre-planned maneuver's, giving more accurate resource use
- Operations restrictions can be pre-planned and embedded (Rules & Conditions)
- •Adding 1 activity may cause several plan updates in a cascading fashion.
 - •Candidate plans are held back until the initial activity is approved.
 - •Could promote all plans at one time, but it is not the way it works.
 - •Forces Validation of each edit against the current complete plan
 - •Re-Check of Flight, Safety and Condition rules and resources for each edit

Future Work

- •No plans to enhance or expand development of the HAL 9000 Executives
- •Continue utilization of the Timeliner-TLX[™] System for ISS and other projects automated command and control requirements
- Lack of a target vehicle and mission for application of the complete HAL 9000
 System
 - Continue to proof design as opportunities arise or HAL System capabilities are needed for other projects
- •Currently developing methods for crew procedure authoring and verification/validation of these procedures during flight.

Conclusion

- •Concepts for the HAL 9000 System design have never been directly funded
 - Proof of concept leveraged on other projects and private development
- Autonomous operations is viable and ready
 - Current Operations paradigms are not ready
- •Can be applied in other command and control operations with a scaled down system
 - Execution Component Only (HAL 3)
 - Executive Component Only (HAL 1000)
 - •De-scaled combination Executive and Execution components (HAL 2000 and above, such as for Habitats)
- Vehicle design and development must be driven by HAL 9000 requirements
 - HAL 9000 Development Methodology is required
 - •All Systems, sub-systems and devices must be automated
 - Cannot fully automate a system that is not designed for such
- Safety is employed during design, build-up and operations
 - They must make their decisions up front and available during real-time
- •External systems and simulations are required to assist the crew in HAL9000 operations
 - •Critical areas are in Guidance, Navigation, Prognosis and Diagnosis
- •Crew Autonomy, Relaxed Crew Ops, On-board Procedure development/Implementation
 - •Is anybody ready?

