## Cardiovascular Adaptations in the Spaceflight Environment

Christian M. Westby, Ph.D. Universities Space Research Association NASA Cardiovascular Laboratory Houston, TX



#### Overview

#### Microgravity

- Orthostatic hypotension
  - Sympathetic activation
  - Cardiac function
  - Vascular function

#### Space Radiation





### **Volume Distribution in Humans**



- 70% of blood volume is below heart
- 19x more blood in capacitance vessels than resistance vessels

## Example of cephalad fluid shift





#### **Pre-flight**

Day-2 in flight

#### **Orthostatic Tolerance**





## **Cardiac Atrophy**



Perhonen MA et al. J Appl Physiol 91: 645-653, 2001

Dorfman T A et al. J Appl Physiol 2007;103:8-16



### **Cardiac Atrophy Time Course**



Westby CM et al. In Press 2012

#### **Mobilization of blood**



#### Rat suspended hind limb model





Zhang LF et. al. J Gravit Physiol. 1996;3(2):5-8

#### **Arterial Remodeling**



Zhang LF et. al. J Gravit Physiol. 1996;3(2):5-8

#### **Arterial Function**



Zhang LF et. al. J Gravit Physiol. 1996;3(2):5-8

#### **Specific Aims**

#### To compare venous responses before and after bed rest:

- 1. Between the hand and foot
- 2. Between men and women



## **Subject Characteristics**

| Variable (pre bedrest)         | Male<br>) (n=16)                 | Female<br>(n=10)                 |
|--------------------------------|----------------------------------|----------------------------------|
| Age, yr                        | $34\pm2$                         | 37±2                             |
| Body mass, kg                  | $\textbf{79.8} \pm \textbf{2.4}$ | $61.3 \pm 3.1*$                  |
| BMI, kg/m <sup>2</sup>         | $26.6\pm0.5$                     | 23.8±0.9*                        |
| Systolic BP, mmHg              | 122±2                            | $104 \pm 2*$                     |
| Diastolic BP, mmHg             | $80\pm2$                         | 67±2*                            |
| VO <sub>2</sub> max, ml/kg/min | $\textbf{29.5} \pm \textbf{1.9}$ | $\textbf{24.7} \pm \textbf{1.6}$ |

Mean ± SEM; \*p < 0.05





#### **Vascular Ultrasound**





#### **Dorsal Hand Vein**

Male

#### Female



## **Dorsal Foot Vein**

Male

#### Female



## **Space Radiation**

#### **Ion Species**



## **RAD on Curiosity**



http://msl-scicorner.jpl.nasa.gov/Instruments/RAD

#### **First Look on Mars**



http://mars.jpl.nasa.gov/msl/mission/instruments/radiationdetectors/rad

## **Ion Particle Tracks**



Cucinotta and Durante 2006





## **DNA Repair**

#### <sup>56</sup>Fe [600 MeV/u]



#### **Track Structure**

#### <sup>56</sup>Fe [600 MeV/u]



## **Clustered Lesions**





#### OXIDATIVE MECHANISMS OF MYOCARDIAL TISSUE REMODELING IN A MODEL OF HIGH DIETARY HEME IRON EXPOSED TO RADIATION



#### Radiation, Oxidation, & Cardiac Myocyte



## **Cardiac Specific Aims**

- <u>Aim 1:</u> To determine the short-term consequences of the independent and combined effects of gamma radiation and elevated body iron stores on measures of cardiac structure.
- <u>Aim 2:</u> Identify and compare the effects of gamma radiation and elevated body iron stores on the genetic and epigenetic regulation of proteins associated with cardiac structure and function.





#### HIGH DIETARY HEME IRON COMBINED WITH IRRADIATION PROMOTES A PROATHEROGENIC ENDOTHELIAL CELL PHENOTYPE DUE TO INCREASED OXIDATIVE STRESS



# Radiation, Endothelial Dysfunction, and Oxidative Stress



Soucy K G et al. J Appl Physiol 2010;108:1250-1258

# High Iron, Endothelial Dysfunction, and Oxidative Stress



## **Vascular Specific Aims**

- Aim 1: To determine the short-term consequences of the independent and combined effects of exposure to gamma radiation and elevated body iron stores on measures of endothelial function.
- <u>Aim 2:</u> Identify and compare the effects of gamma radiation and elevated body iron stores on the genetic and epigenetic regulation of proteins associated with endothelial cell barrier function.



## Aging, Endothelial Progenitor Cell Function, and HZE Radiation

Christian M. Westby, Ph.D. JSC Cardiovascular Laboratory University Space Research Association Houston, TX, United States





# Radiation, Endothelial Dysfunction, and Oxidative Stress



Soucy K G et al. J Appl Physiol 2010;108:1250-1258

## **Specific Aims**

 Aim 1: Determine if exposure low doses of high LET radiation will alter important phenotypic features of circulating endothelial progenitor cells and examine whether these processes are differentially altered in young compared to healthy older adults.

• <u>Hypothesis</u>: Exposure to low doses of high LET radiation will impair the function of humans derived circulating endothelial progenitor cells and that the functional phenotype will be less conserved in young compared to older adults.



## Methods

#### Subjects

 12 young (age 21–34 years) and 12 older (age 56–67 years) healthy, sedentary men

#### Putative EPCs isolated from whole blood

- DiI-ac-LDL, Willebrand factor, VE-cadherin, CD31, and VEGFR-2
- Nonadherent fraction will be irradiated using 600 MeV <sup>56</sup>FE
  - Dose 0.1, 0.25, 0.5, or 1Gy, at 0.25Gy/min
- Assays
  - EPC Colony-Forming Assay/Cell Survival, Migration, Angiogenic growth factor.



#### **EPCs and Vascular Repair**

The balance between endothelial cell apoptosis and endothelial cell regeneration may determine the degree and progression of atherosclerosis



Werner, N. et al. Arterioscler Thromb Vasc Biol 2006

## **Radiation and EPC Function**

- EPC Functional Characeristics:
  - Clonogenic Capacity
  - Migration
  - Angiogenic Growth Factor Release



#### **CFU Protocol**



## **EPC Identification in Culture**



## **Colony Examples**





#### Counted

#### **Not Counted**



## **EPC** Migration Protocol

Peripheral Blood Samples Collected: Preplated for 2 days EPC Migration: Modified Boyden Chamber



#### **Atherosclerotic Timeline**



Adapted from Pepine CJ. Am J Cardiol. 1998;82(suppl 10A:23S-27S)

#### Acknowledgements

#### Cardiovascular Laboratory

- Sydney Stein
- Angela Brown
- Steven H. Platts, Ph.D.

## Nutrition Laboratory

Sara Zwart, Ph.D.

#### Radiation/Core Laboratory

• Corey A. Theriot, Ph.D.

