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Abstract 

Commercially available bulk silicon carbide (SiC) has a high number (2000/cm2) of screw 
dislocations (SD) that have been linked to degradation of high-field power device electrical performance 
properties. Researchers at the NASA Glenn Research Center have proposed a method to mass-produce 
significantly higher quality bulk SiC. In order for this bulk growth method to become reality, growth of 
long single crystal SiC fibers must first be achieved. Therefore, a new growth method, Solvent-Laser 
Heated Floating Zone (Solvent-LHFZ), has been implemented. While some of the initial Solvent-LHFZ 
results have recently been reported, this paper focuses on further characterization of grown crystals and 
their growth fronts. To this end, secondary ion mass spectroscopy (SIMS) depth profiles, cross section 
analysis by focused ion beam (FIB) milling and mechanical polishing, and orientation and structural 
characterization by x-ray transmission Laue diffraction patterns and x-ray topography were used. Results 
paint a picture of a chaotic growth front, with Fe incorporation dependant on C concentration. 

Introduction 

The use of silicon carbide (SiC) power electronics are widely accepted to be capable of enabling 
systems that are significantly lighter, smaller, and electrically more efficient than systems comprised of 
conventional silicon (Si) based electronics. Although some SiC devices (e.g., Schottky diodes and field-
effect transistors (FETs)) have been developed, the performance of most SiC power devices are 
significantly degraded/limited because of a high density of crystal defects in all commercially-available 
SiC semiconductor wafers. Among the more serious defects in these SiC wafers is a defect known as a 
“closed-core” screw dislocation (SD), with densities typically greater than 2000 per cm2 (Refs. 1 to 3). 
Eliminating these dislocation defects (i.e., reducing them to densities 1 per cm2) would unlock more of 
SiC’s enormous (as yet unfulfilled) promise to revolutionize nearly all high-power electronic systems. 

Recently, SiC growth perpendicular to the c-axis has been shown to grow higher quality (lower defect 
density) bulk SiC (Ref. 4). Researchers at the NASA Glenn Research Center have proposed a method to 
mass-produce high quality bulk SiC (Ref. 5). This technique starts by growing a long continuous single  
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crystal SiC fiber in the crystallographic c-direction, and then laterally (perpendicular to the c-direction) 
enlarging the fiber into a high quality boule via chemical vapor deposition growth. In order for this bulk 
SiC growth method to become a reality, growth of both long single crystal SiC fibers and lateral growth 
of the fiber by CVD must be achieved. Therefore, two parallel development tracks have been formed: SiC 
fiber growth and lateral CVD. 

In order to create long single crystal SiC fibers, growth has been implemented that combines the 
advantages of two well known growth methods: Laser Heated Floating Zone (proven for oxide-based 
crystals) (Ref. 6) and Traveling Solvent Method (demonstrated for SiC) (Ref. 7). Solvent-Laser Heated 
Floating Zone (Solvent-LHFZ) (Ref. 8) couples the potential to grow long fibers with a solvent system 
capable of growing SiC. 

Experiment 

Characterization of the grown crystals and their growth fronts were carried out by depth profile, cross 
sectional analysis and x-ray techniques. Secondary ion mass spectroscopy (SIMS) was performed on the 
C-face (000-1) face of several samples with an analysis area of ~175×175 m in order to create depth 
profiles of the metal solvents incorporated into the grown crystals. Focused ion beam (FIB) milling and 
mechanical polishing were used to make cross sections of the crystals, which were then examined by 
scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), and orientation and 
structural characterization studies were carried out by x-ray transmission Laue diffraction and white beam 
x-ray topography at the Stony Brook Synchrotron Topography Station, Beamline X19C at the National 
Synchrotron Light Source, Brookhaven National Laboratory. 

Experiments were carried out in a custom vacuum system under 15 slm flow of argon at 115 torr, 
using a CO2 laser as the heat source. A more detailed description of the system can be found elsewhere 
(Ref. 8). At the heart of the system, a 0.5 by 0.5 by 15 mm 4H-SiC crystal (long axis parallel to the 
0001 direction) is mounted so that the carbon face (000-1) of the crystal is facing down. The growth 
surface varied from on axis to roughly 10° from the (000-1). Directly below the crystal, a ~2 mm diameter 
feed rod (composed of the source material for crystal growth) is mounted vertically. The laser heats and 
melts the top end of the feed rod creating a melt (liquid) composed of the crystal growth materials. The 
seed crystal is then brought into contact with the melt allowing the liquid to wet the seed crystal. The 
melting and wetting processes are critical to the success of the experiments; if the feed rod fails to melt 
into a stable liquid, or wet the seed crystal, then no crystal growth can occur. 

For these experiments Fe was chosen as the metal solvent based upon its well known ability to 
dissolve both C and Si. Exact compositions were derived from examining the Fe-Si-C (1150 °C) ternary 
diagram (Ref. 9), which indicated that there are two ranges of compositions that would produce a liquid + 
SiC phase. With this knowledge, a high Fe composition (Fe/Si ~ 1.9, C = 8 at.%), and a high Si 
composition (Fe/Si ~ 0.35, C = 8 percent) were chosen. While studying the effects of Fe/Si concentration 
is important, the effects of different C concentrations may be even more important. Therefore, a third 
composition was chosen at the high Si (Fe/Si ~ 0.35) composition with double the C (16 at.%). Specific 
seed crystal, feed rod preparation, and post experiment crystal processing information can be found 
elsewhere (Ref. 8). 

Since significant transport of material starts once a melt is formed, growth temperatures are given 
relative to the observed melting point (M.P.) of the source material (e.g., growth temperature = total 
observed temperature – M.P.). Also, due to the possible wide range of emissivity (Fe = 0.3 (Ref. 10) 
tographite = 0.9 (Ref. 11)) and small size (~2 mm2) heated zone, none of the listed optical pyrometer-
measured temperatures are corrected for emissivity. 
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Discussion 

As has been previously reported (Ref. 8) (summarized in Table 1), experimental runs using source 
materials with high Fe content failed to produce a stable melt, and were abandoned. The high Si source 
material easily formed a stable melt and predictably melted at 1170 °C (Table 1). Both the 8 and 
16 at.% (high Si) compositions melted at similar temperatures (M.P. = 25 °C or  2 percent absolute 
temperature). Growth is found to increase with an increase in C present in the source material and also 
with temperature. These results indicate that temperature did have an effect on the amount of C 
transported from the source material to the growing crystal.  

X-ray transmission Laue diffraction pattern (Fig. 1(a)) recorded using the synchrotron white beam on 
selected grown crystals matches exactly with (1-100)-oriented 4H-SiC x-ray transmission Laue 
diffraction pattern (Fig. 1(b)) simulated using the LauePt software (Ref. 12). The grown crystal retained 
both the orientation and polytype of the seed crystal and is therefore considered single crystal and 
epitaxial. The x-ray topographs (not shown) from the grown crystals are highly distorted indicating that it 
is under significant inhomogeneous strain. 
 
 
 

TABLE 1.—SUMMARY OF RESULTS. M.P.= TEMPERATURE AT WHICH THE FEED ROD FORMED 
A MELT, (at.% = ATOMIC PERCENT). TEMPERATURES ARE NOT CORRECTED FOR EMISSIVITY 

APPROXIMATE FE CONCENTRATIONS IN THE SiC CRYSTAL LAYERS ARE LISTED 

 
 
 
 

 
Figure 1.—X-ray transmission Laue diffraction pattern (a) recorded from the LHFZ layer portion of fiber 

sample matches exactly with a (1-100)-oriented 4H-SiC x-ray transmission Laue diffraction pattern 
(b) simulated using the LauePt software (Ref. 12). 

Fe Concentration (atom/cm3)

Fe/Si (atomic ratio) C (at.%) M.P. (°C) M.P.+90 °C M.P.+190 °C

High-Si (Fe/Si~0.35)
8 1170 ~1017 ~1017

16 1195 ~1018 ~1018

High-Fe (Fe/Si~1.9) 8 N/A No Growth

(a) (b)
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Figure 2.—(a) Interior of a cross-section of a growth front exposed by mechanical polishing (b) FIB of cross 

section of a grown crystal. 
 
 

SEM images reveal two different morphologies (shown elsewhere (Ref. 8)), a platelet-like 
morphology (present on ~75 percent growth fronts examined) and a step flow like growth front (present 
on about 25 percent of the grown surfaces examined). One important note is that the occurrence of either 
type of growth front did not correspond to a specific growth condition, and in a couple of cases both 
morphologies were produced in different regions of a single sample surface. Cross-sectional analysis 
reveals many voids (Fig. 2(a)) and Si-Fe rich pockets (confirmed with EDS, Fig. 2(b)) sealed in the 
grown crystal layer. These voids and inclusions are very possibly the source of the stress detected by the 
topography measurements. 

One possible explanation for the formation of the Fe rich inclusions is that each platelet of the 
platelet-like growth front is actually many competing individual growth fronts that eventually collide to 
form new defects as the SiC closes over the trapped solvent. The crystal then continues growing using the 
newly formed defect. A similar process has been reported by Dudley et al. (Ref. 13) in the physical vapor 
transport method of SiC crystal growth. 

SIMS results (Fig. 3) shows that the concentration of Fe in the grown crystals varies in three 
significant ways. First, “bumps” in the SIMS profile are believed to arise from the Fe rich inclusions seen 
by FIB cross sectional analysis, as indicated by the arrows in Figure 3. With an analysis area much larger 
than the inclusions, the “bump” width and magnitude is an average over the entire SIMS analysis area. 
This explains why the “bumps” visible by SIMS are also visible by SEM/EDS. Second, these results also 
indicate that for both high and low C concentration source materials the Fe concentration decreases more 
than an order of magnitude from the surface. This decrease may indicate a change in melt composition as 
a function of growth time. Please note that for crystals grown with low C concentration source material, 
the Fe concentration drops almost two orders of magnitude in the first 
0.25 m. The reason for this large change is unknown, but is possibly either an artifact of the post-growth 
etch, which removes excess source material/solvent, and/or the cooling of the crystal/solvent system at the 
end of a growth or the SIMS process. Third and also indicated in Table 1, the crystals grown with source 
material containing a higher C concentration incorporated an order of magnitude more Fe than did 
crystals grown from melts containing less C at either growth temperature. Further SIMS analysis reveals 
that Fe incorporation into grown crystals exhibits the same correlation to C concentration in the source 
material independent of growth rate. Therefore C concentration in the source material seems to dictate the 
amount of Fe solvent incorporated into the matrix of the grown crystal, and that the Fe concentration is 
considerably less sensitive to growth temperature. 

 
 

voids

30 m

Fe‐rich inclusions

2 m

(a) (b)
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>
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Figure 3.—SIMS analysis of a high C (at.% = 16, growth rate = 40 m/hour) and low C 

(at.% = 8, growth rate = 4 m/hour) grown at M.P.+90 C. The arrows indicate Fe rich 
areas in the grown crystals. Note Fe/Si = 0.35 in the feed rod. 

 

Conclusions  

This paper has reported further characterization of 4H-SiC crystal layers grown by the recently 
implemented Solvent-LHFZ technique. X-ray diffraction and topography confirmed that the grown 
crystals were single crystal in nature (replicating polytypic and crystallographic direction of the seed), but 
under significant amount of inhomogeneous strain. Cross sectional analysis by mechanical polishing and 
FIB, and along with SIMS analysis revealed voids and Fe rich inclusions throughout the grown crystals 
and is most likely the source of the strain. These voids and Fe rich areas are possibly created by growth 
fronts colliding and sealing off pockets and then creating defects which help propagate the growth front. 
SIMS analysis also revealed that Fe inclusion into the grown crystal seems to be a function of the C 
content of the grown crystal and not growth temperature or growth rate. These results lead us to believe 
that in order to grow a long, high-quality 4H-SiC single crystal fiber, the growing crystal must be reduced 
to a single growth font and that the C content of the source material will have to be tuned both with 
consideration to growth rate and also to Fe incorporation into the grown crystal. 

  

1016

10161017

1018

1019

1020



NASA/TM—2012-217708 6 

References 

1. P.G. Neudeck W. Huang and M. Dudley., Solid-State Elec., 42, 1257 (1998).  
2. J. Zhang, G. Chung, E. Sanchez, M.J. Loboda, S. Sundaresan and R. Singh International Conference 

on Silicon Carbide and Related Materials, Cleveland, OH, September 11-16 (2011) (to be 
published). 

3. R. Berechman, S. chung, S. Soloviev and M. Skowronski, International Conference on Silicon 
Carbide and Related Materials, Cleveland, OH, September 11-16 (2011) (to be published). 

4. Y. Urakami, I. Gunjishima, S. Yamaguchi, H. Kondo, F. Hirose, A. Adachi and S. Onda, 
International Conference on Silicon Carbide and Related Materials, Cleveland, OH, September 11-
16, 2011 (to be published). 

5. J.A. Powell, P.G. Neudeck, A.J. Trunek and D.J. Spry, U.S. Patent 7,449,065 issued November 11, 
2008. 

6. C.A. Burrus and J Stone, App. Phys. Lett., 26, 318-320 (1975). 
7. L.B. Griffiths and A.I. Mlavsky, Electrochem. Soc., 111, 805 (1964). 
8. A.A. Woodworth, et al., International Conference on Silicon Carbide and Related Materials, 

Cleveland, OH, September 11-16, 2011 (to be published). 
9. T. Yoshikawa, S. Kawanishi, and T. Tanaka, Int. Conf. on Adv. Structure and Funct. Mater. Des., 

2008, J. Phys.: Conf. Series 165 (2009) 012022. 
10. H.B. Wahlin and H.W. Knop, Phys. Rev., 74 (1948) 687. 
11. M.R. Null and W.W. Lozier, J. Appl. Phys., 29 (1958) 1605. 
12. X.R. Huang, J. Appl. Cryst., 43, 926 (2010). 
13. M. Dudley, X.R. Huang, W. Huang, A. Powell, S. Wang, P.G. Neudeck and M. Skowronski, 

Appl. Phys. Lett., 75, 784, (1999). 





REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188  

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this 
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. 
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB 
control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 
01-09-2012 

2. REPORT TYPE 
Technical Memorandum 

3. DATES COVERED (From - To) 

4. TITLE AND SUBTITLE 
Characterization of 4H <000-1> Silicon Carbide Films Grown by Solvent-Laser Heated 
Floating Zone 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 
Woodworth, Andrew, A.; Sayir, Ali; Neudeck, Philip, G.; Raghothamachar, Balaji; Dudley, 
Michael 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 
WBS 031102.02.03.0781.12 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
National Aeronautics and Space Administration 
John H. Glenn Research Center at Lewis Field 
Cleveland, Ohio 44135-3191 

8. PERFORMING ORGANIZATION
    REPORT NUMBER 
E-18413 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
National Aeronautics and Space Administration 
Washington, DC 20546-0001 

10. SPONSORING/MONITOR'S
      ACRONYM(S) 
NASA 

11. SPONSORING/MONITORING
      REPORT NUMBER 
NASA/TM-2012-217708 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Unclassified-Unlimited 
Subject Categories: 33, 23, and 76 
Available electronically at http://www.sti.nasa.gov 
This publication is available from the NASA Center for AeroSpace Information, 443-757-5802 

13. SUPPLEMENTARY NOTES 
Andrew A. Woodworth, NASA Glenn Research Center, NASA Postdoctoral Program Fellow. Alternate report number DOI: 
10.1557/opl.2012.1149. 

14. ABSTRACT 

Commercially available bulk silicon carbide (SiC) has a high number (>2000/cm2) of screw dislocations (SD) that have been linked to 
degradation of high-field power device electrical performance properties. Researchers at the NASA Glenn Research Center have proposed a 
method to mass-produce significantly higher quality bulk SiC. In order for this bulk growth method to become reality, growth of long single 
crystal SiC fibers must first be achieved. Therefore, a new growth method, Solvent-Laser Heated Floating Zone (Solvent-LHFZ), has been 
implemented. While some of the initial Solvent-LHFZ results have recently been reported, this paper focuses on further characterization of 
grown crystals and their growth fronts. To this end, secondary ion mass spectroscopy (SIMS) depth profiles, cross section analysis by 
focused ion beam (FIB) milling and mechanical polishing, and orientation and structural characterization by x-ray transmission Laue 
diffraction patterns and x-ray topography were used. Results paint a picture of a chaotic growth front, with Fe incorporation dependant on C 
concentration. 
15. SUBJECT TERMS 
Silicon carbides; Crystal growth; Melts; Single crystals 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
      ABSTRACT 
 
UU 

18. NUMBER
      OF 
      PAGES 

14 

19a. NAME OF RESPONSIBLE PERSON 
STI Help Desk (email:help@sti.nasa.gov) 

a. REPORT 
U 

b. ABSTRACT 
U 

c. THIS 
PAGE 
U 

19b. TELEPHONE NUMBER (include area code) 
443-757-5802 

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18








