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19 Abstract 

20 The balloon-borne experiment with a superconducting spectrometer (BESS) has performed cosmic-ray observations as a US-Japan 
21 coopeni.tive space science program, and has provided fundamental data on cosmic rays to study elementary particle phenomena in the 
22 early Universe. The BESS experiment has measured the energy spectra of cosmic-ray antiprotons to investigate signatures of possible 
23 exotic origins sucb as dark matter candidates or primordial black boles. and searched for heavier antinuclei that might reach Earth from 
24 antimatter domains formed in the early Universe. The apex of the BESS program was reached with the Antarctic flight of BESS-Polar II, 
25 during the 2007- 2008 Austral Summer, that obtained over 4.7 billion cosmic-ray events from 24.5 days of observation. The flight took 
26 place at the expected solar minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. 
27 Here, we report the scientific restilts, focusing on the long-duration flights of BESS-Polar I (2004) and BESS-Polar II (2007-2008) . 
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32 1. Introduction 2008, nine approximately one-day northern-latitude flights 71 

and two long-duration Antarctic flights, as summarized in 72 
33 Progress in modern observational cosmology and astro- Table 1. These have collectively recorded more than 13,000 73 
34 physics has shown that the material Universe is dominated cosmic-ray low-energy antiprotons and set the most strin- 74 

35 by dark matter responsible for the formation of structnre gent upper limits to the existence of antihelium and anti- 75 
36 and for the dynamics of galaxies. The nature of the dark deuterium. BESS has also provided the reference 76 

37 components, however, is unknown. Similarly, it is observed standard for elemental and isotopic spectra of H and He 77 
38 that cosmological antimatter is apparently absent in the over more than a full solar cycle. Together with the anti- 78 

39 present era, but the reason for this absence remains as a proton measurements, these provide strong constraints on 79 
40 major problem for cosmology and particle physics. It has models of cosmic-ray transport in the Galaxy and Solar 80 

41 been suggested that one constituent of the dark matter System. 81 

42 may be primordial black holes (Hawking, 1975; Barrau 
43 et al., 2002)~ formed in the early Universe due to the col-
44 lapse of dense regions formed by density fluctuations. 

2. Progress of the BESS and BESS-Polar experiments 82 

45 The detection of PBH through antiparticles arising from 
46 the Hawking radiation emitted as they evaporate would 
47 probe the early Universe at very small scales (Maki et al., 
48 1996). PBH evaporation might be detected by its effect 
49 on the measured antiproton spectrum. Addressing these 
50 issues are central scientific goals of the BESS program 
51 (Yoshimura, 2001; Yamamoto et al., 2008; Mitchell 
52 et al., 2009). The precise measureinents of the low-energy 
53 cosmic-ray antiproton flux and the sensitive search for hea-
54 vier antinuclei made by the BESS experiment are vital to 
55 constraining candidate models for dark matter, evaluating 
56 the possible density of primordial black holes, and seeking 
57 for the limits of cosmological antimatter. BESS also pro-
58 vides important fundamental data on the spectra of light 
59 cosmic-ray elements and isotopes and for studies of the 
60 effect of the out-flowing solar wind on the Galactic cosmic 
61 rays (Mitchell et aI., 2009). The exceptionally large collect-
62 ing power and precise particle identification capability of 
63 the BESS instruments enable a broad scientiflc reach. 
64 BESS uses a superconducting magnetic-rigidity spec-
65 trometer with a time-of-flight (TOF) system and an aerogel 
66 Cherenkov counter (ACC) to fully identify incident parti-
67 cles by charge, charge sign, rigidity, and velocity (Ajima 
68 et al., 2000; Yoshida et aI., 2004). The joint US-Japan 
69 BESS program, supported by NASA and lSAS-JAXA, 
70 carried out eleven successful balloon flights from 1993 to 

The . BESS program began as an outgrowth of work 83 

toward the Astromag superconducting magnet facility that 84 

was planned for the International Space Station, ~SS 85 

(Ormes, 1986). From the early 1980s, there was tremendous 86 

excitement over results from seminal balloon-borne exper- 87 
iments that reported detecting substantial excesses of anti- 88 
protons at both high and low energies using magnetic 89 

spectrometers or annihilation signatures. By the mid- 90 

1980s, the cosmic-ray community was fully engaged in an 91 

effort to measure cosmic ray matter and antimatter to 92 
unprecedented precision. During the Astromag study, a 93 
number of magnet configurations were proposed. BESS 94 
stemmed from a proposal to use a solenoidal superconduc- 95 
ting magnet with a coil thin enough for particles to pass 96 

through with minimal interaction probability (Yamamoto 97 

et aI., 1988). This conflguration maximizes the opening 98 

angle of the instrwnent, and hence the geometric factor, 99 
making it ideal for rare-particle measurements. BESS 100 

began as a balloon-borne instrument to validate this con- 101 
cept, and rapidly evolved into an immensely capable scien- 102 
tific program in its own right (Orito, 1987). 103 

The BESS instruments consist of thin superconducting 104 
solenoidal magnets and high-resolution detector systems. 105 
For energies between about 0.1 GeV and 4 GeV, referenced 106 

to the top of the atmosphere (TOA), the BESS instruments 107 

accurately identify incident particles by directly measuring 108 

Table I 
Progress of the BESS and BESS-Polar balloon flights and observations. 

1993 1994 1995 1997 1998 1999 2000 2001 2002 2004 2007 

Locatio::J. Canada » » ::;:. » » » us c. Ant. Ant. 
Float time (h) 17.5 17 19.5 20.5 22.0 34.5 44.5 1.0 16.5 205 730 
Obsenation time, float (h) 14 15 17.5 18.3 20.0 31.3 32.5 1 11.3 180 588 
Observation time, asc./des. (h) 2.8 2.5 12.8 2.3 3.3 3.5 
Recorded events (x 10, 4.0 4.2 4.5 16.2 19.0 19.1 17.0 N/A 13.7 900 4700 
Data volume (GB) 4.5 6.5 8.0 31 38 41 38 N/A 56 2.140 13,500 
Event filtering Yes Ye, Ye, Ye, Ye, Yes Yes y" Yes No No 
Magnetic field (T) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.8 
MDR(GV) 200 200 200 200 200 200 200 1,400 1,400 240 270 
TOF resolution (ps) 300 300 100 75 75 75 75 75 75 160 120 
ACC index 1.03 1.02 1.02 1.02 1.02 1.02 1.02 1.03 
Antiproton events observed 6 2 43 415 384 668 558 N/A 147 1520 ~8000 

Antiproton's energy (GeV) :0.5 <0.5 <3.6 "3.6 "3.6 :3.6 <4.2 N/A <4.2 <4.2 <3.5 
Anti-He/He upper limit (x 10-6

) 22 4.3 2.4 1.4 1.0 0.8 0.68 N/A 0.65 0.27 0.07 

Please cite this article in press as: Y;-_';:I:~lil;'tf;, A., et al. Search for cosmic-ray annpwton origins and for .:o8:.r.Iloillgical amimatter Wlth BESS. J. 
Adv Space Res. (2011). doi 10.1016/; .• ".2011.07.011 
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their charge, charge-sign, magnetic rigidity, and velocity. 
This infonnation is subsequently used to derive their mass 
and kinetic energy. Elemental spectra can be measured to 
>100 GeV. All BESS instruments, improved during the 
course of the program, use similar instrwnent configura­
tiom with detail changes reflecting the evolution of the 
instruments and flight-specific requirements (Yoshida 
et al.,;2004; Yamamoto et al., 2008; Mitchell et aI., 2009). 
Fig. I shows a schematic cross-sectional view of the 
BESS-Polar II instrument as an example. A central 
JET-type drift chamber tracking system and inner drift 
chambers (IDC), giving 52 trajectory points in the bending 
direction, are located inside the wann bore of the solenoid 
to measure the trajectories of charged particles as they pass 
through the magnetic field. The magnetic rigidity, R.= pel 
Ze (where p is momentum, e is light velocity, and Z is the 
particle electric charge) is determined by fitting the curva­
ture of the track through the field. The charge-sign of an 
incident particle is determined by the direction of its curved 
track with respect to the local vector magnetic field. Arrays 
of time-of-flight (TOF) scintillation connters (Shikaze 
et aI., 2000) are located at the top (UTOF) and bottom 
(LTOF) of the instrument. In BESS-Polar, a middle TOF 
scin:illator array (MTOF) is located inside the magnet bore 
below the lower IDC. The TOF scintillators trigger readout 
of events and measure Z, and velocity,!!, of incident parti­
cles. Particle momentum, p, is determined from Rand Z 
and, in tum, particle mass, m, is determined from p and 
p. BESS separates antiprotons from negative charge back­
ground particles, mainly muons and electrons, by mass up 
to an energy of about 1.5 GeV. Above this energy, an 
aerogel Cherenkov counter (ACC) identifies low mass, high 
p, backgronnd particles. Additional background rejection 
is supplied by multiple measurements of ionization energy 
loss (dE/dx) from the JET. The horizontal cylindrical 
configuration of the BESS instrument allows a full opening 
angle of ~90° with a resulting acceptance of 0.3 m2 sr. The 
thin soirutoid magnet allows the incoming cosmic rays to 

Incoming particle 

Magnet -. 

JET .----

MTOF -------.-~~~ 

Ace ----- "" 
;---" 

o 
I 

._--- TOF 

_---- IDC 

--.---- IDC 

---.. TOF 

1m 
I 

Fig. 1. Cross section of the BESS-Polar II spectrometer. 

penetrate the spectrometer with munmum interactions 
(Yamamoto et al., 1988; Makida et al., 2005). Since the 
magnetic field is very uniform inside the solenoid, the 
deflection measurement is very accurate for all trajectories 
within the instrument geometric acceptance. A maximum 
detectable rigidity (MDR) of 200 GV was achieved in the 
original BESS instrument and 280 GV in BESS-Polar. 
For the BESS-TeV flights in 2001 and 2002, outer drift 
chambers were added to raise the MDR to 1400 GV (Hai-
no et aI., 2004). . 

Versions of the original BESS instrument were used for 
the initial 9 northern-latitude flights. In order to take 
advantage of the long flight durations and low geomagnetic 
cutoff in Antarctic flights, a completely new version of the 
instrument, BESS-Polar, was developed (Yamamoto et al., 
20020.; Yoshida et al., 2004; Mitchell et aI., 2004; 
Yoshimura et aI., 2008). The BESS-Polar magnet has half 
the material (radiation) thickness in the coil wall, achieved 
by use of improved superconducting wire with A1 stabilizer 
strengthened by alloying with Ni and by cold-working 
(Yamamoto et aI., 2002b; Makida et al., 2005). Reduced 
heat transmission to the low-temperature components gives 
a much improved cryogen lifetime. In addition, the outer 
pressure vessel was eliminated, the ACC was moved to 
the bottom, and the MTOF was added. The result was a 
spectrometer with ~4.5 glcm2 encountered by incident trig­
gering particles compared to ~18 glcm2 in the previous 
BESS instrument, lowering the effective energy threshold 
to well below 100 MeV at TOA. The BESS-Polar data 
acquisition system has the required throughput and storage 
capacity to record all triggered events, and so no longer 
requires down-sampling of proton data. Greatly reduced 
power consumption and a new solar-cell array power sys­
tem enable long-duration flights. In BESS-Polar I, the mag­
net cryogen lifetime was 11 days. BESS-Polar I was flown 
in 2004, acquiring data for 8.5 days and recording ~2 tera­
bytes of data on 9 x 108 cosmic ray events. High-voltage 
breakdown in some of the TOF photomultiplier units 
reduced the geometric acceptance to about 0.2 m2 sr and 
impacted TOF resolution. BESS-Polar I measured 
432 antiprotons at energies below 1.3 GeV, nearly a 4-fold 
increase in statistics over BESS measurements duririg the 
previous solar minimum, and 1512 antiprotons over the 
0.1--4.2 GeV energy range. Technical improvements for 
BESS-Polar II, see Table 1, addressed cryogen lifetime, 
detector performance and stability, power system perfor­
mance, data storage, and the efficiency of the final pre­
launch assembly process. For BESS-Polar II, cryogen life­
time was increased to >25 days, the TOP resolution was 
effectively improved to ~ 120 ps, the rejection power of 
the ACC was increased to ~6000, and the full geometric 
acceptance of 0.3 m2 sr was maintained throughout the 
flight. BESS-Polar II operated at float altitude for 
24.5 days with the magnet energized, recording 13.5 tera­
bytes of data on over 4.7 X 109 cosmic ray events. This 
more than doubles the combined data from all previous 
BESS flights, including BESS-Polar I, and is several times 

Please cite this article in pres.~ as: '\"::;-iHi.;I."to, A., et aI. Search for cosmic-ray antiproton origins and for cOMnologica1 antimatter with BESS J. 
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Yea, 

Fig. 2. Solar acti.vity during the last BESS balloon flights. 

the data expected from PAMELA in the BESS-Polar 
energy range. Most important, the BESS-Polar II llight 
took place very near solar minimum, as shown in Fig. 2, 
when sensitivity to a low-energy primary antiproton source 
is greatest. The long BESS-Polar II flight gave a ~20-fold . 

increase in the number of antiprotons detected below 
I GeY compared to the BESS-97 data at the previous solar 
minimum and a ...... 14-fold increase over the combined 
BESS-(95+97) data. After about one and two-thirds orbits 
of Antarctica, the BESS-Polar II flight was terminated over 
the West Antarctic Ice Sheet, as shown in Fig. 3, because of 
concerns over the flight trajectory. Logistics considerations 
prevented immediate recovery. Recovery of the BESS­
Polar II instrument was successfully carried out two years 
later in 2009-2010. . 

3. Scientific progress from BESS-Polar oboervation 

The general BESS and BESS-Polar scientific progress 
has heen reviewed in the references (Yamamoto, 2003; 

'-"-' ..... ------ .. -... ~ .... " .. 
,'-- . 

Fig. 3. Balloon flight trajectories in BESS-Polar 11. 

.... ' .. ....... 

.... 

Mitchell et al., ~004, 2005; Yoshida et al., 2004; Yoshimura 
et aI. , 2008; Yamamoto et al., ~008; Mitchell et al.. 2009). 
In this report, we focus on progress in the searches for cos­
mic-ray antiproton origins and for cosmological antimatter 
from the BESS-polar program. 

3.1. Precise measurement of the antiproton spectrwn 

Most cosmic-ray antiprotons are produced by interac­
tions of high-energy Galactic cosmic rays with the interstel­
lar ·medium. Due to production kinematics and to the 
energy spectra of the primary cosmic rays, the energy spec­
trum of these secondary antiprotons has a characteristic 
peak at around 2 GeY and decreases sharply below and 
above the peak. This feature is clearly shown by the BESS 
data (Oritoet al., 2000; Abe etal. , 2008). Their mainly sec­
ondary origin makes antiprotons important tools to probe 
cosmic-ray transport as discussed in a recent comprehen­
sive review (Strong et aI., 2007). Deviations from the 
expected antiproton spectrum may signify the contribution 
of a primary source such as evaporation of primordial 
black holes (PBH) or annihilation of neutralino dark 
matter. PBH evaporation is expected to yield an antiproton 
spectrum with a peak well below I GeY. Superimposed on 
the steeply decreasing secondary antiproton spectrum, this 
could cause a flattening of the observed spectrum (Mitsui 
et al., 1996). Although the BESS (95+97) antiproton flux 
measurements at the last solar minimum hint at an excess 
at low energy (Orito et aI., 2000), successive measurements, 

~ 
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~ 
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--- Moskalenko et al. 

- Bieber et aI. 
-Fuk 
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• BESS-Polar 
" BESS (2000) 
n BESS (95+97) 

10. _.- PBR (R ·'."''''''''~·'I 

10.1 

Kinetic eoerlY (GeV) 

Fig..4. Antiproton flux measured in BESS· Polar I and in previous BESS 
dights compared to secondary antiproton caJculation with three models 
(Abe et at, 20(8): the Standard Leaky Box (SLB) model modulated with a 
steady state drift model (solid curves: Bieber et al. (1999» and the 
Diffusion plus Convection (DC) n:;odel modulated with a HeliOspheric 
drift model (dashed curves: Moskalenko et aI., 20(2). and the DC model 
modulated with a spherical symmetric model (dotted curves: Fisk, 1971). 
The dash·dot curves are calculations of antiproton spectra from evapo­
ration of primordial hlack holes with an explosion rate of 
0.4 x 10-2 

pc-3 yr -I modulated by 550 MV (top: in 1995-1997) and 
Rim MV (hi • ')fV\A\ 
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249 taken after the solar minimwn period, are more consistent 
250 with. a pure secondary nature. 
251 Fig. 4 shows the antiproton spectrum measured by 
252 BESS-Polar I (Abe et al. , 2(08) compared with results from 
253 pre-,ious BESS flights around solar minimum, 25+97 
254 (Matsunaga et al., 1998; Orito et a!. , 2000) and maximum 
255 (Asaoka et al., 2(02), and compared with theoretical calcu-
256 lations. The solid curves are calculations of the interstellar 
257 secondary antiproton spectra from a Standard Leaky Box 
258 (SUI) model modulated with a steady state drift model 
259 (Bieber et a!., 1999) in which the modulation is character-
260 ized by a tilt angle of the heliospheric current sheet and 
261 the Sun's magnetic polarity of (from top to bottom, and 
262 the first two are very close) 10"(+), 10"(-), and]OO(-). 
263 The dashed curves are calculations with the Diffusion plus 
264 Cor,vection (DC) model of the secondary antiproton 
265 spectrum modulated with a Heliospheric drift model 
266 (Moskalenko et a!., 2002; Moskalenko, 2006). The tilt 
267 angles, 10°(+),70°(- ), and 30°(-) roughly correspond to 
268 the :ne.Tsurements with BEfs (95+97), BESS (2000), and 
269 BESS-Polar I (2004), respectively (Zhao and Hoeksema, 
270 1995; Hoeksema, 1995). The dotted-curves are calculations 
271 with the DC model (Moskalenko et a!., 2(02) modulated 
272 with a standard spherically symmetric approach (Fisk, 
273 1971), in which the modulation is characterized by a single 
274 pamneter (</» irrespective of the Sun's polarity. For each 
275 measurement, </> was obtained by fitting the corresponding 
276 proton spectrum measured by BESS, assuming the inter-
277 stellar spectrum in (Orito et al. , 2000). The values of </>, 

278 550 :\IIV, 1400 MV, and 850 MY correspond to the mea-
279 surements with BESS (95+97), BESS (2000) and BESS-
280 Polar I (2004), respectively. The dash-dot curves are 
281 ca1c:.J.lations of antiproton spectra from evaporation of 
282 PBH at a rate of 0.4 x 10-2 pc-3 yr- ' (Maki et al., 1996; 
283 Yoshimura, 200 I) modulated by a 'spherically symmetric 
284 approach . (Fisk, 1971) with modulation parameter </> 
285 independent of solar polarity. The expected s;gnal from 
286 PBH evaporation is alIected by solar modulation rr:ore 
287 thalO the secondary antiproton spectrum because of its 
288 low energy spectral peak. As might "" expected, BESS-
289 Polar I antiproton meast:re!Ilents, !aken dur:ng a trar:sient 
290 period in advance of solar rninim1!I:1, show 1:.0 app~.rent 
291 excess, but provide a baseline secondary spectrum to be 
292 compared with the spectrum obse::ved at solar :minimum 
293 by BESS-Polar II. 
294 The BESS-Polar II data analysis is still in progress. The 
295 full BESS-Polar II dataset is expected to yield ~8000 mea-
296 sured antiprotons. Fig. 5 shows particle identification plot 
297 with fJ' versus rigidity using a quarter of the data from the 
298 BESS-Polar II. Fig. 6 shows a very preliminary antiproton 
299 energy spectrum from analysis, compared with the results 
300 from BESS-Polar I (2004) and BESS (95+97). The solid 
301 curves are calculations with the SLB model modulated with 
302 a st,.dy state drift model (Bieber et al., 1999). The tilt 
303 angbs of I 0°(+) and 300

( -) approximately correspond to 
304 the measurements with BESS (95+97) and BESS-Polar I 
305 (2004), respectively. The tilt angle during the BESS-Polar 
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Fig . . 5. The rr1 versus rigidity plot, and antiproton selection band. For 
the negativc rigidity, all the events with R ·: -0.8 GY/e after Cherenkov 
veto cuts and JET dE/dx cut are shown. For the positive rigidity. O.l%or 
the events after Cherenkov veto cuts arc shown. 
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Fig. 6. Antiproton flux measured by BESS (95+97), BESS-Polar I (2004), 
aod a preliminary result by BESS-Polar n (2007-2008) which was 
obtained rrom the data analysis using a quarter observed events. The solid 
curves are secondary antiproton calculation with the SLB model modu­
lated with the steady state drin model (Bieber et at). The dotted curves are 
secondary antiproton calculations with thc'SLB model modulated. with the 
spherically symmetric model (Fisk). 

II flight would be about I CO( -). The dashed curves are 
calculations with the SLB model modulated with the spher­
ically symmetric approach (Fisk, 1971). The modulation 
parameters of </> = 550 MV and 850 MY correspond to 
the measurements with BESS (95+97) and BESS-Polar 
(2004), respectively. The modulation parameter for 
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312 BESS· Polar II should be comparable to BESS (95+97). M 
313 a preliminary result, the BESS-Polar II observation shows 
314 good consistency with the secondary antiproton 
315 calculations. 

316 3,2, Search for antihelium 

317 A fundamental question in cosmology is whether matter 
318 and f.ntimatter arc asymmetric or symmetric in the 
319 Universe. The Sakharov conditions of direct violation of 
320 baryon number conservation, CP & C symmetry breaking, 
321 and a period out of equilibrium in the very early Universe 
322 indicted a way to explain the apparent baryon domination 
323 observed (Sakharov, 1967). However, direct violation of 
324 baryon number conservation has never been demonstrated, 
325 and the strength of CP violations currently measured at 
326 accelerators are insufficient to explain strong matter/anti~ 
327 matter asymmetry. Detection of antihelium would provide 
328 direct evidence of antimatter domains in the Universe. 
329 Although antihelium might, in principle, be produced as 
330 seconcaries in cosmic-ray interactions, the resulting antihc-
331 lium/helium ratio should be much less than 10-12 (Brown 
332 and Sleeker, 1979). " 
333 The BESS-Polar-I experiment observed 8 x 106 helium 
334 events and no antihelium candidate was detected in the 
335 rigidity range 1- 20 GV with an effective geometrical accep-
336 tance of 0.2 m2 sr, The resultant upper limit for the ratio of 
337 antihelium/helium was 4.4 x 10-'. By accumulating all 
338 result, from BESS thro~gh BESS-Polar I, an upper limit 
339 of 2.7 x 10-' was set in the rigidity range 1- 14 GV (Sasaki 
340 et 8.1., 2008), 
341 The BESS-Polar II experiment observed 4 .x 10' helium 
342 events in a rigidity range of 1-14 GV with an effective 
343 geometrical acceptance of 0.3 m2 sr, and no antihelium 
344 candidate was detected, The resultant upper limit was 
345 9,4 x 10-8, By accumulating all results from BESS through 
346 ·BESS·P~lar II, the 95% confidence level upper limit for 
347 antihelium/helium in the rigidity range 1-14 GV has been 
348 reduced to be 6,9 x 10"" (Sasaki et aL, 2010), Fig, 7 shows 

~ 

349 the BESS upper limits compared with other experiments, 
350 The upper limit for antihelium/helium has been reduced 
351 by two orders of magnitude compared to the first BESS 
352 limit (Ormes et al., 1997; Sasaki et al., t002, 2008, 2010), 

353 4. Summary 

354 The BESS program has performed eleven scientific 
355 balloon flights successfully in northern Canada and 
356 Antarctica. It has aimed to search for cosmic-ray antipro-
357 ton origins and for cosmological antimatter. The Antarctic 
358 flights of BESS-Polar I (2004) and BESS-Polar" (2007-
359 2008) have yielded measurements of cosmic-ray antipr6-
360 tons \\'ith unprecedented statistical accuracy and greatly 
361 increased the sensitivity of the antihelium search. The 
362 measurements made by BESS-Polar II took place near 
363 solar minimum when sensitivity to a potential primary 
364 antiproton component at low energies is greatest. With 

1tr" 
.R""elHe Umit (95% C.L.) ! 

.2 
aNIMe, et: ... (l''l'') aUSoTeV 

1tr' Gold,n at el. Cll!!) e 
>C 

'" Elumnglon atel. (1911) 0;:: 

E 
1tr" IBESS '95]". F. arm .. lit e •. (ltt1) .2 

Gi 

l !BESS '93 'N '9!ip. $eeId at ~. (1'" 

.2 1tr' 
IAMSI". Alcannt e'. (U") 

Gi !BESS 't3 - '00] M. !!I .. e~11It eL (2002) 

.c 2 "·:·-.. ·::'f;_.~ .~_> .. :;:I 
C 
c( 

10" 
ALL BESS Results 

1tr" ='---'-L..Lw.il,"--,--,-,~, .... "",1 ,..-'-'-.L' .L"W" 

10 10' 
Rigidity (GV) 

Fig. 7. Antihelium flux upper limitll progressed in BESS and BESS-Polar 
experiments, compared with previous experiment! (Sasaki et al., 2010). 

statistics increased a factor of ::;"'10 compared to BESS mea- 365 
surements at the previous solar minimum, BESS-Polar II 366 
data shows good consistency with the secondary antjpro- 367 
ton calculation. With further analysis, this data will place 368 

severe limits on any possible PBH evaporation contribu- 369 
tion to the low-energy antiproton spectrum. and hence to 370 

limits on any possible density of primordial black holes. 371 

No antihelium candidate was observed in BESS through 372 
BESS-Polar II flight, and the 95"10 confidence level upper 373 

limit for antihelium/helium in the 1-14 GV rigidity range 374 

has been reduced to be 6.9 X 10-'. 375 , 

A lsa.t=G it a1. (1999). ~aell''I'ar et a1. (19+8), Rlif.BSgtBS st w 
a!. (1981), Saaki-d ai (1998) aRe ¥am.afRBtB st at (1994). QJ 378 , 
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