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ABSTRACT.  A 3-dimensional physical model was developed to relate the wavelength shifts 
resulting from temperature changes of fiber Bragg gratings (FBGs) to the thermal expansion 
coefficients, Young’s moduli of optical fibers, and thicknesses of coating polymers.  Using this 
model the Bragg wavelength shifts were calculated and compared with the measured wavelength 
shifts of FBGs with various coating thickness for a finite temperature range. There was a 
discrepancy between the calculated and measured wavelength shifts. This was attributed to the 
refractive index change of the fiber core by the thermally induced radial pressure. To further 
investigate the pressure effects, a small diametric load was applied to a FBG and Bragg 
wavelength shifts were measured over a temperature range of 4.2 to 300K.  
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INTRODUCTION 
 

Fiber Bragg gratings (FBGs) have been extensively proposed and utilized for health 
monitoring systems of aerospace structures and materials as well as many other 
applications [1,2]. Compared to other sensors, FBGs have the advantages of being 
lightweight and flexible, and requiring simpler wiring especially for distributed sensing. 
Most efforts have focused on using distributed fiber optic strain sensing systems, with 
limited consideration given to temperature sensing systems.  In general, strain response of 
FBGs is linear for a broad range of strain and independent of temperature [3]. The 
temperature response of FBGs is much more complicated. The temperature sensitivity of 
FBGs is moderate and relatively linear for temperatures above 273 K. However, it becomes 
smaller and more nonlinear as the temperature decreases further below 273 K and much 
smaller for cryogenic temperatures. 

It has been suggested that FBGs be embedded in or bonded to substrates, e.g., 
Teflon to enhance their temperature sensitivity [4]. These substrates have larger thermal 
expansion coefficients than silica fibers. While the enhancement of FBG temperature 
sensitivity is significant using these techniques, the flexibility of the optical fiber is 
sacrificed because of the need for bonding to a rigid substrate. This is particularly 
unsuitable for distributed sensing with multiple sensors. Another alternative is using FBGs 
with polymer coatings of finite thickness, which give smaller enhancement of temperature 
sensitivity but do not compromise the flexibility of the optical fibers. 
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This study investigated the effects of polymer coatings on FBG temperature 
sensitivity. A 3-dimensional physical model was developed to relate the temperature 
sensitivity of FBGs to coating thickness. Trends predicted by the physical model were 
compared to experimental results. There was a discrepancy between the calculated and 
measured wavelength shifts. This was attributed to effects of the thermally induced radial 
pressure in the fibers. To further investigate the pressure effects the pressurized fiber Bragg 
gratings (PFBGs) were introduced. PFBGs can be obtained by applying a small diametric 
load to regular FBGs. In this study, a pressure-induced transition of the PFBGs occurred at 
approximately 200 K and resulted in higher temperature sensitivity for PFBGs than FBGs 
at cryogenic temperatures. This intriguing phenomenon was independent of the polymer 
coatings and attributed to a substantial change of the refractive index of the fiber core.  

 
THEORY 
 
Thermally Induced Effects of a Polymer Coated Fiber 
 

In general a fiber Bragg grating can be characterized by its Bragg wavelength, 
which is the center wavelength of the light reflected from the grating. The Bragg 
wavelength is given as 
 
 λB = 2neffΛ,  (1) 
 
where neff is the effective refractive index of the fiber core and Λ the grating period. For a 
fiber Bragg grating coated with polymer, a change in the temperature causes a change in 
the grating period due to not only the thermal expansion of the fiber but also the strain, δl /l, 
induced by thermal expansion of the coating polymer. In addition, the refractive index of 
the fiber core changes because of the thermo-optic effect. Combining all the above effects, 
the shift in the Bragg wavelength due to finite temperature change, ΔT, is given as 
 
 δλB / λB = αs ΔT + (1 – pe)δl /l + δneff /neff, (2)  
 
where αs is the thermal expansion coefficient, and pe the photoelastic constant of the 
fiber, i.e., silica glass. 
 To estimate the contribution of the second term in Eq. (2) to the total 
wavelength shift, a complete 3-dimensional model is needed to calculate the thermally 
induced strain, δl /l, which should be expressed by all of the physical constants and the 
geometry as shown in Fig.1. Details of the derivation are in the Appendix. δl /l can be 
obtained as 
 
 δl /l = η (αp - αs) ΔT, (3) 
where  

 η ≡ 1+
Es(1+ 2ν pζ )
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γ is the ratio of the cross-sectional area, Ap, of the polymer with a radial thickness t, to the 
cross-sectional area, As, of the silica fiber with a radius of rs, and ζ is defined as the ratio of 
the induced radial stress, pr, to the axial stress along the fiber, σ zz

s , 
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The physical meaning of the Eq. (5) is simply that the thermal expansion induces not only 
the stress (strain) along the fiber but also the radial stress, pr, which arises as the result of 
the 3-dimensional model. Apparently both are related to the mechanical properties of the 
two materials and the geometric factor γ. 

(a) (b) 
FIGURE 1. Geometry defining the strain induced by thermal expansion of the fiber and the coating polymer, 
(a) the side view, and (b) the cross-section view. αp and αs are the thermal expansion coefficients, Ep and Es
the Young’s moduli, νp and νs the Poisson’s ratios, rp and rs the radii, and Ap and As the cross-sectional areas 
of the polymer and the silica glass respectively.  

It seems the radial stress, pr is missing or at least not explicitly expressed in Eq. (2). 
To further investigate, one can rewrite Eq. (2) as  

δλB / λB = [αs + (1 – pe) (αp – αs)η + ξ]ΔT, (6) 

where ξ  = (1/neff )( ∂neff / ∂T ) is the thermo-optic coefficient of the fiber. If there is no 
coating material, t = 0, η = 0, then Eq. (6) becomes the well-know formula for a bare fiber 
grating sensor, 

δλB / λB = (αs + ξ)ΔT. (7)

The difference between Eq. (6) and Eq. (7) is the second term in Eq. (6), the wavelength 
shift given by the thermally induced strain from the coating. Experimentally one can 
measure the total Bragg wavelength shifts of FBGs with and without a coating and then 
compare their difference with the calculated value of the second term in Eq. (6). This can 
verify whether Eq. (6) represents all of the thermally induced effects or if the induced 
radial stress, pr also contributes to the total wavelength shifts. 

EXPERIMENT 

The low (smaller than a few tenths of one percent) reflectivity FBGs used in this 
research were written in situ, into the drawn optical fiber using the NASA Langley optical 
fiber draw tower. The drawn fibers with FBGs were coated with polyimide of various 
thicknesses, and then ink-marked to show grating locations. 

These low reflectivity FBGs, written at the same wavelength on a single fiber at 
different locations, were interrogated using a frequency domain demodulation system [5]. 
The detected signals from each grating are superimposed and can be fast-Fourier-
transformed to obtain the spatial spectrum of all gratings, which displays the physical 
profiles of the gratings at different locations. The spatial spectrum of a particular grating 
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can then be windowed and inverse-fast-Fourier-transformed to get its own wavelength 
spectrum, as shown in Fig. 2. For the distributed thermal sensing, the center wavelength 
shifts of each FBG were measured and calculated. 

 

  

FIGURE 2. The calculated wavelength spectrum of a FBG with a center wavelength of 1551.3 nm. 

A cryostat of compressed helium gas was used for temperature control, ranging 
from 350 K to about 8 K. The optical fiber with the investigated Bragg grating was held 
between the cold plate of the cryogenic chamber and another copper plate with a length of 
about 2 cm to cover the whole Bragg grating. As shown in Fig. 3, four screws with four 
identical springs were used to hold the plates and apply a small diametric load to the fiber 
to form a pressurized Bragg grating (PFBG). A section of support fiber of equal diameter 
with the test fiber was added to keep the two plates parallel. The total force applied by the 
springs to the copper plate was approximately 15 N, calculated from the spring constant at 
room temperature. For the whole range of the temperature change, the total variations of 
the spring constant and the dimension changes of the copper plates and the steel screws 
were estimated to be less than a few percent. The applied force was sufficient to reach the 
threshold stress required for a PFBG but was kept less than 30 N to prevent splitting of the 
center peak in the wavelength spectrum [6]. Data were acquired periodically throughout the 
cooling cycle using the frequency domain demodulation system described previously.  The 
time required to cool from room temperature to the lowest temperature of 8 K was 
approximately two hours.    

FIGURE 3.  Schematic representation of a pressurized fiber Bragg grating (PFBG). A copper plate with four 
screws holds the test fiber and the support fiber onto the cold plate of the cryogenic chamber. Four springs 
apply a diametric load to the test fiber to form a PFBG. 

For comparison, fiber Bragg gratings with and without coating were also immersed 
directly in liquid nitrogen to measure their Bragg wavelength shifts. 

RESULTS AND DISCUSSION 

In Table 1, the second column shows the Bragg wavelength shifts, ΔλB, of the 
FBGs with various coating thicknesses as they were immersed in liquid nitrogen directly 
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from room temperature.  The third column shows the difference, ΔC, of the wavelength 
shifts of FBGs with and without the coating. The second term of Eq. (6) were calculated for 
each FBG of various coating thickness, by using the values from the literature and then 
subtracted from ΔC. These extra wavelength shifts, ΔM listed in the fourth column, are 
attributed to the refractive index change of the optical fiber by the thermally induced radial 
pressures pr’s as shown in the fifth column. 

TABLE 1. The Bragg wavelength shifts and induced radial pressures of FBGs immersed in liquid nitrogen

FBGs 
(with coating thickness, t) 

ΔλB (nm)   ΔC (nm)  
a ΔM (nm) 

b pr (MPa) 

0 FBG (t = 0) 1.36 0 0 0 
1 FBG (t = 11 μm) 1.47 0.11 0.103 5.65 
2 FBG (t = 13 μm) 1.65 0.29 0.274 6.38 
3 FBG (t = 22 μm) 1.77 0.41 0.338 8.58

a  ΔC = ΔλBn - ΔλB0 ; n = 0,1,2,3 
b  ΔM = ΔC – [(1 – pe) η (αp - αs) ΔT] 

 

FIGURE. 5. Bragg wavelength shifts of a regular FBG and a PFBG with temperature during a cooling cycle. 
The coating thickness is 11 μm for each.  

Figure 5 shows the measured Bragg wavelength versus temperature for a regular 
FBG with polyimide coating, which has a thickness of about 11 μm. The FBG was only 
attached to the cold plate for temperature control without being pressurized. For 
temperatures from 295 K to 200 K, the temperature sensitivity of the regular FBG is about 
8 pm/K; for temperatures ranging from 200 K to 80 K the coefficient is more nonlinear and 
becomes smaller as the temperature decreases; and for temperatures below 80 K the curve 
is almost flat, i.e., showing zero temperature sensitivity.  Also shown in Fig. 5 is the 
measured Bragg wavelength as a function of temperature for the PFBG with the same 
thickness of polyimide coating.  The temperature sensitivity of the PFBG for temperatures 
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from 295 K to 200 K is about 9 pm/K, not significantly greater than that of the regular 
FBG. However, at about 200 K, a pressure-induced transition occurs. Below 200 K the 
temperature coefficient of the PFBG reaches 24 pm/K, more than three times the regular 
FBG. Moreover, for the temperature change from 80 K to 10 K, the PFBG has a total 
wavelength shift of about 470 pm, 10 times more than the regular FBG. 

The extra wavelength shift of a PFBG resulting from the pressure-induced transition 
is apparently attributed to the change of the refractive index, which is related to the 
impurity (germanium) energy level and the population of the states in the fiber core [7]. 
These effects are similar to those affecting the energy levels of semiconductors [8], 
although details of the mechanisms for the transition need further investigation. 

 
CONCLUSION 
 

We have developed a 3-dimensional physical model to relate the Bragg wavelength 
shifts of FBGs to the thermal expansion coefficients, Young’s moduli, and radial 
thicknesses of the coating polymers. The experimental results show that temperature 
sensitivities of FBGs increase with increasing coating thickness. The major part of these 
extra wavelength shifts is attributed to the refractive index change of the fiber core 
produced by the thermally induced radial pressure pr. We have also demonstrated the 
diametric pressure effects on a PFBG. At 200 K, a pressure-induced transition occurs and 
the temperature sensitivity of the PFBG below the transition temperature reaches three 
times as large as that obtained with the FBG. For temperatures below 80 K, the PFBG, 
although showing nonlinearity, has 10 times more wavelength shift than the regular FBG. 
The increases of the wavelength shifts from FBGs to PFBGs are independent of the 
coatings thickness and are attributed to the changes of the fiber thermo-optic coefficients. 
 
APPENDIX. Derivation of Eq. (3), the Thermal Strain of A Polymer-Coated Fiber— 
A 3-Dimensional model 
 

For a polymer-coated fiber, it is convenient to choose cylindrical coordinates to 
express strain-stress relations when the temperature changes. In the case of radial 
symmetry, the total strain along the z direction, εzz  and the radial direction, εrr, of the 
polymer, indexed p, and of the silica glass, indexed s, can be written respectively as 
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where α’s are the thermal expansion coefficients, E’s the Young’s moduli, ν’s the Poisson 
ratios, and σ’s the induced stresses along each respective direction, of polymer and silica 
glass respectively. Since there are no external stresses, the first term of each equation is the 
thermal expansion of the respective material, and the second and the third terms of each are 
simply the thermal strains induced by the other respective material. Also, since no external 
forces exist, i.e., the total forces are zero along each direction, one can obtain 
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     σ rr
s (r = rs ) = −σ rr

p (r = rs ) = pr , (A.6) 
 
where of γ is the ratio of the cross-sectional area, Ap, of the polymer with a radial thickness 
of (rp - rs) to the cross-sectional area, As, of the silica fiber with a radius of rs , and pr is the 
stress at the interface. 

To reduce the third terms of Eqs. (A.1) – (A.4), i.e., to express σθθ ’s in terms of 
σ rr ’s (or pr), one can use the equation of equilibrium 
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and solve the Navier equation 
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for the radial displacement u by using the boundary conditions of Eq. (A.6). These four 
terms evaluated at the interface r = rs, are obtained as  
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     σ rr
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If there is no disbonding of the polymer from the silica fiber when the temperature 
changes, based on the condition of continuity, both strains should be the same at the 
interface, i.e., Eq. (A.1) equals to Eq. (A.2). It can be expressed as  
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By substituting Eqs. (A.5), (A.9.1) and (A.9.2) into Eq. (A.10) to replace all σ’s with σ zz
s

and pr, one obtains 
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1
γEp

[σ zz
s + 2ν ppr] −

1
Es

[σ zz
s − 2ν spr] = 0. (A.11) 

For the axial direction, by the same argument, one can combine Eq. (1) and Eq. (2) 
and substitute Eqs. (A.9.3) and (A.9.4) into it to obtain 

    
(αp −αs )ΔT +

1
γEp

{ν pσ zz
s + [(1−ν p ) − (1+ ν p )(1+ γ )]pr}+

1
Es

[ν sσ zz
s − (1−ν s )pr ] = 0. (A.12) 

The combination of Eq. (A.11) and Eq. (A.12) allows pr to be expressed in terms of the 
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where ζ is defined as the ratio of these two stresses. Eq. (A.11) can therefore be reduced as 
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Finally, to find the thermal strain on the silica glass induced by the polymer, one 

can substitute Eq. (A.15) into the third term of Eq. (A.2), i.e., the third term of Eq. (A.14), 
which is given by 
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