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Any reasoning system is fallible, so crew members and flight controllers must be able to 

cross-check automated diagnoses of spacecraft or habitat problems by considering alternate 

diagnoses and analyzing related evidence. Cross-checking improves diagnostic accuracy 

because people can apply information processing heuristics, pattern recognition techniques, 

and reasoning methods that the automated diagnostic system may not possess. Over time, 
cross-checking also enables crew members to become comfortable with how the diagnostic 

reasoning system performs, so the system can earn the crew’s trust. We developed intelligent 

data visualization software that helps users cross-check automated diagnoses of system faults 

more effectively. The user interface displays scrollable arrays of timelines and time-series 

graphs, which are tightly integrated with an interactive, color-coded system schematic to 

show important spatial-temporal data patterns. Signal processing and rule-based diagnostic 

reasoning automatically identify alternate hypotheses and data patterns that support or 

rebut the original and alternate diagnoses. A color-coded matrix display summarizes the 

supporting or rebutting evidence for each diagnosis, and a drill-down capability enables 

crew members to quickly view graphs and timelines of the underlying data. This system 

demonstrates that modest amounts of diagnostic reasoning, combined with interactive, 
information-dense data visualizations, can accelerate system diagnosis and cross-checking. 

Nomenclature 

A = Amperes 

DA = diagnostic algorithm 
V = volts 

W = Watts 
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I. Motivation 

uture space missions will carry crews far from Earth, so crew members will need to operate with greater 

autonomy and carry out some system management tasks currently performed by ground-based flight controllers. 

Intelligent diagnostic reasoning systems can increase crew autonomy by detecting and isolating component failures 

automatically, based on sensor data, previous commanding, and other data. However, any reasoning system is prone 

to error when it attempts to solve problems that lie outside of its knowledge base. For example, some diagnostic 

systems can detect and isolate components that fail abruptly and completely but have trouble isolating intermittent 

problems, gradual degradations, or simultaneous failures.  

Because reasoning systems are fallible, crew members and flight controllers must be able to cross-check 

automated diagnoses by considering alternate diagnoses and analyzing supporting or rebutting evidence. Cross-
checking improves diagnostic accuracy because crew members can apply information processing heuristics, pattern 

recognition techniques, and reasoning methods that the automated diagnostic system may not possess. Over time, 

cross-checking also enables crew members to become comfortable with how the diagnostic reasoning system 

performs, so the system can earn the crew’s trust. Intelligent data visualization software can help crew members to 

cross-check automated diagnoses more quickly and accurately by identifying relevant data patterns automatically 

and presenting them in ways that are easy to discern and interpret. 

II. Diagnosis Competition Testbed 

In 2009, NASA hosted the first annual Diagnosis Competition1. Competing software systems, called diagnostic 

algorithms (DAs), analyzed prerecorded sensor data streams and system commands in real-time to detect and 

diagnose injected system faults. The diagnoses generated by each DA were collected and scored automatically. 

The competition was divided into several tiers. During the “Tier 2” competition, DAs received sensor and 

command data from the Advanced Diagnostics and Prognostics Testbed (ADAPT) system2, an experimental testbed 

at NASA Ames Research Center that supports automated diagnosis research. The ADAPT system, shown in Figure 

1, is comprised of: 

• Three batteries (named BAT1, BAT2, BAT3), 

• Electrical loads such as fans, pumps, and lights, grouped in Load Bank 1 and Load Bank 2, 

• Relays (e.g., EY141 in the upper left of Figure 1), which were commanded to open or close to control the 

connection of batteries to load banks and individual loads,  

• Circuit breakers (e.g., CB136 in the upper left of Figure 1), and 

• Sensors, shown as circular icons in Figure 1, which measure variables such as current (IT), voltage (E), 

temperature (TE), fan speed (ST), pump flow (FT), and the open/close positions of relays (ESH) and circuit 

breakers (ISH).  

III. Strategies and Heuristics for Cross-Checking System Diagnoses 

To gain a better understanding of the cross-checking process, we manually cross-checked the automatically-

generated DA diagnoses for about twenty Diagnosis Competition scenarios. We then reflected upon and documented 

the sensor, command, and schematic data we reviewed, the data patterns we noticed, the diagnoses and other 

inferences we generated, and the conclusions we drew. 

For example in Tier 2 experiment #824, one of the DAs hypothesized that fan FAN416 failed at t=138.5. The 

relevant portion of the ADAPT circuit and associated sensor data are shown in Figure 2. We identified two alternate 
diagnoses: the fan speed sensor might have failed or an upstream relay such as EY275 might have failed, cutting off 

power to the fan. We rejected the first alternate diagnosis because the reported fan speed decreased steadily to zero 

at a rate that was inconsistent with fan speed sensor failure modes. We rejected the second alternate hypothesis, 

failure of an upstream relay, because none of the relay position sensors such as ESH275 changed from closed to 

open near the time of the hypothesized fault. We accepted the original automated diagnosis, a fan failure, based on 

the following supporting evidence as shown in the graphs in Figure 2: 

• Upstream AC current sensor IT267 decreased by 1 A, which yielded a power loss of 120 W (120 V * 1 A). This 

voltage drop equaled the fan’s nominal power consumption and was consistent with the fan no longer operating. 

• Upstream DC current sensors IT261 and IT340 decreased by 5 A, which yielded a power loss of 120 W (24 V * 

5 A), equal to the fan’s nominal power consumption. 

• Fan speed sensor ST516 immediately began decreasing, reaching zero about 23 seconds later. 
• Small DC voltage increases (0.2 V) were also seen in upstream indicators E340 and E261 at the time of the 

fault, consistent with an overall load reduction. 
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Figure 1. Schematic of the ADAPT electrical system used by the Diagnosis Competition, Tier 2. 
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Based on our analysis of the cross-checking process, we identified generic cross-checking strategies and domain-
specific cross-checking heuristics, described in Table 1, which our data visualization system should support.   

 

 

1 Prioritize diagnoses and 

cross-checking 

By prioritizing possible problems, crew members can attend to the most critical 

and urgent situations first. For example, a crew member might ask: Do I believe 

the DA is reporting something worth investigating? If the diagnosis is true, what 

problems might it cause that affect safety, mission success, or system health?  

2 Identify symptoms 

underlying diagnosis 

Cross-checking a diagnosis includes generating and evaluating alternate 

diagnoses that explain the symptoms (sensor data) of the original diagnosis. For 

example, a functional component might be diagnosed as faulty if a sensor reports 

that the component’s behavior is abnormal. The crew member can cross-check 

this diagnosis by searching for other possible explanations for the sensor 

readings, such as a faulty sensor or incorrect inputs to the suspect component. 

3 Assess plausibility of 
symptoms  

If the current and/or historical sensor data indicate a physically unlikely event or 
state, the sensor(s) may be faulty. For example, if a sensor reports a sudden 

change in temperature that is more rapid than could possibly occur, the 

temperature sensor might be exhibiting an offset error. 

4 Recognize sensor 

failure signatures 

Characteristic sensor readings (signatures) can provide evidence for particular 

types of sensor failures. For example, a current sensor operating normally reports 

readings that vary slightly over time. By contrast, a stuck current sensor reports 

the same exact value at all times.   

5 Understand the 

reasoning behind the 

original diagnosis 

The reasoning that supports the initial diagnosis may assert or presume various 

events and states. The crew member can cross-check the diagnoses by verifying 

these events and states. For example, if the diagnosis asserts a particular root 

cause that leads to a proximal cause, the cross-check could search for evidence 

for the root cause and for the proximal cause. 

  

 

Table 1  – Generic strategies and domain-specific heuristics for cross-checking system diagnoses. 

Figure 2. Portion of the ADAPT circuit near fan FAN416, suspected of failing, and graphs of sensor data

that are relevant to cross-checking this suspected failure.  Rectangles indicate alternate diagnoses. 
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6 Hypothesize and 

evaluate alternate 

diagnoses 

One can cross-check a diagnosis by hypothesizing alternate diagnoses and 

determining whether they are more plausible than the initial diagnosis, based on 

the presence or absence of data patterns that support or rebut each diagnosis.   

7 Understand the overall 

pattern of problems and 

events 

Analyze other data or commands that might be related to the current problem 

being diagnosed or cross-checked. The distribution of other problems across the 

system can provide suggestive evidence for the location of the root cause. If 

there are no other problems reported in the system, it is likely that the root cause 

is “near” the symptom. Conversely, if there are many related problems spread 
widely across the system, the root cause might be far from the symptom being 

investigated. For example, if voltage sensor readings have unexpectedly dropped 

to zero at many locations, analyze the circuit’s topology to identify possible 

single failures that could explain these readings.   

8 Look for abrupt 

changes  

Search for abrupt changes that occurred shortly before the component failure or 

anomalous sensor data readings. Some components respond quickly to changes 

to their inputs or environment, so when their behaviors change abruptly, the 

causes might be abrupt and recent. For example, if a measured current or voltage 

decreases abruptly, look for an abrupt change in a power load, power 

distribution, or power supply. 

9 Consider earlier events 

if necessary 

 

If no abrupt causes occurred shortly before the symptom was detected, it may be 

necessary to consider earlier events. For example, the problem might have 

occurred before it was first noticed, or there might be a delay between the earlier 
event and the onset of the problem.  

10 Search for components 

that might cause a 

component to 

misbehave 

If component is not behaving normally, search for other components that might 

have caused this component’s misbehavior. For example, suppose that an 

electrical load, such as a fan, is not running at the correct speed. This might be 

because the fan is not receiving appropriate power. Search for upstream stuck- 

open relays or circuit breakers that might prevent the fan from receiving power. 

11 Search for possible 

causes that are near the 

symptoms 

 

When seeking faulty component(s) that explain symptoms such as unexpected 

sensor readings, search first for faulty components that are close to the 

component associated with the sensor. Although a faulty component can cause 

both nearby and distant components to misbehave, it is easier to reason about 

shorter paths of connected components, so it is efficient to evaluate nearby 

causes first. If the cause was a distant component, it is often the case that many 

other components will be affected as well.  

12 Check other sensor data 

for consistency with 
hypothesized fault 

If sensor data indicate a faulty component, look for other evidence that 

corroborates this suspected fault. If the other data suggest that this component is 
operating normally, the sensor attached to the component may instead be faulty. 

For example, suppose that a relay is suspected of being stuck open because its 

associated relay position sensor reports that the relay is open and the relay was 

not commanded to be open. If the relay really is open, the current through all 

sensors downstream of the relay should be zero. If non-zero current is detected 

anywhere downstream of the relay, the relay must be passing current, so the root 

cause cannot be that the relay is stuck open 

13 When explaining 

symptoms, consider 

specific failure modes 

 

Many components have fault modes that can be detected in the sensor data. For 

example, a common failure mode for a relay is to remain stuck in an open 

position and unable to pass current, even when commanded to close. For 

example, if the symptom is an electrical load that operates in a way that suggests 

insufficient power, search for upstream stuck open relays or open circuit 
breakers that might have cut off power to the load. 

14 Divide and Conquer 

 

Sometimes there are states, events, proximal causes, or partial or less-specific 

diagnoses that, if confirmed or rejected, could prove or reject whole sets of 

candidate diagnoses. For example, if a voltage sensor indicates a non-zero 

voltage at a particular location, one can rule out the possibility that any relay or 

circuit breaker upstream of that location has failed in an open position.  

 



 

American Institute of Aeronautics and Astronautics 
 

 

6

15 Compare behavior of 

component with 

reference values and 

relationships 

Sometimes, one can assess whether the behavior of a component is normal by 

comparing its behavior as reported by sensors with known reference values or 

relationships. Reference values can specify normal ranges or temporal patterns 

for individual variables. Multivariate relationships specify expected 

mathematical or logical relationships among two or more variables, possibly 

measured at different times. For example, the speed of a fan may be a time-

delayed function of the power provided to the fan. 

16 Compare the behavior 
of a component with a 

similar component 

Sometimes, one can assess whether the behavior of a component is normal by 
comparing its apparent behavior as reported by sensors with the behavior of 

another component of the same type that is operated similarly. For example, this 

comparison might be appropriate if the system contains similar components or 

subsystems arranged in parallel. Or, the component’s behavior could be 

compared with same component’s behavior during a previous, similar situation. 

17 Exploit physical 

constraints 

Exploit reliable physical constraints on state variables to support diagnostic 

deduction. If the constraints are not satisfied, one or more assumptions that 

underlie the constraints must be false. Example constraints include Kirchoff’s 

current law (the sum of all currents at any point must sum to zero) and 

conservation of mass (fluid flows at any point must sum to zero). 

IV. Interactive Data Visualization  

After we identified cross-checking strategies and heuristics, we developed Intelliviz, an interactive data 

visualization system to help users cross-check diagnoses. This system presented three integrated user interface 

windows. The Temporal Data Display, shown in Figure 3, contains timelines and time-series graphs that display 

time-stamped injected faults, continuous and discrete sensor data, commands, and diagnoses generated by 

Diagnostic Algorithms. The Control Panel, shown in Figure 3, enables users to specify criteria for selecting a subset 

of the sensor variables to display at the top of the Temporal Data Display. In addition, icons for sensors and 
components that satisfy the selection criteria are highlighted in the Circuit Diagram. The Circuit Diagram, shown in 

Figure 4, displays an icon for each functional component and sensor in the electrical distribution system. Icons are 

color-coded to show information about each component or sensor. 

Figure 3. The control panel at left enables users to specify criteria for filtering or highlighting data in the 

schematic display and in the time-oriented data display.  Scrollable timelines and time-series graphs at 

right help users see temporal data patterns such as coincident sensor data changes. 
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A. Automatic Detection and Highlighting of Changes in Sensor Data 
Intelliviz automatically detects changes in each sensor’s measurements and highlights the time- series graphs to 

show the type and timing of each change. Three types of data changes are detected: Changes in value, changes in 

slope, and “stuck” sensor values in which the variation drops to zero. Due to noise, each sensor’s values constantly 

vary slightly over time, and determining when a notable change occurs is somewhat subjective. When developing 

algorithms for detecting changes, our goal was to identify changes at the same points in time that a human expert 

would identify as being both meaningful and likely to correspond to an identifiable physical event. 

To detect abrupt changes in a sensor’s time-series values, the software applies a low-pass filter to the signal and 

then searches for times when the 1st derivative of the smoothed signal peaks and exceeds a threshold specified for 

that sensor. To detect an abrupt change in the slope of the sensor’s time-series data, the software searches for times 

when the second derivative of the smoothed signal peaks and exceeds a threshold. To detect a “stuck” sensor, the 
software searches for times when the first derivative of the smoothed signal is below a small threshold for n 

consecutive samples. In effect, this algorithm detects when the variation goes to zero. 

 

 
 
Figure 4. Green icons in the schematic show related sensors that satisfy user-specified criteria. Users can 

mouse-over icons to re-specify the reference component, highlighted in blue, and recolor the related sensors. 
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B. Automatic Selection of Graphs and Timelines with Data Changes 
We enhanced the Temporal Data Display to show the subset of the graphs and timelines that exhibited one or 

more changes in value, slope, or variation during a user-specified time period. This feature enables users to quickly 

select and focus on the subset of sensor data variables that changed during a time period of interest. For example, the 

user might want to search for sensor data changes that occurred just before an automated diagnosis was generated or 

just before the values of another sensor variable changed abruptly. 
In Figure 3, the Temporal Data Display applies a filter to display only the graphs and timelines that show data 

changes during the time interval shortly before circuit breaker CB280 failed open at around t=200. This time interval 

is marked by green and blue vertical reference lines. During this time interval, all of the following automatically 

detected changes in sensor values are consistent with circuit breaker CB280 failing in an open position: 

• Downstream voltage sensor (E281) dropped to zero 

• Upstream current sensors (IT140 and IT261) decreased 

• Downstream current sensor (IT281) dropped to zero 

• Circuit breaker position sensor (ISH280) indicated a change from closed to open  

C. Displaying Data Related to a Component or Sensor 
The data visualization system enables users to quickly browse sensor data that are related to a particular 

component or sensor in some way. For example, using the Control Panel, users can specify that the Schematic and 
Temporal Data Display should show data from voltage sensors that are upstream or downstream of a reference 

component or sensor. Users can quickly select the reference component or sensor by mousing over its icon in the 

schematic. This feature accelerates analysis by displaying the sensor data that relate to the user’s focus of attention. 

D. Interactive Color-Coded Schematics 
We implemented an interactive circuit diagram so that the display could be color-coded dynamically in response 

to user requests or Intelliviz’s own reasoning. The Related Data feature highlights the sensor icons that satisfy user-

specified selection criteria while displaying timelines and time series graphs for those sensors in the Temporal Data 

Display. By highlighting the icons of sensors that satisfy some criteria, the user can see significant spatial patterns in 

the data. For example, in Figure 4, green is used to highlight the icons of current and voltage sensors that are 

upstream of the user-selected reference fan component, highlighted in blue. The user can specify additional selection 

criteria such as including only sensor data that changed shortly before the anomaly. 

V. Intelligent Data Visualization  

We enhanced the interactive data visualization system described above with automated analyses that generate 

and display plausible alternate hypotheses and related data. 

A. Automated Identification of Alternate Hypotheses and Related Data Patterns 
We designed a simple algorithm for detecting data patterns that support cross-checking. The algorithm accepts as 

input the sensor data, commands, and user-selected automated diagnosis. It outputs: 

• Symptoms – data patterns that might be explained by the automated diagnosis, 

• Alternate diagnoses – that the user might want to consider and compare to the automated diagnosis, 

• Evidence – data patterns that support or rebut the original diagnosis and alternate diagnoses. Evidence is not 
assumed to be conclusive, so the existence of supporting evidence does not mean that a hypothesis is 

necessarily true, and the existence of rebutting evidence does not mean that a hypothesis is necessarily false, 

and 

• Links – that associate symptoms and evidential data patterns with the original and alternate diagnoses. 

 

This algorithm relies on three types of rules: 

• Symptom Rules –  These rules are triggered by the presence of a type of automated diagnosis and certain data 

patterns. If a symptom rule fires, it creates (or finds) one or more data pattern objects that represent symptoms 

that the original diagnosis might explain. It also creates a symptom link between the original diagnosis and each 

symptom data pattern object. 

• Hypothesis Rules –  These rules are triggered by the presence of symptom data pattern objects and optional 

additional data patterns. If a hypothesis rule fires, it creates or finds a hypothesis that might explain the 
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symptom along with an explanation link that relates the hypothesis to the symptom. In our prototype 

implementation, all hypotheses are alternate diagnoses. However, a more sophisticated reasoning algorithm 

might generate hypotheses that describe beliefs about the system state or history that are not specific diagnoses. 

For example, a rule might hypothesize that a particular component is not receiving power. This hypothesis 

describes a state condition that is not a specific diagnosis. 

• Support Rules –  These rules trigger on the presence of a type of hypothesis object and optional additional 
conditions. The presence of the data pattern in the data can provide evidence that either supports or rebuts the 

hypothesis. If the inverse of the rule is true, the absence of the data pattern also provides evidence that rebuts or 

supports the hypothesis as summarized in Table 2 below: 

 

 

 Inverse is true? Inverse is not true? 

Supports? Presence of the data pattern supports the hypothesis. 

Absence of the pattern rebuts the hypothesis. 

The presence of the data pattern 

supports the hypothesis. 

Rebuts? Presence of the data pattern rebuts the hypothesis. 

Absence of the pattern supports the hypothesis. 

The presence of the data pattern 

rebuts the hypothesis. 

 

Figure 5 summarizes the sequential application of symptom, hypothesis, and support rules: 

 

A Diagnostic Algorithm (DA) creates a DA 

Diagnosis.  

Symptom Rules identify symptoms that 

might be explained by the DA Diagnosis 

and link the symptoms to the diagnosis. 
 

 

Hypothesis Rules suggest alternate 

diagnoses that explain the symptoms. Blue 
arrows represent hypothesis links between 

diagnoses and symptoms. 

 

 

 

Support Rules identify data patterns that 

provide supporting or rebutting evidence 

for diagnoses, based on their presence or 

absence. Green arrows indicate support 

links, and red arrows indicate rebut links. 

 

 
 

 

 

DA Diagnosis 

DA Diagnosis 

Symptom B Symptom A 

Diagnosis 1 Diagnosis 2 DA Diagnosis 

Symptom B Symptom A 

Data Pattern C Data Pattern D absent 

Diagnosis 1 Diagnosis 2 DA Diagnosis 

Symptom B Symptom A 

Table 2. Types of support rule inferences. 

Figure 5. Sequential application of symptom, hypothesis, and support rules. 



 

American Institute of Aeronautics and Astronautics 
 

 

10

In our prototype, we implemented 13 sets of rules that relate a suspected faulty component to data reported by a 

sensor that measures the component. For example, one of the symptom rules in this set is: 

IF: 

1. The DA Diagnosis is: A CIRCUIT-BREAKER failed in mode STUCK-CLOSED, and  

2. The following data pattern is present: 

• There is a sensor of type CB-POSITION-SENSOR that is linked to the CIRCUIT-BREAKER,  

• There is a data pattern for the sensor variable: EXISTS_VALUE CLOSED, and  

• The start time of the sensor data pattern precedes the hypothesis by less than 5 seconds 

THEN assume that the DA diagnosis might have been generated to explain this data pattern (symptom). 

 

We implemented 48 sets of rules that relate a suspected faulty component to data reported by a sensor that 

measures another component whose behavior might be affected by the suspected component. For example, one of 

the hypothesis rules in this set is: 

IF the following symptom is present:  

• There EXISTS a CURRENT-TRANSMITTER sensor variable that exhibits the data pattern: EXISTS 

ABRUPT_VALUE_DECREASE_TO_ZERO, and 

• There EXISTS a CIRCUIT-BREAKER that is upstream of the CURRENT-TRANSMITTER 

THEN hypothesize that a CIRCUIT-BREAKER might have failed open within 5 seconds of the CURRENT-

TRANSMITTER ABRUPT_VALUE_DECREASE_TO_ZERO which would explain this symptom. 

 
We implemented 18 sets of rules that relate a suspected faulty sensor to the sensor’s data. For example, one of 

the support rules in this set is: 

IF there exists a hypothesis: CB-POSITION-SENSOR failed in mode STUCK 

THEN the following data pattern, if present, would provide supporting evidence for this hypothesis: 

• There exists a data pattern for the CB-POSITION-SENSOR sensor variable: STUCK. and 

• The start time of the sensor data pattern precedes the hypothesis by less than 5 seconds, 

 

The inversion of this rule is true, so the absence of a STUCK CB-POSITION-SENSOR data pattern provides 
evidence that rebuts the hypothesis. 

 

For each symptom rule, there is: 

• A related hypothesis rule that hypothesizes a particular diagnosis if a symptom data pattern is present, and 

• A related evidence rule that asserts that a data pattern, if present (or possibly absent), provides evidence for or 

against a hypothesized diagnosis. 

B. Display of Significant Data Patterns 
We augmented the interactive data visualization system with additional user interface windows that enable the 

user to request analyses and visualizations for cross-checking. The cross-checking process begins when the user 

clicks on a timeline symbol to select one of the DA diagnoses as shown in Figure 6. 

If the diagnosis specifies more than one possible fault, the user is prompted to select the fault to cross-check. 

Then, the system applies symptom, hypothesis, and support rules to identify data patterns and alternate diagnoses, 

which are linked by symptom links, hypothesis links, and support/rebut links. This information is then summarized 

graphically in a Diagnostic Rationale Matrix as shown below in Figure 7. 
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Figure 6. Users can click on a symbol in a timeline to select a DA diagnosis to cross-check  

 

Figure 7. The interactive diagnostic rationale matrix summarizes the hypotheses and associated 

significant data patterns identified by Intelliviz. Users can click on a symbol to see each data pattern. 
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In this Diagnostic Rationale display: 

• The top row, labeled Failed Off (FAN416), corresponds to the original diagnosis to be cross-checked.  

• The other rows correspond to alternate diagnoses (other possibly faulty components) that each explain some or 

all of the symptoms that were explained by the original diagnosis. 

• Each column corresponds to a pattern in the data associated with a sensor, such as an abrupt change. 

• Each symbol represents the relationship between a data pattern and a diagnosis: 

• An upward triangle indicates that the data pattern is present.  

• A downward triangle indicates that the data pattern is absent.  

• Green indicates that the presence or absence of the data pattern provides evidence for the diagnosis.  

• Red indicates evidence against the diagnosis. 

• Symbols to the left of the vertical gray line represent symptoms that are explained by the selected diagnosis.  

• Symbols to the right represent data patterns whose presence or absence provides evidence for or against the 

diagnoses.  

This graphical summary enables users to quickly review the data patterns and diagnoses. Specifically, the user 

can scan the labels along the horizontal and vertical axes to see the data patterns and diagnoses identified by 

Intelliviz. The user can scan each row of symbols to see the evidence for and against a diagnosis. For example, the 

user might focus his or her attention on the most likely diagnoses, which have supporting evidence and relatively 
little rebutting evidence. The user can also scan each column of symbols to see how each data pattern supports 

differential diagnosis among competing hypotheses. 

Intelliviz provides drill-down capability. When users click on a symbol in the Diagnostic Rationale Matrix:  

1. A time-series graph or timeline that shows the associated data pattern is displayed at the top of the array of 

timelines and time series graphs, and 

2. The icons of the associated sensor and the suspected component are highlighted in the schematic. 

Because the time-series graph is displayed with other graphs aligned by time in a Temporal Data Display, the 

user can easily compare these data with data for other variables. Our current implementation only displays timelines 

and time-series graphs. However, one could extend this idea to display any kind of graphical data display. 

VI. Conclusions 

Intelligent data visualization technology can significantly accelerate problem diagnosis and cross-checking. 

Unlike automated diagnostic reasoning systems that isolate specific faults, the diagnostic reasoning portion of our 

system merely seeks to identify the plausible diagnoses worth considering and the relevant data patterns that the user 

should review. Because this is a less difficult diagnostic task, the diagnostic reasoning embedded within our system 
is simpler and easier to understand. Thus, modest amounts of diagnostic reasoning, combined with interactive, 

information-dense data visualizations, provide a practical way of accelerating the cross-checking of system 

diagnoses. When automated diagnosis is unavailable, intelligent data visualization can also enable more rapid and 

effective diagnosis by crew members and flight controllers. 
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