Development of a Fluidized Bed CVD System for Coating UO₂ Particles with Tungsten

NASA Advanced Exploration System (AES) Project: Nuclear Cryogenic Propulsion Stage

> NETS 2012 22 March 2012

O. Mireles, J. Broadway, R. Hickman NASA Marshall Space Flight Center omar.r.mireles@nasa.gov

Background

National Aeronautics and Space Administration

NTP fuels under development
W-60vol%UO₂ CERMET

- Minimize erosion
 - Prevent H₂ propellant at ~3000 K from reducing UO₂ fuel kernels
 - Requires each fuel kernel to be clad in tungsten
- Coat spherical dUO₂ powders with 40 vol% W
- Coated spherical powders advantageous for HIP
 - Higher powder packing %TD
 - Minimize powder segregation

Problem & Objectives

National Aeronautics and Space Administration

WF₆ process

- Residual F exacerbates fuel loss
- HF bi-product
- WCl₆ process
 - Minimal CI contamination
 - More complex than WF₆ process (solid-tovapor vs. gaseous reagent)

- Vendor cost to coat dUO₂ excessive
- Develop a lab-scale prototype that utilizes the WCl₆ process that enables cost effective coating of spherical dUO₂ powders

SEM micrographs of spherical coated particles

Apparatus & Procedure

National Aeronautics and Space Administration

- WCl₆ process $WCl_6 + 3H_2 \xrightarrow{930°C} W + 6HCl$
- Fluidized bed reactor (H₂/Ar 10:1 ratio)
- Raining feed system (fill and drain powder hoppers)
- 3rd generation system (25 g quantities)

CVD System Schematic

National Aeronautics and Space Administration

National Aeronautics and Space Administration

NAS

Reactor Design Evolution

Sublimer Design Evolution

System Characterization Trials

Minimum fluidization flow rate

ational Aeronautics and

- Fluidization flow rate varies as particle density increases with increasing coating thickness
- Fluidization as a function of powder size
- Fluidization as a function of furnace temperature
- Powder column height as a function of flow rate and temperature
- Reactor temperature profile as a function of flow rate
- Sublimer temperature profile as a function of flow rate
- Coated Al₂O₃ substrates and ZrO₂ spherical powders

Batch	Powder Size (-/+ μm)	H ₂ Mass Flow Rate (SLPM)		Ar Mass Flow Rate (SLPM)		Pressure
		25 C	930 C	25 C	930 C	(heiß)
1	-106 / +90	20		2		5
2	-90 / +75					
3	-75 / +63	15	8	1.5	1	5
4	-63 / +53	15	8	1.5	1	
5	-53 / +45	15		1.5		5
6	-45 / +38					
7	-38	10		1		5

Sublimer Temp Profile Measurement

NASA

Reactor Temp Profile Measurement

NASA

CVD Operations

National Aeronautics and Space Administration

Powder Coating Trial Results

National Aeronautics and Space Administration

NA SA

SEM micrographs of W coating on ZrO2 substrate (a) 150x (b) 2000x (c) 7000x

Conclusions

National Aeronautics and Space Administration

- Demonstrated viability and utilization of:
 - Fluidized powder bed
 - WCl₆ CVD process
 - Coated spherical particles with tungsten
- The highly corrosive nature of the WCl₆ solid reagent limits material of construction
- Indications that identifying optimized process variables with require substantial effort and will likely vary with changes in fuel requirements

Future Work

 Optimize process variables in order to produce coating properties that meet requirements

National Aeronautics and Space Administration

- Characterize coatings as a function of substrate microstructure and process variables
- Design next-generation system to process larger quantities of power required for engine scale fuel fabrication

National Aeronautics and Space Administration

Acknowledgements

Funding was provided by the "Advanced Exploration Systems – Nuclear Cryogenic Propulsion Stage" project.

- The authors would like to thank Grace Belancik, Mike Houts, Roger Harper, Jeff Quick, Gabriel Putnam, Jim Martin of NASA MSFC and Gene Nelson of AG Scientific Glass, Inc.
- The opinions expressed in this presentation are those of the author and do not necessary reflect the views of NASA or any NASA Project.