Detachment of Tertiary Dendrite Arms during Controlled Directional Solidification in Aluminum – 7 wt% Silicon Alloys: Observations from Ground-based and Microgravity Processed Samples

R.N. Grugel, R. Erdmann, J.R. Van Hoose, S.N. Tewari, and D.R. Poirier

 Electron Back Scattered Diffraction results from cross-sections of directionally solidified aluminum – 7wt% silicon alloys unexpectedly revealed tertiary dendrite arms that were detached and mis-oriented from their parent arm. More surprisingly, the same phenomenon was observed in a sample similarly processed in the quiescent microgravity environment aboard the International Space Station (ISS) in support of the joint US-European MICAST investigation. The work presented here includes a brief introduction to MICAST and the directional solidification facilities, and their capabilities, available aboard the ISS. Results from the ground-based and microgravity processed samples are compared and possible mechanisms for the observed tertiary arm detachment are suggested.

Detachment of Tertiary Dendrite Arms during Controlled Directional Solidification in Aluminum – ⁷ wt% Silicon Alloys: Observations from Ground-based and Microgravity Processed Samples

> **Richard N. Grugel – Marshall Space Flight Center Robert Erdman – University of Arizona James R. Van Hoose – Siemens Corporation Surendra Tewari – Cleveland State University David Poirier – University of Arizona**

In View of Work Subsequent to Abstract Submission, the New title is:

Spurious Dendrite Arm Orientations during Controlled Directional Solidification in Aluminum – 7 wt% Silicon Alloys: Comparison of Ground-based and Microgravity Processed Samples

This Investigation is a Collaborative Effort with theEuropean Space Agency (ESA) Program:

Microstructure Formation in Castings of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST)

The MICAST Microgravity Research Program Focuses on:

- •**A systematic analysis of the effect of convection on the microstructural evolution in cast Al-alloys.**
- **Experiments that are carried out under well defined processing conditions.**
- **Sample analysis using advanced diagnostics and theoretical modeling.**
- →**The MICAST team investigates binary, ternary and commercial alloysbased on the Al-Si system.**

Intent

Conduct a Thorough Ground-based Investigation

- **Utilize Aluminum – 7wt. % Silicon Alloys**
	- **♦ Directionally Solidify Samples having an Initial Aligned Dendritic Array**
	- **♦ Evaluate the Dendritic Microstructure (**λ**¹,** λ**²,** λ**³, d) as a function of the Steady-State Processing Conditions (V, G, Co)**

Use the Above for Comparison to Limited # of DS μ*g* **Samples**

- **Investigate the Role of Gravity on**
	- **♦ Microstructural Development, Spacing**
	- **♦ Macrosegregation, Defect Generation**

Outline

- **Expectations**
- **Ground-based Results**
- **Microgravity Results**
- **Comparative Comments**

Why Directional Solidification?

Bar chart showing the changes in temperature capability of cast turbine blade alloys as a function of time. The first three alloys in the series are equiaxed, conventional cast. The next one is a monocrystal alloy. The next is a directionally solidified alloy with comparable performance at lower cost. The last two are monocrystal alloys.

J.C. Williams: Phil. Trans. R. Soc. Lond. A (1995) 351, p. 435.

Microstructural Evaluation

λ**¹, Primary Dendrite Arm Spacing** ^λ λ**3, Tertiary Dendrite Arm Spacingd, Primary Dendrite Trunk DiameterRelative Dendrite Grain Orientation**

> **Statistically Compile and Relate toSolidification Processing Conditions of:**

- **● Growth Velocity (V)**
- **● Temperature Gradient (G)**
- **● Alloy Composition (C o)**

Electron Backscattered Diffraction (EBSD) as an Analysis Technique

Ground-based Results

Aluminum – 7wt. % Si Growth Velocity = 31μm s-1 Temperature Gradient = 40K cm-1

- **1) Build up a Data Base**
	- **● Establish Spacing Relationships/Trends**
	- **● Compare to Microgravity Results**
- **2) Use as Seed Crystals for μ***g* **Samples**

Ground-based Results

Ground-based Results

Observations

 ● Primary Dendrites not All Aligned in <100> Direction

● Many Tertiary Arms have "Spurious" Orientations

Rationalization

 ● Tough to get a Single <100> Dendritic Array

● Tertiary Arms Dissociated (Maybe Deformed) From and Rotated with Respectto Secondary Branches due to LocalConvection

- **♦ Well Documented in the Literature**
- **♦ Eliminated in Microgravity**

Microgravity Processing

Microgravity Science Research

Facility (MSRF) Aboard the ISS

Solidification Furnacewith Quench (SQF)Insert

Sample Cartridge

Solidification Processing of Dendritic Alloys in aMicrogravity Environment

Expectations

- **Advantages: Minimize Thermo-Solutal ConvectionMinimize Buoyancy Effects**
- **Intent: Produce Segregation Free Samples Grown Strictly by Heat Transfer and Solute Diffusion**
- **Purpose: Better Understand the Relationship between Processing – Microstructural Development**
- **Application: Maximize Material Properties**

Ideal Schematic Microgravity Processing Scenario

Microgravity Processing

MICAST 7-1 Ground Processed Seed CrystalAl – 7wt. % Si, V = 20μm s-1 , G = 40K cm-1

MICAST 7-1 Composite EBSD Scan

Microgravity Processing

MICAST 7-1 Ground Processed Seed Crystal

Processing in Microgravity(Steady-State Growth Conditions)

MICAST7 – 3T (20μms-1, G = 28K cm-1)

MICAST7 – 4T (20μm s-1 [→] **10μm s-1)**

MICAST7 – 5T (10μm s-1)

Processing in Microgravity

MICAST7 – 3T (20μm s-1, G = 28K cm-1)

 001

101

Processing in Microgravity

MICAST7 – 3T (20μm s-1, G = 28K cm-1)

MICAST 7-1 Ground Processed Seed Crystal Al – 7wt. % Si, V = 20μm s-1 , G = 40K cm-1

MICAST7 – 3T (20μm s-1, G = 28K cm-1)

 101

 001

MICAST7 – 4T (20μm s-1 [→] **10μm s-1, G = 28K cm-1)Processing in Microgravity**

 101

MICAST7 – 4T (20μm s-1 [→] **10μm s-1, G = 28K cm-1)Processing in Microgravity**

MICAST7 – 5T (10μm s-1, G = 28K cm-1)Processing in Microgravity

MICAST7 – 5T (10μm s-1, G = 28K cm-1)Processing in Microgravity

10

Interim Summary

- **1) Seed Crystal: Very Good Alignment, Some Spurious Grains/Arms**
- **2) 20μm s-1: Very Good (Better) Alignment, Less Spurious Grains**
- **3) Transition, 20μm s-1** [→] **10μm s-1 : Dendrites Coarsening, Still Good Alignment, Increased Spurious Grains, Explainable**
- **4) 10μm s-1: Very Poor Alignment, Very Many Spurious Grains**

4) WHY?

- **● Consequence of the Transition not Reaching Steady-State**
- **● Locally Induced Solute Concentration Effects**
- **● External Influence**

External Influence – Look at the Sample Assembly

X-ray Image

External Influence – Look at the Sample Crucible

- **Sample Discoloration**
- **Reaction Surfaces**
- **Alumina Adhesion**

External Influence – Look at the Sample Crucible

0.64 $\frac{1.47}{0.72}$ Abunda 20 $\begin{array}{r} 8.74 \\ 71.17 \\ 25.08 \\ 0.00 \end{array}$

Quantitative Reputts for Spectrum! Analysts: Bulk Plettod: Standardiess
Anguined 19-Sep-2011, 18.0 KeV 010 eV /channel

External Influence – Sample Cross-Section Location

External Influence – Consequences

7.0 cm

Free Surface

• **Initiate Gravity Independent TC Flow**

Reaction Interface

• **Porous, Gas Generation** [→] **Bubbles?**

10μms-1

Interdendritic Porosity

Consequences of Bubbles in MicrogravityPore Formation and Mobility Investigation (PFMI)

Interdendritic Porosity

● Average (minimum) bubble velocity is 45 mm/s.

● Bubble appeared to disrupt dendrite fragments just below it.

→ **Disrupt the desired interface alignment**

Arms/Fragments

Materials Research in Microgravity141st TMS Annual Meeting & Exhibition

Consequence of Disrupting the Desired Dendritic Alignment

Conclusions

Dendritic Solidification in Microgravity Environmentis Far from being Well Understood

Inferred that Gravity Independent Phenomena (from Bubbles)Served to Disrupt Dendritic Interfaces / Arrays

• **Can't Assume the "Quiescent" Microgravity Environment is Quiescent**

Sound Sample Preparation is Essential

Acknowledgments

This investigation is supported by NASA Grant NAS8-02060. Appreciation is expressed to Greg Jerman for his timely assistance. Support from the Materials and Processing Laboratory of the Marshall Space Flight Center is also greatly acknowledged.