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Launch vehicles frequently experience a reduced stabilitymargin through the transonicMachnumber range.This

reduced stability margin can be caused by the aerodynamic undamping one of the lower-frequency flexible or rigid-

bodymodes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic line

loads derived from steady rigid aerodynamics. However, a quasi-steady aeroelastic stability analysis can be

unconservative at the critical Mach numbers, where experiment or unsteady computational aeroelastic analysis

showa reduced or even negative aerodynamic damping. Amethod of enhancing the quasi-steady aeroelastic stability

analysis of a launch vehicle with unsteady aerodynamics is developed that uses unsteady computational fluid

dynamics to compute the response of selected lower-frequency modes. The response is contained in a time history of

the vehicle line loads. A proper orthogonal decomposition of the unsteady aerodynamic line-load response is used to

reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping, and

mass matrices. The results are compared with the damping and frequency computed from unsteady computational

aeroelasticity and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this

way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady

computational aeroelastic results.

Nomenclature

�A0� = Roger approximation aerodynamic stiffness matrix
�A1� = Roger approximation aerodynamic damping matrix
�A2� = Roger approximation aerodynamic apparent mass

matrix
�Bcfd� = projection matrix, structure to computational fluid

dynamics surface nodes
�Bll� = projection matrix, structure to line-load analysis

points
fCg = vector of x, y, and z nondimensional line loads
Cxn = x-direction nondimensional line load at station n
Dref = reference diameter, in.
fGg = generalized force

fĜg = Fourier transform of generalized force
fgg = generalized variable
�M� = structural and aerodynamic mass matrix

�Q̂� = Fourier transform of generalized force per unit
generalized variable

�Qk� = aerodynamic stiffness matrix
�Qm� = aerodynamic apparent mass matrix
�Q�� = aerodynamic damping matrix
qnom = nominal trajectory freestream dynamic pressure,

lb=in:2

q1 = freestream dynamic pressure, lb=in:2

Sref = reference area, in:2

V1 = freestream velocity, in:=s
� = angle of attack, deg.
� = Roger approximation lag root
��� = structural and aerodynamic damping matrix
f�g = aeroelastic displacement vector, in.
�a = aerodynamic damping ratio

f�g = unsteady aerodynamic lag state
��cfd� = modal vectors projected to the computational fluid

dynamics surface mesh
��ll� = modal vectors projected to the line-load analysis

points
��POD� = unsteady aerodynamic proper orthogonal

decomposition modal vector
��� = matrix of eigenvectors of structural dynamic

equations
f�g = state variable
��� = structural and aerodynamic stiffness matrix

Subscripts

dd = dynamic aerodynamics on dynamic mode submatrix
ds = dynamic aerodynamics on static mode submatrix
ll = line loads
sd = static aerodynamics on dynamic mode submatrix
ss = static aerodynamics on static mode submatrix

I. Introduction

T HE Ares program was given the task to develop a vehicle to
launch the crew capsule and associated hardware to destinations

beyond low earth orbit. The engineering of the Ares Crew Launch
Vehicle (CLV) or follow on vehicles is a departure from the past in
that computational fluid dynamics (CFD) will be an integral part of
the design from the conceptual stage. Futurevehicles can be expected
to be designedwith a smaller proportion of aerodynamic data derived
fromwind-tunnel testing and increasing amount from computational
fluid dynamics [1]. An increased portion of data produced by CFD
poses both exciting possibilities in the extent to which the flowfield
physics of a launch vehicle can be understood aswell as challenges in
validating methodologies for the highly complex flowfield about a
launch vehicle.

One of the notable features of the Ares CLV is the use of a five-
segment solid rocket booster (SRB) as a first stage with a larger-
diameter upper stage. The two stages are connected by an aft-facing
interstage frustum. Along with the usual geometric complexity of
protuberances over a major launch vehicle, this hammerhead
configuration poses a challenge toCFDbecause it has the potential of
producing flowfield separation from the frustum. A combined shock
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and frustum separation can significantly influence overall vehicle
aerodynamics [2–4]. The extent of separated flow over the Ares
vehicle has motivated the use of a high-fidelity Navier–Stokes solver
and a model of the structural dynamics coupled aeroelastically.

Aeroelastic stability has been a concern since early development
of the Saturn I [5,6]. Vehicles with a hammerhead configuration,
having a larger-diameter upper stage, have the potential for
aeroelastic instability [2,3]. The potential for significant shock
separation dynamics over a conical forebody and boattail flow
separation is well known. The SRB aft skirt adds an additional
mechanism for dynamic aeroelastic instability due to the disturbance
time lag between the upper stage, interstage frustum and the aft skirt
[2]. The time lag due to flow separation and reattachment has
the potential to couple with vehicle flexibility [4]. Furthermore,
launch vehicle experience indicates that low-frequency modes are
particularly susceptible to coupling with such large scale unsteady
flow structures. For instance, analyses of the Delta II and the Saturn I
included only the first few low-frequency modes [3,5–7]. In
reproducing the Atlas-Able IV flight aeroelastic instability, Azevedo
[8] calculates it to involve the second mode. Analysis by Reding and
Ericsson [9] indicates that the Seasat-A to be launched on an Atlas/
Agena booster had the possibility of a coupling between the third
structural mode and aerodynamic undamping. Recent computational
aeroelastic simulations of the Ares I includedmanymodes; however,
only the first two bending modes coupled closely with the flowfield
[10]. In each of the examples above, the mode in question was a
lower-frequency bending mode. Ericsson [4] indicates that, as a
general rule, most (if not all) of the flexible response to aerodynamic
undamping is by the first several bending modes. Furthermore,
negatively damped low-frequency modes have the potential to
couple with rigid-body dynamics and degrade overall vehicle
controllability.

The standard method to simulate flexible launch vehicle dynamics
is to use steady rigid line loads [2,3,6,11], commonly called the
quasi-steady method of line loads. This will be denoted here as the
flexibilized rigid integrated line loads (FRILLS) method. This quasi-
steady approach models the displacement and inertial, elastic, and
aerodynamic forces by a distribution along the vehicle centerline
axis. The aerodynamic forcing is usually derived from steady-state
rigid aerodynamics, either from wind-tunnel surface pressures,
slender-body theory, or CFD. This model is based upon the
assumption that, unlike lifting surfaces, the loading of a slender
flexible launch vehicle can be approximated by assembling line loads
at local angles of attack that were computed from rigid steady CFD.
The limitation of the quasi-steady aeroelastic method of line loads is
that it does not represent a true aeroelastic interaction of a vehicle in
flight. The use of rigid steady aerodynamics assumes that each station
along the body is influenced only by local angle of attack and is not in
any way influenced by flexibility-induced downwash from upstream
or downstream aerodynamic response to flexibility. Vehicle dyn-
amics simulated by the quasi-steady aerodynamic method is further
removed from reality, unless the model is enhanced by additional
states to account for the phase shift due to the unsteady flow.

Although the FRILLS method is convenient, very versatile, and
therefore still frequently used, unsteady aeroelastic CFD launch
vehicle analysis has been steadily expanding over the last several
decades [8,10,12–16]. The use of a nonlinear aeroelastic Reynolds-
averaged Navier–Stokes (RANS) solver is still rare, however,
because it is computationally expensive. For this reason, there is a
move toward incorporating unsteady aerodynamic effects through
CFD system identificationwithin a reduced-order state-spacemodel.
Along this line, Capri et al. [17] use system identification of inviscid
aerodynamics to perform aeroelastic stability analysis of the VEGA
European small launch vehicle. Silva et al. [18] perform system
identification to extract a state representation of the unsteady
aerodynamics of the NASA Ares I CLV and Ares I-X flight-test
vehicle. In each of these cases the expense of simulating a flexible
launch vehicle is mitigated by the use of reduced-order modeling.
The only additional expense of an unsteady state-space model over
the quasi-steady model is the inclusion of unsteady aerodynamic
states and the pulse/response required to obtain them.

The examples just cited performed a system identification of all
modes used in the aeroelastic analysis. If it is possible to add unsteady
aerodynamic states only to those associated with the lowest-
frequency modes, it may be possible to limit the computational
expense of the pulse/response. It also may be possible to limit the
size of the state-space model required. In this way, the aeroelastic
state-space simulation can be performed combining the unsteady
aerodynamics of the first fewmodes with a quasi-steadymodeling of
the higher-frequency modes and/or rigid-body modes. Furthermore,
an extraction of unsteady line loads rather than generalized force–
time histories makes that data compatible with the steady line-load
data.

With the potential of these advantages, the purpose of the present
study is to outline an approach to accomplish a flexible launch
vehicle analysis that judiciously combines steady and unsteadyCFD.
Previous aeroelastic analysis was presented of the Ares I A105 CLV
using the unstructured RANS code FUN3D (Fully Unstructured
Navier–Stokes Three-Dimensional). The structural representation of
the vehicle was introduced by use of a normal modes analysis from
the finite element model of the vehicle. Reference [10] presents a
comparison of the modal aerodynamic damping at Mach 1 and
�� 0 deg from the FRILLS method with a time-marching
aeroelastic analysis using FUN3D. Those results are reproduced in
the present paper in Fig. 1. The higher-fidelity unsteady FUN3D
aeroelastic analysis showed the aerodynamics of the first mode is
significantly undamped for the thrust oscillation isolator (TOI)
structural model. The lower-fidelity FRILLS method produced a
first-mode aerodynamic damping that was significantly positive. The
FRILLS analysis is thus unconservative at the critical Mach 1
condition, since it indicates much more aerodynamic damping than
the unsteady aeroelastic simulation. The present paper provides a
way to enhance the FRILLS method by combining steady and
unsteady line loads to produce the correct aerodynamic damping.

II. Methods of Analysis

A. FUN3D Aeroelastic Solver

The Navier–Stokes code used in this study is FUN3D. The
FUN3D flow solver is a finite volume unstructured CFD code for
either compressible or incompressible flows [19,20]. In the present
study the RANS solver and the loosely coupled Spalart–Allmaras
turbulence model are used on an all-tetrahedron grid [21]. The low-
dissipation flux-splitting scheme for the inviscid flux construction
and the blended van Leer flux limiter [22] were used. The solution at
each time step is updated with a backward Euler time-differencing
scheme and the use of local time-stepping. At each time step, the
linear system of equations is approximately solved either with a
multicolor point-implicit procedure or an implicit line-relaxation
scheme [23]. Domain decomposition exploits the distributed high-
performance computing architectures that are necessary for the grid
sizes used in the present study. Additional details and source

Fig. 1 Frequency versus damping due to the unsteady FUN3D and

quasi-static FRILLS analyses [10].
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references regarding the mesh deformation scheme and the
aeroelastic formulation in FUN3D are discussed elsewhere [10].

B. Dynamic Aeroelastic Analysis Based on Line Loads Including

Unsteady Aerodynamic Effects

A review of the method of line loads for launch vehicles is
presented in a paper by Bartels et al. [10], denoted there as the
FRILLSmethod. The vehicle is partitioned intoNll stations along the
vehicle axis. Modal analysis of the finite element model provides
mode shapes that are projected to these stations. The projection can
be written

��ll� � �Bll���� (1)

where �Bll� is a 3Nll � 3Ns projection matrix relating structural and
line-load analysis centerline nodes, and ��ll� is a 3Nll � Nnmodes

matrix of mode shapes projected to the line-load analysis centerline
nodes. The matrices �Bll� and �Bcfd�) use the same method of
projection to ensure consistency of the line-load results and the
FUN3D CAE results. The modal transformation yields

fgg � ���T �Bll�Tf�g (2)

The vector of line loads at time step l is

fCgl
� f �Cx1�l �Cy1�l �Cz1�l � � � �CxNll

�l �CyNll
�l �CzNll

�l gT

(3)

and isolating the x-direction line loads, for instance,

fCxgl � f �Cx1�l � � � �CxNll
�l gT (4)

The aerodynamic loading at each body station n, Cxn, Cyn, and Czn
are functions of Mach number, angle of attack, and angle of sideslip.
The line-load aerodynamics are computed by integrating pressure
coefficients at the vehicle surface from the FUN3D solution using the
method of [24].

The linearized structural dynamics equation can be written

�M�f �gg � ���f _gg � ���fgg � 0 (5)

where

�M� � I 	 �1�Qm�; ��� � �!2� 	 �1V2
1�Qk�

��� � �2�sd!� 	 �1V1�Q�� (6)

In the quasi-steady formulation of [10] the apparent aerodynamic
mass �Qm� � 0. Here, apparent mass terms arise from the Roger
approximation to be discussed subsequently. The aerodynamic
stiffness �Qk� and damping �Q�� are defined elsewhere [10].
Equation (5) can be written in state space:

f _�g � �A�f�g; f�g � fg; _ggT (7)

where

�A� � 0 I
	M	1� 	M	1�

� �
(8)

To obtain the dynamic responses in the present analysis, the first
two modes are pulsed separately using the unsteady aeroelastic
FUN3D code. This results in a time history of the loads at each body
station. A variety of pulses have been used. Marques and Azevedo
[25] investigate the use of a unit sample, discrete step and Gaussian
pulse. They find that for a nonlinear CFD solver the Gaussian pulse
produces the most accurate response for a given time-step size.
Figure 2 shows the Gaussian pulse used here. In the present
approach, line loads at Nll body stations and Nt time steps are
obtained from the FUN3D solution. This results in a rather large set
of data. To reduce the data storage required, a proper orthogonal
decomposition (POD) of the unsteady line-load data is performed.

The POD method was originally formulated to study atmospheric
turbulence [26] and later to study near-wall turbulence [27].
Subsequently, the POD method has been applied to aeroelastic
systems [28]. Here, the reconstructed x-direction line load is derived
from

fCxgl � ��xPOD�f xgl (9)

where ��xPOD� is an Nll � NPOD modes dimension matrix of POD
eigenvectors, containing the spatial variation of the response along
the vehicle axis. f xgl is an NPOD modes dimension array of
coefficients associated with the x-direction line loads at time step l.
Note that the steady values have been removed from the line loads at
each body station. The coefficients f xgl for l� 1! Nt are
obtained from a least-squares analysis of an assembly of Eq. (9) for
all time steps. The POD modes are the eigenvectors of the Nll � Nll

matrix �Cx��Cx�T . The eigenvectors measure the relative contribution
of each body station to the unsteady energy of the mode, whereas the
eigenvalues are a relative measure of the energy content of each
mode. A limited number of highest-energy modes is typically
required to relatively accurately reproduce the data. This procedure is
repeated for the line loads in each coordinate direction.

The advantage of using unsteady line loads due to the modal
excitation of the first few modes is that they can be used to compute
the projection of those responses to an arbitrarily chosen set of
additional modes. Other analyses may alternately require rigid-body
modes and/or control system modes. Any or all of these can be
added (in a quasi-steady sense) to the fully unsteady modes. The
generalized aerodynamic stiffness �Qk�, damping �Q�� and apparent
mass �Qm� can be divided into that due to unsteady and that due to
quasi-steady aerodynamics,

�Qk� �
�Qk�dd �Qk�sd
�Qk�ds �Qk�ss

" #
; �Q�� �

�Q��dd �Q��sd
�Q��ds �Q��ss

" #

�Qm� �
�Qm�dd �Qm�sd
�Qm�ds �Qm�ss

" #
(10)

where � �dd represents the terms due to the unsteadymodal excitation,
� �ds is due to projection of the unsteady responses on the quasi-steady
modes. Terms � �sd and � �ss are derived exclusively fromquasi-steady
line-load data. The terms � �dd are derived from a system
identification. In this paper the Roger approximation is used,
although any method of system identification can be used. It is
possible perform the following simulation using the results of the
POD analysis, but the Roger approximation readily provides the
aerodynamic mass, damping and stiffness terms that are compatible
with the quasi-steady analysis as already formulated. To obtain the
Roger approximation, the steady-state mean value is removed from
the generalized force–time history. The fast Fourier transform (FFT)

Fig. 2 Gaussian pulse applied to mode 1.
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of the generalized force–time history is computed, denoted by Ĝ. If
the Fourier transform of the generalized forces can be written

fĜg � �Q̂�fĝg; �Q̂� � �Q̂�dd �Q̂�sd
�Q̂�ds �Q̂�ss

� �
(11)

then the unsteady aerodynamic submatrix can be modeled

��Q̂�dd� � ��A0�dd� � ��A1�dd�ik	 ��A2�dd�k2 � �d�
�

ik

ik 	 �

�
�e� (12)

and quasi-steady terms � �ds can be modeled,

��Q̂�ds� � ��A0�ds� � ��A1�ds�ik (13)

Having these defined the association can be made �Qk�dd � �A0�dd,
�Q��dd � �A1�dd, and �Qm�dd � �A2�dd. The quasi-steady terms in
Eq. (13) derive from the projection of the unsteady line-load data of
modes � �dd on higher-frequency mode shapes. The remaining terms
in Eq. (12) derive fromNR aerodynamic lag states associatedwith the
� �dd generalized forces. The coefficients d are preselected so that
the lags are distributed equally and in equal numbers between all the
modes. The calculation of the terms A0, A1, A2, and e is performed
using the method of least squares, while an outer loop attempts an
optimization of the lag roots �. The remaining terms in Eq. (10) are
due to quasi-steady aerodynamics. When the complete system of
equations is assembled, a stability analysis can be performed to
determine the overall damping of the flexible vehicle in flight.

III. CFD and Structural Models

The unstructured tetrahedralmesh is created usingVGRID [29]. In
the present analysis a grid having 19million nodes was used. Amore
complete description of this grid is found in [30]. The structural
model used in the Ares I analyses are MSC.NastranTM finite element
models, including the first stage, first-stage solid propellant, upper
stage including liquid fuel and oxidizer masses, the Crew
Exploration Vehicle (CEV) and Launch Abort System (LAS). The
Ares I structural model incorporates a TOI. The TOI is a dual-plane
isolation system intended to isolate the CEV from thrust oscillation.
The isolator mechanism was modeled by a circumferential ring of
springs at the interface between the Orion and the upper stage and by
a circumferential ring of spring elements and mass elements at the
interface between the upper stage and the first stage.

The entireAres I vehicle structural modelwas reduced to 51 points
along the vehicle centerline by a Guyan reduction and translational
and rotational modal deflections were obtained.Mode shapes having
only axial or rotational deflections were discarded. The remaining
modes were ranked by the moduli of the mode shape amplitude and
the top 37 flexible modes for the Ares I were retained. The y and z
translational deflections of the remaining modes were projected with
a spline fit to the CFD surface mesh points.

IV. Dynamic Aeroelastic Results

Previous aeroelastic results of the Ares I CLV at Mach 1 and
�� 0 deg have shown that the FRILLS and the time-accurate
CAE analyses differed primarily in the aerodynamic damping
of the first two modes (see Fig. 1). The fact that only the first two
modes are strongly influenced by unsteady aerodynamics suggests a
partitioning in which the first twomodes make up the � �dd submatrix
(modeled fully unsteady) and the � �sd and � �ss submatrices are
modeled in a quasi-steady sense. The unsteady line-load data for the
first twomodeswere obtained by performing time-accurate solutions
with FUN3D, pulsing each of modes 1 and 2 separately using the
Gaussian pulse shown in Fig. 2. The FUN3D generated line loads at
each time step were the data used in the following analyses.

A study using generalized force–time historieswasfirst performed
to assess the accuracy of the response to theGaussian pulse excitation
at different time-step sizes. The generalized force–time history used
here was derived by projecting the unsteady line loads onto the first
mode. The projection involved integrating line loads and modal data

at 1000 body stations and over 4000 time steps. Figure 3 shows the
FFT of the generalized force (mode 1) due to mode 1 excitation at
three time-step sizes,�t� 5, 10, and 20. As can be seen in the figure
both the real and imaginary responses at all frequencies are
converging as the time-step size is reduced. The response at all
frequencies using �t� 10 is nearly identical to that using �t� 5.
On the other hand, all the results are nearly identical at low
frequencies. Since the accuracy of the low-frequency response is the
primary objective, the solution at �t� 20 was considered
sufficiently accurate.

Since the line-load data at each time step and body station was a
rather unwieldy data set, a POD analysis was performed to reduce the
data size. Performing several POD analyses with different numbers
of POD modes, it was found that a very accurate model of the line
loads can be achievedwithNPOD modes � 8. As seen in Fig. 4,with this
number of POD modes, the original and reconstructed generalized
force responses are indistinguishable. The POD analysis thus
provides a large reduction in the amount of storage required to model
the data. As mentioned earlier, the POD eigenvectors provide the
relative contributions of each body station to the overall energy of the
mode. A composite of the combined highest-energy POD mode
amplitudes provides the overall distribution of the unsteady energy
over the entire body. To compare the energy distribution from the
time-accurate FUN3D line loads and that due to the FRILLS
analysis, a similar Gaussian pulse and responsewas performed using
the FRILLS solver. The process to obtain the line-load response from
the FRILLS solver was identical to that used for unsteady FUN3D
line loads, except the FRILLS solver uses steady-state rigid aerody-
namics. Figure 5 shows the composite distribution of the highest-

Fig. 3 Time-step study of unsteadyGaussianpulse response (mode 1 on

mode 1).

Fig. 4 Comparison of FUN3D and POD approximation of unsteady

mode 1 response (the reconstructed solution is from unsteady line loads).
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energy PODmodes from the unsteady line-load model and that from
the quasi-steady FRILLS line loads. That figure clearly indicates that
points along the body at which there is a change in cross-sectional
area or at major clusters of protuberances the FRILLS and the
unsteady FUN3D responses are nearly identical. These areas are at
the LAS nozzles, the CEV module and fairing, the upper-stage
cluster of protuberances, the first-stage rings and the aft skirt.
However, the time-accurate modeling of the unsteady line loads also
has high-energy content at locations away from cross-sectional area
changes. These areas include the long unchanging region of the

upper stage and the first-stage SRB. This indicates that a fully time-
accurate solution is required to capture all of the unsteady energy. It
also shows that a quasi-steadymodel only provides energy content at
points of geometry change, whereas unsteady energy is in fact
distributed both at and away from cross-sectional area changes. It is
also note worthy that the frustum dynamics due to the time-accurate
solution is much larger than that due to the FRILLS analysis. Also
shown in that figure are the generalized force responses integrated
from the line loads. The difference in the unsteady and quasi-steady
responses is clearly seen in that figure.

Fig. 5 Comparison of unsteady FUN3D and FRILLS responses due to first-mode Gaussian pulse.

Fig. 6 FFT of generalized force (filled symbol: real, open symbol: imaginary) and 20-state Roger approximation (line) versus frequency. Data

reconstructed from unsteady line loads.
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Having a POD model of the unsteady line loads due to an
excitation of the first two modes, the following steps were taken to
create a state-space model of the flexible launch vehicle. The � �ss
modes (rigid-body or higher-frequency flexible) to be included in the
quasi-steady analysis are chosen. The unsteady line loads due to
excitation of the fully dynamic modes, the � �dd subset, are projected
at each time step to each of the quasi-steady modes. This produces a
generalized force–time history of all modes due to excitation of the
� �dd subset of modes. An FFT analysis was performed on the
generalized force responses integrated from the line loads. A Roger
approximation using Eq. (12) is calculated for the � �dd subset: in this
case, the first two modes. A Roger approximation using Eq. (13) is
calculated for the � �ss subset: in this case,modes 3–37. This produces
the � �ds submatrices. The � �sd and � �ss submatrices are derived using
quasi-steady FRILLS line-load data. The computation of these
submatrices is no different than for a purely quasi-steady FRILLS
analysis.

Figure 6 shows the FFT of the generalized force submatrix �Q̂�dd
(from modes 1 and 2) and the Roger approximation of that data as a
function of reduced frequency. The Roger approximation has 10
unsteady aerodynamic states per mode (i.e., NR � 20). With this
large number of lag states, quad accuracy (real 
 16) was required in
the computer code to get meaningful answers. From lifting surface
experience this Roger approximation is a quite large number of lag
states per mode. However, it should be noted that this is a launch
vehiclewith rather complex unsteady aerodynamics caused by shock
movement, shock separation, and three-dimensional flow separation
over various parts of the vehicle. Quite simply, this number of states
was required to get the level of accuracy shown in the following
results.

The flowfield complexity likely contributes to the complex
variation with frequency of the FFT’s of the first two modes, seen in
Fig. 6. The Roger approximation simulates that complexity very
well. In addition, the accuracy of the reproduced time history of the
mode 1 generalized force confirms the accuracy of the presentmodel.
In Fig. 7, this result is compared with the generalized force–time
history of mode 1 obtained directly from the FUN3D modal pulse
solution. The Roger model reproduces the original data very
accurately up to 0.55 s. Although a slight deviation can be seen in the
last 0.10 s of the simulation, the overall agreement is excellent.

Having verified that the POD, FFT, and Roger models all
accurately reproduce the data, the model is applied to the aeroelastic
simulation of the Ares I. The modified state-space model is solved
that includes the lag states �, given by

f _�g � �A�f�g; f�g � fg; _g; �gT (14)

where

�A� �
0 I 0

	M	1� 	M	1� M	1q1d
0 e �

2
4

3
5 (15)

Since the interest here is to provide a method useful for time
domain simulations of the launch vehicle ascent, time-marching
solutions of Eq. (14) were performed. The integration was donewith
a third-order Euler backward difference. To ensure the accuracy of
the solutions, the time stepwas sized to give 1000 time steps per first-
mode period. System damping was extracted by a least-squares log
decrement of the entire time traces of the generalized variables.
To assess the convergence and accuracy of the log decrement,
simulations were performed to 6, 19 and 39 first-mode cycles for
several dynamic pressures up to 1:32qnom. It was found that the mean
(computed from the different length solutions) and standard
deviation (computed from successive oscillation cycles) of the first-
mode damping each varied at most by 4–5% of the structural
damping value. Figure 8 shows the damping of the first 14modes as a
function of frequency at nominal dynamic pressure. The FRILLS and
unsteady FUN3Ddata are presented for reference. The presentmodel
significantly improves the overall damping of modes 1 and 2
compared with the FRILLS solution. The first-mode undamping is
now captured very well. The second mode is much less strongly
damped than in the FRILLS result, although also slightly less
damped than the unsteady FUN3D result.

Figure 9 zooms in on the damping of modes 1 and 2 at dynamic
pressures qnom and 1:32qnom. The unsteady FUN3D dampings at
qnom from [10] are also shown. The present state-space model
accurately reproduces the continued undamping of mode 1 and
increased damping of mode 2 with successively higher dynamic
pressures. The results of [18] are also shown in that figure. Although

Fig. 7 Time history of response (the reconstructed solution is derived

from unsteady line loads).

Fig. 8 Frequency versus damping, qnom.

Fig. 9 Frequency versus damping, q1 � qnom and 1:32qnom.
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the present results are computed from a log decrement of the time
domain solution, the damping values from [18] are obtained from an
eigenvalue analysis. The standard deviation and variation of the
presently computed mean damping discussed above do not explain
the difference between the present results and those of [18]. Note that
the system identification of [18] is obtained from a step impulse
rather than the Gaussian pulse excitation used here. Furthermore, the
number of aerodynamic states used in that reference are unknown. It
is therefore likely that the improved accuracy of the present results
reflects either the number of Roger states used here or the reduced
numerical noise of a Gaussian pulse excitation compared with a step
impulse.

V. Conclusions

Amethod has been presented to enhance the quasi-steady method
of line loads by using unsteady line-load data for selectedmodes. For
the Ares I vehicle with the thrust oscillation isolator structural model
thefirst twomodes are poorlymodeled by the quasi-steadymethod of
line loads. Furthermore, these modes are the most likely to couple
with rigid-body modes and lead to potential controllability issues. In
the present paper a Gaussian pulse is applied to the first two vehicle
bending modes and a time history of the line-load response is
acquired. Proper orthogonal decomposition is used to reduce the
volume of line-load data. The Roger approximation is then used to
derive a state-space model that can be incorporated into the quasi-
steady line-load model. The results of this study can be summarized.
The method of dividing the aeroelastic problem into fully unsteady
and quasi-steady partitions has yielded a relatively efficient way of
introducing unsteady aerodynamics because a limited number of
CFD pulse/response solutions are required. Proper orthogonal
decomposition of the time history of the line-load data has
successfully reduced the data required for an accurate unsteady
aerodynamic model. The time history of the unsteady line loads
provides additional insight into the flow physics not available from
the integrated generalized forces alone.

One aspect of this method not investigated here is the addition of
rigid-body modes, or alternate higher-frequency modes in a quasi-
steady sense. Addition of these modes in a quasi-steady sense should
be easy, since doing so involves retracing only a fewof the steps in the
method outlined above and does not involve additional unsteady
CFD system identification solutions. The pulse shape used herewas a
Gaussian pulse of each of the first two modes separately. The use of
other pulse functions or the excitation of all modes (in this case,
modes 1 and 2) simultaneously was not investigated. Finally, the
Roger approximation was used to create the state-space model of the
unsteady aerodynamics. Future examination of other time domain
methods of system identification would be helpful.
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