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Abstract 
During the final moments of a binary black hole (BlI) merger, the 
gravitational wave (GW) luminosity of the system is greater than the combined 
electromagnetic (EM) output of the entire observable universe. However, 
the extremely weak coupling between GWs and ordinary matter makes these 
waves very difficult to detect directly. Fortunately, the inspirating BH system 
will interact strongly-on a purely Newtonian level-with any surrounding 
material in the host galaxy, and this matter can in turn produce unique EM 
signals detectable at Earth. By identifying EM counterparts to GW sources, 
we will be able to study the host environments of the merging BHs, in turn 
greatly expanding the scientific yield of a mission like LISA. Here we present a 
comprehensive review of the recent literature on the subject of EM counterparts, 
as well as a discussion of the theoretical and observational advances required 
to fully realize the scientific potential ofthe field. 

PACS numbers: 95.30.Sf, 98.54.Cm, 98.62.Js, 04.30.Tv, 04.80.Nn 

1. Introduction 

Prompted by recent advances in numerical relativity (NR), there has been an increased interest 
in the astrophysical implications of black hole (BH) mergers (see [ I I for a sample of related 
White Papers submitted to the recent Astro2010 Decadal Report). Of particular interest is 
the possibility of a distinct, luminous electromagnetic (EM) counterpart to a gravitational 
wave (GW) signal. If such an EM counterpart could be identified with a LISA I detection 
of a supermassive BH (SMBlI) binary in the merging process, then the host galaxy could 
likely be determined. For BHs with masses of 10' M0 at a redsbift of z = I, LISA should 
be able to identify the location of the source within - 10 deg' a month before merger, and 
better than -0.1 deg' with the entire waveform, including merger and ringdown [2--8). Like 
the cosmological beacons of gamm~-ray bursts and quasars, merging BHs can teach us about 
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Figure 1. Selection of potential EM signatures, sorted by timescale, typical size of emission region 
and physical mechanism (blueli.ta1ic = stellar, ycllowfTimes Roman = accretion disk; green/bold 
= diffuse gas/miscellaneous). 

(This figure is in colour only in the electronic version) 

relativity, high-energy astrophysics, radiation hydrodynamics, dark energy, galaxy fonnation 
and evolution, and even dark matter. A large variety of potential EM signatures have recently 
been proposed, almost all of which require some significant amount of gas in the near vicinity 
of the merging BHs. In this paper, we review the recent literature on EM signatures, and 
propose a rough outline of the future work, both obselVational and theoretical, that will be 
needed to fully realize the potential of OW astronomy. 

2. Diversity of sources 

From a theoretical point of view. EM signatures can be categorized by the physical mechanism 
responsible for the emission, namely stars, hot diffuse gas, or circumbinary laccretion disks. 
In figure I , we show the diversity of these sources, arranged according to the spatial and time 
scales on which they occur. 

It is important to note that, while the BHs themselves are of course extremely relativistic 
objects, most of the obSClVablc effects occur on distance and time scales that are solidly in the 
Newtonian regime. While one of the most interesting NR results in recent years has been the 
prediction of latge recoil velocities originating from the final merger and ringdown of binary 
BHs [9], the astrophysical implications of these large klcks are for the most part entirely 
Newtonian. 
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2.1. Stellar signatures 

On the largest scales, we have strong circumstantial evidence of 5MBH mergers at the centers 
of merging galaxies. From large optical surveys of interacting galaxies outto redsltifts of z ..,. I, 
we can infer that 5-10% of massive galaxies are merging at any given time, and the majority 
of galaxies with M", ;:: 1010 Mo have experienced a major merger in the past 3 Oyr [1 (}"'13], 
with even higher merger rates at redshifts z - 1-3 [14]. At the same time, high-resolution 
observations of nearby galactic nuclei find that every large galaxy hosts a 5MBH in its center 
[15]. Yet we see a remarkably small number of dual active galactic nuclei (AGN) [16- 18], and 
only one known source with an actual binary system where the BHs are gravitationally bound 
'to each other [19]. Taken together, these Observations strongly suggest that when galaxies 
merge, the merger of their central 5MBHs inevitably follows, and likely occurs on a relatively 
short time seale, which would explain the apparent scarcity of binary BHs. The famous 'M
sigma' relationship between the 5MBH mass and the velocity dispersion of the surrounding 
bulge also points to a mergeHiriven history over a wide range of BH masses and galaxy 
types [20]. 

There is also indirect evidence for 5MBH mergers in the stellar distributions of galactic 
nuclei, with many elliptical galaxies showing light deficits (cores), which correlate strongly 
with the central BH mass [21]. The cores are evidence of a history of binary BHs that scour out 
the nuclear stars via three-body scattering [22-25], or even post-merger relaxation of recoiling 
BHs [26-29]. 

While essentially all massive nearby galaxies appear to host central 5MBHs, it is quite 
possible that this is not the case at larger redshifts and smaller masses, where major mergers 
could lead to the complete ejection of the final BH via large OW recoils. By measuring the 
occupation fraction ofBHs in distant galaxies. one could infer merger rates and the distribution 
of kick velocities [3(}"'34]. The occupation fraction will of course also affect the LISA event 
rates, especially at high redshift [35]. An indirect signature for kicked BHs could potentially 
show up in the statistical properties of active galaxies, in particular in the relative ,distribution 
of different classes of AGN in the 'unified model' paradigm [36, 37]. On a smaller seale, the 
presence of intermediate-mass BHs in globular clusters also gives indirect evidence of their 
merger history [38]. 

Another EM signature of BH mergers comes from the population of stars that remain 
bound to a recoiling BH that gets ejected from a galactic nucleus [39-41 ]. These stellar 
systems will appear similar to globular clusters, yet with smaller spatial extent and much 
larger velocity dispersions, as the potential is completely dominated by the central 5MBH. 

2.2. Gas signatures: accretion disks 

Gas in the form of accretion disks around single massive BHs is known to produce some of 
the most luminous objects in the Universe. However, very little is known about the behavior 
of accretion disks around two BHs, particularly at late times in their inspiral evolution. In 
Newtonian systems, it is believed that a circumbinary accretion disk will have a central gap of 
much lower density, either preventing accretion altogether, or at least decreasing it significantly 
[42-44]. When including the evolution of the binary due to GW losses, the BHs may also 
decouple from the disk at the point when the GW inspiral time becomes shorter than the 
gaseous inflow time at the inner edge of the disk [45]. This decoupling should effectively stop 
accretion onto the central object until the gap can be filled on an inflow timescale. ' However, 
other semi-analytic calculations predict an enhancement of accretion power as the evolving 

3 



Class, Quantum Grav. 28 (2011) 094021 JDSchnittman 

binary squeezes the gas around the primary BH, leading to a rapid increase in luminosity 
shortly before merger [46, 47]. 

Regardless of how the gas can or cannot reach the central BH region, a number of recent 
papers have shown that if there is sufficient gas present, then an observable EM signal is 
likely. Krolik [48] used analytic arguments to estimate a peak luminosity comparable to that 
of the Eddington limit, independent of the detailed mechanisms for shocking and heating ·the 
gas. Using relativistic magneto-hydrodynamic simulations in 2D, O'Neill et at [49] showed 
that the prompt mass loss due to GWs may actually lead to a sudden decrease in luminosity 
fonowing the merger, as the gas in the inner disk temporarily has too much energy and angular 
momentum to accrete efficiently, Full NR simulations of the final few orbits of a merging BH 
binary have now been carried out, including the presence of EM fields in a vacuum [5G-52] and 
also gas, treated as test particles in [53] and as an ideal fluid in [54] and [55]. The simulations 
including matter all suggest that the gas can get shocked and heated to high temperatures, thus 
leading to bright counterparts in the event that sufficient gas is in fact present in the immediate 
vicinity of the· merging BHs. 

If the primary energy source for heating the gas is gravitational, then typical efficiencies 
will be on the order of ..... 1-10%. comparable to that expected for standard accretion in AGN. 
However, if the merging BH binary is able to generate strong magnetic 'fields [SO-52], then 
highly relativistic jets may be launched along the resulting BH spin axis, converting matter 
to energy with a Lorentz boost factor of r » 1. Even with purely hydrodynamic heating, 
particularly bright and long-lasting afterglows may be produced in the case of very large 
recoil velocities, which effectively can disrupt the entire disk. leading to strong shocks and 
dissipation [56-{j4]. For systems that open up a gap in the circumbinary disk, an EM signature 
may take the form of a quasar suddenly turning on as the gas refills the gap, months to years 
after the BH merger [45, 65, 66]. 

For those systems that also received a large kick at the time of merger, we may observe 
quasar activity for millions of years after, with the source displaced from the galactic center, 
either spatially [67-72] or spectroscopically [73-76]. However, large offsets between the 
redshifts of quasar emission lines and their host galaxies have also been interpreted as evidence 
of pre-merger binary BHs [77-80] or as being due tQ the large relative velocities in merging 
galaxies [81-114], or 'simply' as extreme examples of the class of double-pealted emitters, 
where the line offsets are generally attributed to the disk [85-89]. 

In addition to the many potential prompt and afterglow signals from merging BHs, there 
has also been a significant amount of theoretical and observational work focusing on the early 
precursors of mergers. Following the evolutionary trail from the upper-left part of figure 1, 
we see that shortiy after a galaxy merges, dual AGN may form with typical separations of a 
few kpc [16, 17), sinking to the center of the merged galaxy on a relatively short timescale 
(,$J Gyr) due to dynamical friction [90]. This merger process is also expected to funnel a great 
deal of gas to the galactic center, in tum triggering quasar activity [91- 94]. At separations 
of -1 pc, the BH binary (now 'hardened' into a gravitationally bound system) could stall, 
having depleted its loss cone of stellar scattering and not yet reached the point of gravitational 
radiation losses [95]. Gas dynamical drag from massive disks (M_ » MaH) leads to a 
prompt inspiral (""1-10 Myr), iit most cases able to reach sub-parsec separations, depending 
on the resolution of the simulation [9&-102]. 

At this point, a proper binary quasar is fanned, with an orbital period of months to 
decades, which could be identified by periodic accretion [103-106] or redshifted broad 
emission lines as mentioned above [107- 109]. Direct GW stresses on the circumbinary disk 
might also lead to periodic variations in the light curve, although· with very small amplitude 
[110]. 
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2.3. Gas signatures: dif.fure gas, 'other' 

In addition to the many disk-related signatures, there are also a number of potential EM 
counterparts that are caused by the accretion of diffuse gas in the galaxy. For BHs that get 
significant kicks at the time of merger, we expect to see quasi-periodic episodes of Bondi 
accretion as the BH oscillates through the gravitational potential of the galaxy over ntillions 
of years, as well as off -center AGN activity (111- 1141. On larger spatial scales, the recoiling 
BH could also produce trails of overdensity in the hot interstellar gas of elliptical galaxies 
[1151. In a sintilar way, rogue 5MBHs in gas-rich galaxies could leave trails of star formation 
in their wake [116]. It is even possible that the same density enhancements could be detected 
via off-nucleus gamma-ray entission from annirulating dark matter particles [117]. Also on 
kpc-Mpc scales, X-shaped radio jets have been seen in a number of galaxies, which could 
possibly be due to the merger and subsequent spin flip ofthe central BHs [1181. 

Another potential source of EM counterparts comes not from diffuse gas, or ac.cretion 
disks, but from the occasional capture and tidal disruption of nonnal star> by the merging BHs. 
This tidal disruption, wruch also occurs in 'nonnal' galaxies [119-1211, may be particularly 
easy to identify in off-center BHs following a large recoil [39], Tidal disruption rates may be 
strongly increased by the merger process itself [122-1251, wrule the actual disruption signal 
may be truncated by the pre-merger binary [1261. These events are likely to be seen by the 
dozen in conting year> with PanSTARRS and LSST [1271. In addition to the tidal disruption 
scenario, in [125] we showed how gas or stars trapped at the stable Lagrange points in a BH 
binary could evolve during inspiral and eventually lead to enhanced star formation, ejected 
hyper-velocity stars, highly-srufted narrow emission lines and short bursts of Eddington-level 
accretion coincident with the BH merger. 

A completely different type of EM counterpart can be seen in the radio .. Namely, 
nanosecond time delays in the arrival of pulses from millisecond radio pulsars is direct evidence 
of extremely low-frequency (nano-Hertz) GWs from massive (;,; 10" Mo) BH binaries (128-
135]. By cross-correlating the signals from multiple pulsar> around the sky, we can effectively 
make use of a GW detector the size of the entire Milky Way galaxy. 

3. Game plan 

In the coming years, a number of theoretical and observational advances will be required in 
order to fully realize the potential of GW /EM multi-messenger astronomy. Some of the central 
questions that need to be answered include: 

• What is the galaxy merger rate as a function of galaxy mass, mass ratio, gas fraction, 
cluster environment, and redshift? 

• What is the mass function and spin distribution of the central BHs in these merging (and 
non-merging) galaxies? 

• What is the central environment around the BHs, prior to merger? 
- What is the quantity and quality (temperature, density, composition) of gas? 
- What is the stellar distribution (age, mass function, metallicity)? 
- What are the properties of the circumbinary disk? 

• What is the time delay between galaxy merger and BH merger? 
We have rough predictions for some of these questions from cosmological N-body 

simulations, but the uncertainties and model dependences are quite large [136- 1381; for 
a comprehensive comparison of the leading methnds, see [139]. Similarly, observational 
constraints on the merger rates are relatively weak and often open to widely varying 
interpretations (1 1- 13, 17, 140..:142]. 
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3.1. Theory 

With respect to the questions outlined above, improved cosmological simulations will certainly 
help improve our estimates for galactic and BH merger rates, as well as the gas environments 
expected in the central regions. Particularly promising are multi-scale simulations that can 
zoom in on regions of interest, going to higher resolution and more realistic physics closer 
to the BHs [137]. To model more accurately the interaction between the circumbinary disk 
and the BHs, grid-based methods (as opposed to smoothed particle hydrodynamics, SPH) 
will be necessary, especially at the inner edge where steep density and pressure gradients are 
likely to be found. The accurate treatment of this region is critical to understanding the gas 
environment immediately around the BHs at the time of merger, and thus whether any bright 
EM signal is likely to be produced. 

The natural product of these (Newtonian) cin:umbinary magnet<>-hydrodynamic (MIlD) 
simulations would be a set of reasonable initial conditions to be fed into the much more 
computationally intensive NR codes that compute the final orbits and merger of the BHs, now 
including matter and magnetic fields. The results of [SO-55] are extremely impressive from 
a computational point of view, but their astrophysical relevance is limited by our complete 
ignorance of the likely initial conditions. Even with perfect knowledge of the initial conditions, 
the value of the MHD simulations is also limited by the lack of radiation transport and accurate 
thennodynamics, which are only now being incorporated into local Newtonian simulations 
of steady-state accretion disks [143). Significant future work will be required to incorporate 
the radiation transport into a fully relativistic global muneworl<, required not just for accurate 
modeling of the dynamics, but also for the prediction of EM signatures that might be compared 
directly with obset;Vations. 

3.2. Observations 

Even with ~e launch of LISA a decade or more away, many of the EM counterparts discussed 
above should be observable today. in some cases eveD giving unambiguous evidence for 
merging BHs. On the largest distance and time scales, dual AGN candidates can be identified 
with large spectroscopic surveys like SDSS', then followed up with high-resolution imaging 
and spectroscopy. This has already been done to successfully estimate the fraction of merging 
galaxies, but to get a merger rate, more information is needed about the expected lifetimes 
of dual AGN [1 3, 17, 142). Combined with surveys of galaxy morphology and pairs, the 
distribution of dual AGN will help us test theories of galactic merger rates as a function of 
mass and redshift. as well as the connection between gas-rich mergers and AGN activity. 
Spectroscopic sUrveys should also be able to identify many candidate binary AGN, which 
may be con finned or ruled out with subsequent observations over relatively short timescales 
(- 1-10 yes), as the line-<lf-site velocities to the BHs change by an observable degree. Here, 
a number of candidates have already been identified, but as yet, none have been confinned to 
be binaries by multi-year monitoring [75, 88, 144). 

Many of these spectroscopic surveys have also been used to look for recoiling BBs 
[73, 74, 76), where the line redshifts are not expected to change in time, but they may be 
confirmed. or ruled out as high-recoil candidates via high-resolution imaging of the host galactic 
nucleus. Long-lived afterglows could be discovered in existing multi-wavelength surveys, but 
successfully identifying them as merger remnants as opposed to obscured AGN or other bright 
unresolved sources would require improved pipeline analysis of literally millions of point 
sources, as well as extensive foHow-up observations. 

:1 http://www.sdss.org 
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Particularly promising as unambiguous examples of recoiling BHs would be the 
measurement of large velocity dispersions in nearby (d ,,; 20 Mpc) globular clusrers [40]. 
With multi-cl>ject spectrometers on large ground-based relescopes, this is also technically 
realistic in the immediate future, though a directed campaign has not been carried out yet. 
Perhaps the most exciting direction for the coming decade of astronomy is in the time domain. 
Optical telescopes like PfF and PanSTARRS are already taking data from huge areas of the sky 
with daily and even hourly frequency. These time-domain surveys are ideally suited for looking 
for variability from binary BH systems as precursors to merger. Especially promising would 
be the detection of long-period variable AGN, ideally suited to extensive multi-wavelength 
follow-up observations. 
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