
Lustre Performance Analysis with SystemTap

Jason Rappleye

NASA Advanced Supercomputing Division

April 24th2012

https://ntrs.nasa.gov/search.jsp?R=20120013427 2019-08-30T21:54:15+00:00Z



Introduction

� Need actionable performance and troubleshooting data at
interactive speeds.

� /proc and lctl dk are useful, but:
� Performance issues at scale

� Don’t want to pollute logs

� Want more information



Systemtap

� SystemTap consists of a scripting language, translator and
runtime.

� Provides system-wide tracing capabilities.
� Kernel and userspace.

� strace traces a process tree; SystemTap provides visibility
across the entire system.



Using SystemTap with Lustre

� Where to probe?
� This is the hard part - need to have some understanding of

how Lustre works.

� Extract data from functions as they are called/return.
� Output as you go, or

� Aggregate and periodically display

� Timing function calls.
� Lustre service threads handle RPCs from start to finish, one at

a time

� Makes it easy to store timing, other information based on the

thread handling the request.



Example: Timing ldiskfs block allocations

global start

global times

probe

module("ldiskfs").function("ldiskfs_mb_new_blocks") {

start[tid()] = gettimeofday_ms();

}

probe

module("ldiskfs").function("ldiskfs_mb_new_blocks").return {

if ([tid()] in start) {

times <<< gettimeofday_ms() - start[tid()];

}

}

probe end {

print(@hist_log(times));

}



Output

value |--------------- count

0 |@@@@@@@@@@@@@@ 27083

1 |@ 675

2 | 6

4 | 2

8 | 158

16 | 74

32 | 33

64 | 10

128 | 6

256 | 2

512 | 1

~

32768 | 1 <---- That’s between 32

and 64 seconds!



Examples

� Poor choice of stripe count.
� Fragmentation.
� High OSS load average.



Poor choice of stripe count

� The default stripe count on our filesystems is one.
� Average file size is relatively small, so this is OK.
� Except. . .

� Large tar files can take up a significant portion of an OST.

� Many ranks writing to a file on one OST can perform poorly.



big-object

� A SystemTap script intercepts calls in the write path on the
OSS to gather the following information:

� NID

� OST name

� object ID

� FID

� UID

� object size

� When there’s a a write to an object over a predetermined size,
print it.

� A Python wrapper gathers additional information about the
object and writing process, including the path.



big-object

service162 ~ # big-object

Fri Mar 23 10:21:09 2012 service61-ib ost:nbp2-OST0021

stripes:1 pid:4320 command:tar size:506123MB

name:/nobackupp2/.../something.tar



Fragmentation

� On-disk
� Block allocator can’t find a large enough chunk of contiguous

free space.

� Delays writes; fragmented allocation will cause more I/Os for

both reads and writes.

� Memory
� The IB SRP driver can only handle scatter-gather descriptors

up to length 255.



Showing I/O fragmentation in real-time

� Use SystemTap to hook into Lustre I/O path.
� A good I/O - 1MB or more in a single write:

nid:10.151.18.95@o2ib0 ost:nbp2-OST0010 uid:0

mdt_inode:0 sizes:256

� Memory fragmentation causing SRP to issue multiple I/Os:

nid:10.151.14.211@o2ib0 ost:nbp2-OST0008 uid:0 mdt_inode:0

sizes:255(255) 1



On-disk fragmentation

nid:10.151.32.127@o2ib0 ost:nbp2-OST0068 uid:12137

mdt_inode:200443860 sizes:6(6) 1(1) 1(1) 1(1) 1(1)

1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1)

1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1)

1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1)

1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1)

1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1)

1(1)



High OSS load average

� High OSS load average is usually due to long disk queues.
� A typical cause is many hosts performing I/O to a file on a

small number of OSTs.
� You could mine the data in /proc.

� On a large system, this takes time.

� I want to know which file is being accessed.

� Currently possible for writes.
� May require modifications to Lustre for reads.



oststat

OST r/s w/s aveq rwat wwat %u job/host Ops

nbp2-OST06 80 42 4 48 0 72 23925.pbspl3 8

nbp2-OST0e 37 2 0 15 0 19 66274.pbspl1 6

nbp2-OST16 50 0 1 18 3 27 66348.pbspl1 6

nbp2-OST1e 24 0 1 55 1 37 66273.pbspl1 8

nbp2-OST26 44 18 3 82 0 59 66283.pbspl1 6

nbp2-OST2e 79 9 1 21 0 39 66428.pbspl1 6

nbp2-OST36 41 185 135 150 57 100 68894.pbspl1 126

nbp2-OST3e 80 2 3 34 0 42 68386.pbspl1 12

nbp2-OST46 63 2 3 48 1 54 66345.pbspl1 6

nbp2-OST4e 73 2 3 49 0 74 66336.pbspl1 6

nbp2-OST56 43 13 0 17 0 23 66443.pbspl1 6

nbp2-OST5e 35 1 0 16 6 18 66267.pbspl1 6

nbp2-OST66 67 1 2 28 1 39 66433.pbspl1 6

nbp2-OST6e 104 8 3 32 0 49 66278.pbspl1 6



Future work

� Started the NASA open-source process. Distribution will
include:

� Lustre tapset library

� big-object and oststat

� Mechanism for mapping hosts to your site’s batch system

� More tools!
� Send me your ideas.

� Better yet, patches :-)

� Visualization



Questions?


