
There are two conventional types of
hinges for in-space deployment applica-
tions. The first type is mechanically de-
ploying hinges. A typical mechanically
deploying hinge is usually composed of
several tens of components. It is compli-
cated, heavy, and bulky. More compo-
nents imply higher deployment failure
probability. Due to the existence of rela-
tively moving components among a me-
chanically deploying hinge, it unavoid-
ably has microdynamic problems. The
second type of conventional hinge relies
on strain energy for deployment. A tape-
spring hinge is a typical strain energy
hinge. A fundamental problem of a
strain energy hinge is that its deployment
dynamic is uncontrollable. Usually, its
deployment is associated with a large im-
pact, which is unacceptable for many

The Shape Memory Composite Hybrid Hinge is composed of two strain energy flanges and one shape
memory composite tube. 
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The hinge can be used for in-space deployment of antennas, reflectors, cameras, solar panels,
and sunshields, as well as in any structure requiring hinges.
NASA’s Jet Propulsion Laboratory, Pasadena, California

than the two or more sensors conven-
tionally used to sense and control wind-
ing currents. An unexpected benefit of
using only one current sensor is that it
actually improves the precision of cur-
rent control by using the “same” sensors
to read each of the three phases. Folding
the encoder directly into the controller
electronics eliminates a great deal of re-
dundant electronics, packaging, connec-
tors, and hook-up wiring. The reduction
of wires and connectors subtracts sub-
stantial bulk and eliminates their role in

behaving as EMI (electro-magnetic in-
terference) antennas.

A shared knowledge by each motor
controller of the state of all the motors
in the system at 500 Hz also allows paral-
lel processing of higher-level kinematic
matrix calculations. 

This work was done by William T. Townsend,
Adam Crowell, and Traveler Hauptman of Bar-
rett Technology, Inc., and Gill Andrews Pratt of
Olin College for Johnson Space Center. For fur-
ther information, contact the JSC Innovation
Partnerships Office at (281) 483-3809.

In accordance with Public Law 96-517, the
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Barrett Technology, Inc.
625 Mount Auburn Street
Cambridge, MA 02138-4555
Phone No.: (617) 252-9000
Web site: www.barrett.com
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of this NASA Tech Briefs issue, and the page
number. 

A document describes a continuous
magnetic refrigerator that is suited for
cooling astrophysics detectors. This re-
frigerator has the potential to provide ef-
ficient, continuous cooling to tempera-
tures below 50 mK for detectors, and has
the benefits over existing magnetic cool-
ers of reduced mass because of faster
cycle times, the ability to pump the
cooled fluid to remote cooling locations
away from the magnetic field created by
the superconducting magnet, elimina-

tion of the added complexity and mass of
heat switches, and elimination of the
need for a thermal bus and single crystal
paramagnetic materials due to the good
thermal contact between the fluid and
the paramagnetic material.

A reliable, thermodynamically efficient
pump that will work at 1.8 K was needed
to enable development of the new mag-
netic refrigerator. The pump consists of
two canisters packed with pieces of
gadolinium gallium garnet (GGG). The

canisters are connected by a superleak (a
porous piece of VYCOR® glass). A super-
conducting magnetic coil surrounds each
of the canisters. The configuration en-
ables driving of cyclic thermodynamic cy-
cles (such as the sub-Kelvin Active Mag-
netic Regenerative Refrigerator) without
using pistons or moving parts. 

This work was done by Franklin K. Miller of
Goddard Space Flight Center. Further informa-
tion is contained in a TSP (see page 1). GSC-
15573-1

A Reversible Thermally Driven Pump for Use in a Sub-Kelvin
Magnetic Refrigerator
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space applications. Some damping tech-
nologies have been experimented with
to reduce the impact, but they increased
the risks of an unsuccessful deployment. 

Coalescing strain energy components
with shape memory composite (SMC)
components to form a hybrid hinge is
the solution. SMCs are well suited for de-
ployable structures. A SMC is created
from a high-performance fiber and a
shape memory polymer resin. When the
resin is heated to above its glass transi-
tion temperature, the composite be-
comes flexible and can be folded or
packed. Once cooled to below the glass
transition temperature, the composite
remains in the packed state. When the
structure is ready to be deployed, the
SMC component is reheated to above
the glass transition temperature, and it
returns to its as-fabricated shape. 

A hybrid hinge is composed of two
strain energy flanges (also called tape-

springs) and one SMC tube. Two fold-
ing lines are placed on the SMC tube to
avoid excessive strain on the SMC dur-
ing folding. Two adapters are used to
connect the hybrid hinge to its adjacent
structural components. While the SMC
tube is heated to above its glass transi-
tion temperature, a hybrid hinge can be
folded and stays at folded status after
the temperature is reduced to below its
glass transition temperature. After the
deployable structure is launched in
space, the SMC tube is reheated and the
hinge is unfolded to deploy the struc-
ture. Based on test results, the hybrid
hinge can achieve higher than 99.999%
shape recovery. 

The hybrid hinge inherits all of the
good characteristics of a tape-spring
hinge such as simplicity, light weight,
high deployment reliability, and high de-
ployment precision. Conversely, it elimi-
nates the deployment impact that has

significantly limited the applications of a
tape-spring hinge. The deployment dy-
namics of a hybrid hinge are in a slow
and controllable fashion. The SMC tube
of a hybrid hinge is a multifunctional
component. It serves as a deployment
mechanism during the deployment
process, and also serves as a structural
component after the hinge is fully de-
ployed, which makes a hybrid hinge
much stronger and stiffer than a tape-
spring hinge. Unlike a mechanically de-
ploying hinge that uses relatively moving
components, a hybrid hinge depends on
material deformation for its packing and
deployment. It naturally eliminates the
microdynamic phenomenon. 

This work was performed by Houfei Fang and
Eastwood Im of Caltech, and John Lin and
Stephen Scarborough of ILC Dover LP for NASA’s
Jet Propulsion Laboratory. Further information
is contained in a TSP (see page 1). NPO-
48370 

A document discusses a study that
presents the first documented extrac-
tion loads, both nominal and worst-
case, and presents the first compre-
hensive evaluation of extraction
techniques, methodologies, and tool
requirements relating to extracting
printed wiring assemblies (PWAs) with
Card-Loks during EVA (extra vehicu-
lar activity). This task was performed
for the first time during HST (Hubble
Space Telescope) Servicing Mission 4. 

With impending missions to Mars and
to the Moon relying on an astronaut’s
abilities to perform repair and servicing
tasks during EVAs, this study provides
some insight into what challenges may
be encountered during a repair/
replacement of a PWA with Card-Loks.
Extraction techniques presented in this
study could be applicable to other PWA
geometries with similar locking devices.
Ground-based extractions also benefit
from the techniques and extraction tool

requirements presented in the study.
The findings highlight techniques that
work reliably, efficiently, and provide de-
sign requirements for tools necessary for
extracting PWAs with Card-Loks on
ground. 

This work was done by Hans Raven of
ATK and Kevin Eisenhower of Alliant Tech-
systems for Goddard Space Flight Center. Fur-
ther information is contained in a TSP (see
page 1). GSC-16160-1
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A sample acquisition tool (SAT) has
been developed that can be used au-
tonomously to sample drill and capture
rock cores. The tool is designed to accom-
modate core transfer using a sample tube
to the IMSAH (integrated Mars sample
acquisition and handling) SHEC (sample
handling, encapsulation, and container-
ization) without ever touching the pris-
tine core sample in the transfer process. 

The SAT can be divided into four sub-
elements termed the spindle/percus-
sion assembly (SPA), magnetic chuck as-
sembly (MCA), core bit assembly (CBA),
and the core break-off assembly (CBO).

The SPA is used to impart the necessary
rotational degree of freedom to the CBA
to clear cuttings and impart the re-
quired impact energy to facilitate rock
fracture. The percussive nature of the
tool is imparted through the use of an
eccentric CAM/lever mechanism. The
MCA is designed to actively release the
CBA to the SHEC and in air (no load),
and passively under large enough side
loads, and in air (no load). The mag-
netic chuck uses two diametrically polar-
ized rings (permanent magnet) stacked
one on top of the other. A low-torque ac-
tuator is then used to engage or disen-

gage the chuck by aligning or de-align-
ing the polarized ring poles. The CBA
accepts the rotational degree of free-
dom from the SPA and is used to clear
the rock cuttings using a two-lead flute-
coring bit. The CBA also transfers the
impacts of a striker inside the SPA to the
rock being drilled.  Furthermore, the
coring bit shapes and defines the geo-
metric constraints of the core sample. 

Lastly, the CBO is housed inside the
CBA and is used to create break-off and
capture the core sample. It is actuated
through the use of a torque nut that ax-
ially retracts an outer tube using an

Coring Sample Acquisition Tool 
NASA’s Jet Propulsion Laboratory, Pasadena, California


