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Abstract 
Computational fluid dynamics was used to study the effectiveness of micro-ramp vortex generators to 

control oblique shock boundary layer interactions. Simulations were based on experiments previously 
conducted in the 15- by 15-cm supersonic wind tunnel at the NASA Glenn Research Center. Four micro-
ramp geometries were tested at Mach 2.0 varying the height, chord length, and spanwise spacing between 
micro-ramps. The overall flow field was examined. Additionally, key parameters such as boundary-layer 
displacement thickness, momentum thickness and incompressible shape factor were also examined. The 
computational results predicted the effects of the micro-ramps well, including the trends for the impact 
that the devices had on the shock boundary layer interaction. However, computing the shock boundary 
layer interaction itself proved to be problematic since the calculations predicted more pronounced adverse 
effects on the boundary layer due to the shock than were seen in the experiment. 

Nomenclature 
Ap micro-ramp half angle 
c micro-ramp chord length 
H incompressible shape factor 
h micro-ramp height 
M Mach number 
s micro-ramp spacing 
u velocity component in the flow direction 
x coordinate in the flow direction 
y+ distance from wall normalized by shear length scale 
z coordinate in the spanwise direction 
α shock generator angle of attack 
δ∗ compressible boundary-layer displacement thickness 
θ compressible boundary-layer momentum thickness 

Introduction 
In supersonic inlets, oblique shocks are used to compress and decelerate the airflow entering the 

engine. These shocks interact with the boundary layer and increase its thickness, resulting in large energy 
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losses, decreased system performance, and potentially separated flow. The traditional method to control 
shock boundary layer interactions (SBLIs) is bleed, which removes low-momentum flow from the 
boundary layer using suction through a porous surface on the inlet wall. Although bleed helps reduce the 
characteristic effects on the boundary layer, bleed systems are heavy and complex, decrease mass flow to 
the engine and introduce additional drag. Together these negative consequences of bleed lead to lower 
system efficiencies (Refs. 1 and 2).  

Many different types of vortex generators (VGs) have been proposed and investigated as possible 
replacements or supplements to bleed systems (Ref. 3). VGs are devices that redistribute the energy 
through the boundary layer. The velocity near the wall is increased to help maintain boundary-layer health 
through the SBLI at the cost of a velocity defect in the outer region of the boundary layer. They are 
attractive due to their low weight and mechanical simplicity, though they do impose a drag penalty on the 
system. 

Micro-ramps are one such type of VG flow control device. However, unlike typical vane-type vortex 
generators which have heights matching the boundary-layer thickness, micro-ramps have heights ranging 
from 25 to 40 percent of the boundary-layer thickness (Ref. 4). Micro-ramp style VGs have gained 
interest due to their mechanical robustness. 

Experiments studying the effectiveness of micro-ramp flow control were performed in the 15- by  
15-cm supersonic wind tunnel at the NASA Glenn Research Center (GRC) by Hirt and Anderson (Ref. 5). 
Fifteen micro-ramp configurations of varying height, chord length, and spanwise spacing between micro-
ramps were investigated. A photograph showing three of the configurations from the experiment is shown in 
Figure 1. The 15 configurations represented a Design of Experiments (DOE) central composite design. An 
oblique shock was created using a shock generator plate at 8.5° angle of attack. Micro-ramps were placed 
upstream of where the shock reflects off of the tunnel floor. Boundary-layer profiles and properties and 
Mach number contours were examined for various micro-ramp configurations. 

This paper presents results of a computational fluid dynamics (CFD) study of micro-ramp effects on 
an oblique SBLI based on the experiments of Hirt and Anderson (Ref. 5). In this effort, the baseline cases 
and four cases comprising the main effects design–which is embedded in the complete central composite 
design from the experiment–were simulated in order to determine the ability of Reynolds-averaged 
Navier-Stokes (RANS)-based computation methods to predict the effects of micro-ramps. This paper 
discusses the CFD results and compares them with the experimental data. 
 
 

 
Figure 1.—Picture of three micro-ramp inserts from the 

experiment in the 15- by 15-cm supersonic wind 
tunnel. 
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Modeling 
Computational Methodology 

Simulations were conducted using Wind-US version 2.0 (Ref. 6), a compressible 3-D RANS flow 
solver for multi-zone structured and unstructured grids. Wind-US includes several turbulence models, of 
which the Menter Shear Stress Transport (SST) model was chosen for this study. The SST turbulence 
model was chosen for its accuracy in wall boundary layers (Ref. 7). Structured grids were created using 
Pointwise Gridgen. A viscous grid was created using a wall grid spacing of 7.34×10–4 cm based on an 
average y+ value of 2.0. A hyperbolic tangent distribution was used to distribute the grid points across the 
computational flow domain. A symmetry plane along the centerline of the tunnel was used to reduce the 
number of grid points by half, greatly reducing computational time. The grid was sequenced to reduce 
convergence time: the solution was first computed on a grid using every fourth point in each direction 
(coarse grid); then the solution was computed at every other point (medium grid); and finally the solution 
was computed using all the grid points (fine grid). Convergence was determined by examining differences 
in the parameters of interest–compressible displacement thickness, compressible momentum thickness, 
and incompressible shape factor–at the primary measurement plane, x = 4 cm. If the values changed less 
than 0.5 percent over 2500 iterations, the solution was deemed converged. Boundary layer velocities, skin 
friction coefficient, and vorticity profiles were also monitored as a qualitative check on convergence. 

Configurations 

The seven configurations modeled for this effort are divided into two groups: three baseline cases and 
four complete cases with micro-ramps and an oblique shock. The three baseline cases were modeled to 
match the experimental baseline configurations. The first baseline configuration was the empty 15- by  
15-cm wind tunnel with a Mach 2.0 nozzle, which was simulated to verify all computational parameters 
were set up correctly (all subsequent simulations were also at M = 2.0). This grid contained 2.9 million 
grid points. For the second baseline configuration an oblique shock generator plate was added to the 
tunnel grid. The grid with the shock generator contained 5.9 million grid points. The final baseline 
configuration modeled the micro-ramps, but no shock generator, and contained 4.0 million grid points. 

After the computations of the baseline cases were completed successfully, grids were built for the 
four micro-ramp with shock cases. The micro-ramp/shock generator grids contained about 15 million grid 
points at the fine grid level. The four micro-ramp configurations tested are shown in Table 1 with the 
referenced parameters from the table shown in Figure 2. The micro-ramp half angle, Ap, was 24° for all 
configurations. Micro-ramp centerlines (c/2) were placed at x = –13 cm, with the inviscid shock 
impingement location specified as x = 0 cm as shown in Figure 3. The four micro-ramp configurations 
tested were the main effects configurations from the designed experiment of Hirt and Anderson (Ref. 5). 
The main effects design was chosen due to the ability to study many variables with a limited number of 
test cases since it represents the sparsest DOE design. 
 

TABLE 1.—TEST MATRIX FOR 
MICRO-RAMP CONFIGURATIONS. 

Configuration h,  
mm 

c,  
mm 

s,  
mm 

1 3 24 35 
2 3 12 25 
3 5 12 35 
4 5 24 25 
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Figure 2.—Micro-ramp configuration schematic. 

 

 
Figure 3.—Tunnel layout. Dotted lines represent 

shocks and expansions. 
 

Post Processing 

The data presented a challenge when computing boundary-layer parameters. There were density 
variations in the tunnel due to imperfections in the expansion from the nozzle, presenting a more complex 
boundary layer analysis. But in the cases with a shock, density had to be taken into account since the 
region downstream of the shock had no clear boundary layer edge when looking at u-velocity alone. For 
consistency, the boundary layer edge was defined as the location where either the streamwise velocity or 
streamwise momentum reached a maximum. 

Since the intent of the micro-ramps is to improve the boundary layer, standard boundary layer 
properties were examined to determine their effectiveness. Specifically, the compressible displacement 
thickness, compressible momentum thickness, and incompressible shape factor are considered in this 
paper. The displacement and momentum thicknesses give a measure of the flow blockage added by the 
devices, while the shape factor measures the boundary layer health.  
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The incompressible shape factor, H, was chosen primarily because it has been used to quantify 
improvements in boundary layer health for bleed flows (Ref. 1). The incompressible shape factor is 
typically used instead of the compressible form even in compressible flow because it is independent of 
Mach number. A flat plate turbulent boundary layer has an incompressible shape factor of approximately 
1.3 at all Mach numbers, and a boundary layer near separation has an incompressible shape factor of 
about 2.7 (Ref. 8). 

Results 
Baseline Cases 

Empty Tunnel 

The u-velocity contours of the empty tunnel baseline simulation are shown in Figure 4. The 
maximum velocity in the core flow is 519 m/s, which given the speed of sound of 258 m/s gives the 
expected Mach number of 2.0. Figure 5 shows a comparison of boundary-layer u-velocity profiles for the 
three grid sequences and the experimental data. All of the cases predict the correct velocity in the 
freestream. With grid refinement, the CFD solutions closely match the experiment throughout the 
boundary layer. Only subtle changes are observed between the medium and fine grid solutions, indicating 
grid convergence was obtained. Table 2 and Figure 6(a) and (b) show the baseline boundary-layer integral 
parameters compared with experiment. As expected, for the case with a simple converging-diverging 
nozzle and flat plate boundary layer, the agreement of the computed boundary layer parameters and 
growth rate to the measured values was very good.  
 

TABLE 2.—SPAN-AVERAGED COMPRESSIBLE DISPLACEMENT THICKNESS, COMPRESSIBLE 
MOMENTUM THICKNESS AND INCOMPRESSIBLE SHAPE FACTOR FOR THE BASELINE CASES 

  

Computational results Experimental results 
δ*,  
cm 

θ,  
cm 

H δ*,  
cm 

θ,  
cm 

H 

x = -13 cm Empty tunnel 0.301 0.101 1.30 0.283 0.100 1.32 
x = -8 cm Empty tunnel 0.321 0.104 1.30 0.292 0.104 1.31 
  Micro-ramps* 0.337 0.110 1.30 0.291 0.117 1.34 
x = –4 cm Empty tunnel 0.324 0.112 1.31 0.301 0.106 1.32 
  Micro-ramps 0.347 0.111 1.29 0.324 0.108 1.30 
x = 0 cm Empty tunnel 0.333 0.115 1.30 0.342 0.116 1.30 
  Micro-ramps 0.348 0.118 1.30 0.347 0.120 1.30 
x = 4 cm Empty tunnel 0.347 0.115 1.30 0.326 0.118 1.32 
  Micro-ramps 0.356 0.118 1.29 0.337 0.124 1.32 
  Shock** 0.495 0.170 1.81 0.516 0.190 1.75 
*Micro-ramp configuration 2 with no oblique shock. 

**For the computational case the shock generator angle was 6.5°. For the experimental case the shock 
generator angle was 8.5°. 

 

 
Figure 4.—Contours of u-velocity for the empty 15- by 15-cm supersonic wind tunnel 

configuration at z = 0 cm.  
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Figure 5.—Grid sensitivity and experimental data 

for empty tunnel. 
 

 
Figure 6.—(a) Empty tunnel compressible displacement thickness, (b) empty tunnel compressible 

momentum thickness, (c) micro-ramps only compressible displacement thickness and (d) micro-
ramps only compressible momentum thickness along the streamwise direction. 

 

Shock Only: Viscous Sidewalls 

Attempts to run simulations for the 8.5° shock generator angle were unsuccessful in maintaining a 
supersonic flow within the vicinity of the shock generator. The pressure rise from the shock generator 
would move upstream of the shock generator, and the tunnel flow would unstart as in a supersonic inlet. 
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This was caused by boundary layer thickening along the tunnel floor coupled with an even stronger 
adverse flow response along the sidewall. Corrective measures such as starting the calculations with a 
higher inflow pressure (to increase the Reynolds number and reduce the effective blockage) always 
reverted to the same unstarted flow state when the pressures were reduced to the experimental conditions. 
In addition to the SST turbulence model this case was run using the Spalart-Allmaras (SA) turbulence 
model, which tends to predict weaker SBLIs. However, no significant improvement was noted when the 
SA turbulence model was used. In subsequent attempts, the shock generator angle was first reduced to 
7.5°, which still exhibited the undesirable unstart behavior, and then ultimately reduced to 6.5°, which 
eliminated the unstart characteristics, yet continued to produce a pressure rise upstream of the leading 
edge of the shock generator plate. 

Even for the 6.5° shock generator case, when the micro-ramps were introduced, the effect of the 
sidewall boundary layer thickening interacted with the wake of the micro-ramps nearest the sidewall 
causing the flow to unstart. As a result, a further deviation from the exact experimental configuration was 
made to remove the viscous effect of the sidewall boundary layers to isolate the effects of the micro-
ramps on the SBLI. This was accomplished by changing the sidewall boundary condition from viscous 
wall to inviscid wall. While no longer accurately representing the experimental configuration, 
comparisons between CFD and experiment were restricted to a small region (17 to 23 percent of the test 
section width depending on the micro-ramp spacing) near the center of the tunnel where, in the 
experiment, the flow was observed to be free of tunnel sidewall effects. 

The computational grid and contours of u-velocity are shown in Figure 7 for the tunnel with shock 
generator installed at 6.5° angle of attack. Figure 8 illustrates the interaction between the sidewall 
boundary layer and the tunnel floor boundary layer due to the shock. Measurements were not taken near 
the sidewalls in the experiment, but this sidewall boundary layer thickening was expected and has been 
observed in similar experiments. 
 
 

(a)  

(b)  

 
Figure 7.—(a) Grid and (b) u-velocity contours for tunnel with shock 

generator plate at 6.5° with viscous sidewalls at z = 0 cm. 
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Figure 8.—Contours of u-velocity at various streamwise locations for 

shock-only case with viscous sidewalls. Symmetry plane normal to the 
z-direction.  

 

 
Figure 9.—Contours of u-velocity for the shock-only case with inviscid tunnel 

sidewalls at z = 0 cm. 

Shock Only: Inviscid Sidewalls 

In order to mitigate the viscous wall issue and better observe the micro-ramp effectiveness, the tunnel 
sidewall boundary condition was changed from viscous wall to inviscid wall. All cases were simulated 
with this modified boundary condition, including the baseline cases. The tunnel floor and ceiling 
remained viscous to preserve the SBLI of interest. Figure 9 shows the shock-only baseline case with 
inviscid sidewall. It is apparent that the excessive sidewall boundary layer thickening is eliminated and no 
shocks are present upstream of the shock generator plate.  

From Figure 9 it is apparent that the boundary layer is significantly thickened in the region where the 
oblique shock impacts the tunnel wall. This illustrates the SBLI that is to be mitigated by the micro-
ramps.  

Micro-Ramps Only: Inviscid Sidewalls 

This simulation showed the vortices generated by micro-ramp configuration 2 unaffected by any 
shocks. The grid in the vicinity of the micro-ramps is shown in Figure 10. Figure 11 illustrates the 
vortices formed by flow over the micro-ramps. As shown in Figure 11, vorticity magnitude is highest near 
the trailing-edge tip of the micro-ramps and decays downstream. Previous work has shown that vorticity  
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Figure 10.—Grid in the vicinity of the micro-ramps. Flow is 

from left to right. Symmetry plane normal to z-direction. 
 

 
Figure 11.—Vorticity magnitude contours at various streamwise locations. Flow is 

from left to right. Symmetry plane normal to z-direction. 
 
decay occurs at a higher rate in RANS-based CFD than is measured experimentally (Refs. 9 and 10). As 
shown in Table 2, the micro-ramps tend to increase compressible displacement thickness compared to the 
empty tunnel cases at the corresponding locations, but have little effect on incompressible shape factor 
when no shock is present. Figure 6 (c) and (d) show the micro-ramp only baseline CFD compared to the 
experimental data. Agreement is generally good expect for the first station downstream of the micro-
ramps at x = –8 cm. Because this station is so near the micro-ramps, it may be difficult to obtain good 
measurements in the experiment and calculate good velocities in the computational results.  

Micro-Ramps With Shock 

The inviscid wall boundary condition was applied to the tunnel sidewalls for all CFD simulations of 
the tunnel with the shock generator and micro-ramps. The viscous wall boundary condition continued to 
be applied to the upper and lower walls of the tunnel, as the SBLI on these surfaces was of primary 
interest in this study. Figures 12 and 13 show u-velocity contours of the four micro-ramp/shock 
configurations. Local separation occurs in the wake region of each micro-ramp, however it is unclear 
from contour plots alone whether flow is improved in the spanwise region between the micro-ramps.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 12.—Contours of u-velocity at the tunnel centerline (z = 0) for the four micro-ramp 

configurations: (a) Configuration 1, (b) Configuration 2, (c) Configuration 3, and (d) Configuration 4. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 13.—Contours of u-velocity halfway between the micro-ramps (z = s/2) for the four micro-

ramp configurations: (a) Configuration 1, (b) Configuration 2, (c) Configuration 3, and 
(d) Configuration 4. 
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Spanwise averaging of boundary-layer parameters was used to obtain a qualitative measure of micro-
ramp effectiveness. Table 3 shows compressible displacement thickness, compressible momentum 
thickness, and incompressible shape factor for all four micro-ramp with shock configurations as well as 
the shock only baseline case for comparison. Compared to the shock-only case, displacement thickness 
and momentum thickness increased with the addition of micro-ramps. The incompressible shape factor 
decreased for three of the four micro-ramp configurations. 
 

TABLE 3.—SPAN-AVERAGED COMPRESSIBLE DISPLACEMENT  
THICKNESS,COMPRESSIBLE MOMENTUM THICKNESS AND  

INCOMPRESSIBLE SHAPE FACTOR FOR MICRO-RAMPS  
WITH SHOCK CASES. x = 4 cm 

Configuration δ*,  
cm 

θ,  
cm 

H 

Shock 0.495 0.170 1.81 
1 0.520 0.183 1.75 
2 0.541 0.184 1.81 
3 0.546 0.192 1.77 
4 0.514 0.194 1.66 

 
 

Data were available from the 15- by 15-cm SWT test for one micro-ramp configuration with a shock 
generator angle of 6.5°. and was modeled as configuration 4 in the current study. The CFD and 
experimental data are presented in Table 4. Also presented are the experimental results for that 
configuration at 7.5° and 8.5° shock generator angle. Again the CFD predicts an effect of the shock 
interaction stronger than that observed in the experiment in terms of increased boundary-layer parameter 
thicknesses and increased shape factor. In fact, the computed boundary-layer parameters are closest to the 
experimental data at 8.5°. The experimental data seems to show a distinct break where the data at 6.5° and 
7.5° are quite similar with a slight increase in the displacement and momentum thicknesses, δ* and θ, 
without a change in shape factor, H, but the values of all three parameters for the 8.5° case are 
significantly increased. It is possible that this is indicative of the flow being attached for the two small 
shock generator angles and separated at the highest angle. If this is the case, then it seems that the CFD is 
predicting an earlier separation limit in terms of shock strength than is evidenced in the experimental data. 
 
 

TABLE 4.—SPAN-AVERAGED COMPRESSIBLE DISPLACE-
MENT THICKNESS, COMPRESSIBLE MOMENTUM THICKNESS 
AND INCOMPRESSIBLE SHAPE FACTOR FOR MICRO-RAMPS 

WITH SHOCK CONFIGURATION 4 (CFD) COMPARED  
TO EXPERIMENTAL DATA (SWT) FOR THE SAME  

MICRO-RAMP CONFIGURATION AT VARIOUS  
SHOCK GENERATOR ANGLES. x = 4 cm 

α,  
degrees 

 δ*,  
cm 

θ,  
cm 

H 

6.5 CFD 0.514 0.194 1.66 
6.5 SWT 0.400 0.129 1.29 
7.5 SWT 0.445 0.140 1.29 
8.5 SWT 0.556 0.226 1.62 

 
To compare the trends between micro-ramp configurations, Figure 14 shows the span-averaged 

displacement and momentum thicknesses, δ* and θ, and shape factor, H, for the CFD compared to 
experimental data. Experimental data is shown in blue for all four micro-ramp configurations at a shock 
generator angle of 8.5° and in green for configuration 4 with a shock generator angle of 6.5°. The 
computational results are shown in red with squares marking the four configurations and the horizontal 
line representing the value for the 6.5° shock-only baseline. Despite the simulations not exactly modeling  
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(a)  

(b) (c)  
Figure 14.—Plots showing comparisons of span-averaged boundary-layer parameters at x = 4 cm by 

configuration numbers from Table 1 along the x-axis: (a) compressible displacement thickness, δ*, 
(b) compressible momentum thickness, θ, and (c) incompressible shape factor, H. 

 
the experimental configuration, the flow affected by the micro-ramps away from the sidewalls was 
successfully simulated and captured the trends of the impact of the ramps on the shock system, especially 
in terms of the shape factor. It is important to mention, however, that the CFD predictions represent a 6.5° 
shock generator angle, while the experimental data was obtained with a shock generator angle of 8.5°. We 
would expect that the CFD prediction for the 6.5° case should match the experimental data for the same 
angle. However, we observe that the values more closely match those for the 8.5° case, suggesting that 
the CFD predicts a greater adverse response to the SBLI than seen in the experiment. 

Conclusions 
The primary challenge encountered in the present study was that the CFD solutions showed 

limitations in replicating experimental results with the oblique shock, especially when the sidewalls were 
modeled as viscous walls. Across the board, the CFD predicted a greater adverse response to the shock 
interaction than was observed in the experiment. This was seen as a tunnel unstart with a plate angle of 
8.5° and also as a larger boundary-layer shape factor with a plate angle of 6.5°. Even when the sidewalls 
were modeled as inviscid walls, the response of the boundary layer to the shock interaction is not captured 
well by currently available RANS-based CFD.  

Although there were difficulties modeling the exact experimental configuration, the modified 
simulations with inviscid sidewalls are a useful complement to the experimental data. The effect of the 
micro-ramps on the shock showed the same trends as for the experiment based on the limited data 
available for the 6.5° case. The addition of micro-ramps to a SBLI reduced the incompressible shape 
factor in three of the four configurations. However it is still unclear whether the micro-ramps are 
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beneficial since both the displacement thickness and momentum thickness increased with the addition of 
micro-ramps. This trade-off would need to be considered relative to a specific inlet system. 

For the cases without a shock present, the CFD agreed reasonably well with the experiment. This was 
even true for the case with only the micro-ramps even though there are some questions as to whether a 
RANS solver is appropriate to use with vortical flows. Indeed, the RANS approximation needs to be more 
closely examined in its application to the study of vortical flow, micro-ramps in particular. All RANS 
models respond to vorticity by increasing turbulent viscosity, in turn decreasing vorticity, possibly too 
fast (vorticity is not preserved far enough downstream) to represent a real physical flow. Other 
approaches such as large-eddy simulation or direct numerical simulation should be investigated and may 
give more informative results. 
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