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1. INTRODUCTION 

 

The Aquarius/SAC-D observatory was launched into a 657-km altitude, 6-PM ascending node, sun-

synchronous polar orbit from Vandenberg, California, USA on June 10, 2011. The Aquarius instrument 

was commissioned two months after launch and began operating in mission mode August 25. The 

Aquarius radiometer meets all engineering requirements, exhibited initial calibration biases within 

expected error bars, and continues to operate well. A review of the instrument design, discussion of early 

on-orbit performance and calibration assessment, and investigation of an on-going calibration drift are 

summarized in this abstract. 

 

2. RADIOMETER HARDWARE AND PRE-LAUNCH CALIBRATION 

 

The Aquarius radiometer is a three-beam pushbroom radiometer measuring the first three Stokes 

parameters at 1413 MHz with 25-MHz bandwidth [1]. It operates within the 1400-1427 MHz primary 

exclusive allocation for passive sensing to avoid severe radio-frequency interference (RFI) and still 

maintain sensitivity to sea surface salinity. The radiometer is internally calibrated with a reference load 

and multiple noise diodes to maintain 0.13Krms/7-day stability [2] and externally calibrated using global 

averaged expected antenna temperatures or the oceanic vicarious cold-point brightness temperature [3] 

for longer term time periods. Pre-launch calibration measurements were carried out to measure values 

and temperature coefficients of front-end losses and noise diode excess noise temperatures after the 

methods in [4]. The predicted calibration bias prior to launch was +/- 4.4-K (3-sigma).  
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3. INITIAL PERFORMANCE AND CALIBRATION BIAS ASSESSMENT 

Upon power-up the radiometer achieved thermal and radiometric stability within the first few hours. 

This allowed an initial performance estimate to be completed on the first day of operation. NEDT 

estimates were made over the open ocean using two-sample Allan deviation calculations. The measured 

NEDT’s are 0.12 K (on 1.44 second integration footprints) for vertical and horizontal polarizations and 

0.15 K for third Stokes parameter channels. The instrument starting on the first day continues to produce 

high-quality antenna temperatures of the Earth’s surface. Two key design features enabling the observed 

performance are the strict thermal controller and oversampling for mitigation of RFI. The stable thermal 

environment created by the automatic thermal controller allowed the radiometer to produce quality data 

almost immediately after turn-on. Likewise, the RFI mitigation system, which is a combination of 

hardware-based oversampling [5] and ground-software based detection and removal [6], allows the 

radiometer to operate through the challenging RF environment found at L-band. Evidence of stable, RFI-

free data over the ocean can be seen in the antenna temperature mosaic (horizontal-polarization) shown 

in Fig. 1. (The diagonal striations are an artifact of the three distinct incidence angles and by using both 

ascending and descending passes.) 

 

Figure 1. Mosaic of horizontal-polarized antenna temperature during first week of operation starting 

August 26, 2011. Data are gridded on 1.5-deg grid preserving the last acquired value. Gray areas 

represent locations where at least one of three radiometers suffered persistent RFI. 

 

 



Finally, an initial calibration bias (reference to ocean TA’s) was performed using both vicarious cold 

point and global average expected antenna temperatures. Biases on all channels were smaller than the 

maximum expected and negative, indicating a systematic error in the pre-launch calibration. Values of 

the initial biases are shown in Table 1.  

 

Table 1. Day-1 (25-Aug-2011) Estimates of Antenna Temperature Calibration Bias. 

Method (Polarization) Beam 1 Beam 2 Beam 3 

Vicarious Cold  (H-pol) -1.2 -0.8 -0.3 

Vicarious Cold (V-pol) -3.7 -3.7 -2.7 

Global Average (H-pol) -1.7 -1.1 -0.3 

Global Average (V-pol) -3.6 -3.6 -2.6 

 

 

4. CALIBRATION DRIFT CORRECTION 

 

Subsequent daily analysis reveals a slowly varying drift in the calibration bias. Such a drift was not 

unexpected and similar settling was witnessed during engineering model testing [7]. The majority of the 

drift is a monotonic change in gain calibration, likely due to changes in the noise diode coupling circuits. 

However, a second non-monotonic component is also present and may be due to RF impedance changes 

in the front-end. The exact physical mechanism is still under investigation, but presently the drift 

signature can be explained by two different ratios of radiometer calibration counts (i.e., detector 

outputs):   

   D1 = ΔCND1/ ΔCND2  D2 = ΔCND1/DL/ ΔCND1/ANT 

where the first ratio is one of internal noise diode counts to external noise diode counts and the second  

is formed by the ratio internal noise counts while switched to the Dicke load vs. the antenna. The former 

yields the relative drift of the two different noise sources and is found to vary monotonically with time. 

The latter is sensitive to front-end impedance changes and carries the non-monotonic signature. The 

signatures of D1 and D2 can be fit to the observed calibration drift and used to reproduce it with an error 

of ~ 60 mKrms, providing strong evidence the drift is indeed due to hardware changes. A correction 

algorithm based on these results is being developed. 
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