National Aeronautics and Space Administration

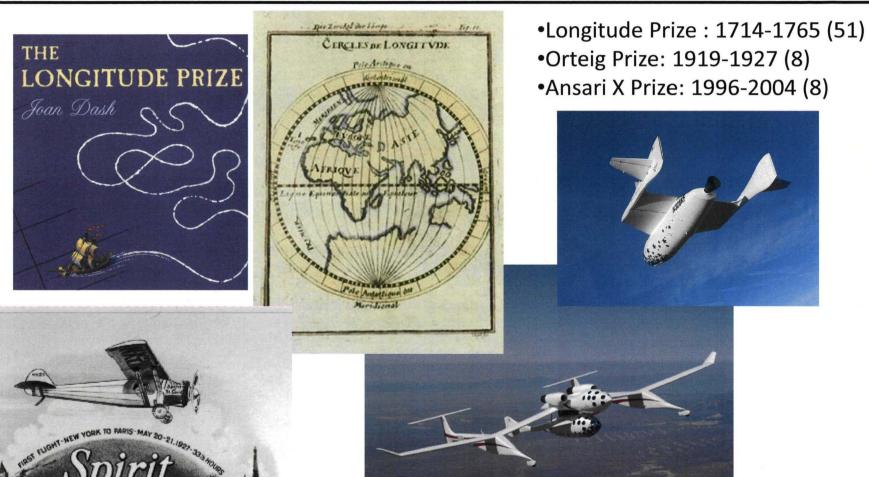
NASA

2012 Lunabotics Mining Competition: Results & Taxonomy

Space Resources Roundtable (SRR)
Planetary & Terrestrial Mining Sciences
Symposium (PTMSS)
Golden, Colorado
June 5-7, 2012

Rob Mueller,
Lunabotics Head Judge
Senior Technologist,
Surface Systems Office
NASA Kennedy Space Center, (KSC)
Florida

Gloria Murphy
Lunabotics Project Manager


3rd Annual NASA Lunabotics Mining Competition: May 23-26, 2012 Kennedy Space Center - Visitor's Center

Introduction: Historical Leveraged Prizes

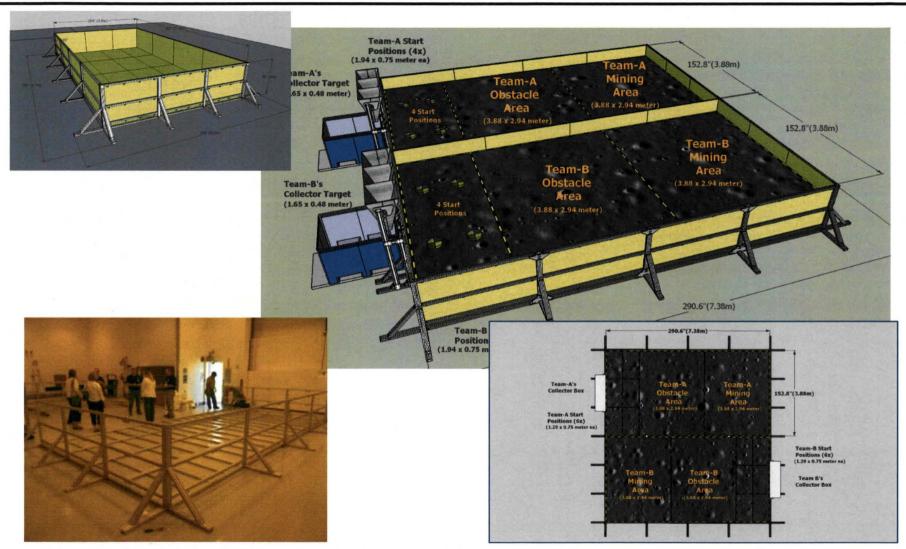
NASA Regolith Excavation Challenge: 2007-2009

- In 2005 the United States of America congress funded a program of contests to stimulate innovation and competition in technical areas of interest to NASA.
- ◆ This program consists of the NASA Centennial Challenges, a collection of public contests designed to stimulate technological innovation in areas that benefit space exploration. The intent was to build on historic and current prize experience.
- ◆ The Regolith Excavation Centennial Challenge was won in 2009 by Paul's Robotics, Worcester Polytechnic Institute, MA. \$500,000 prize

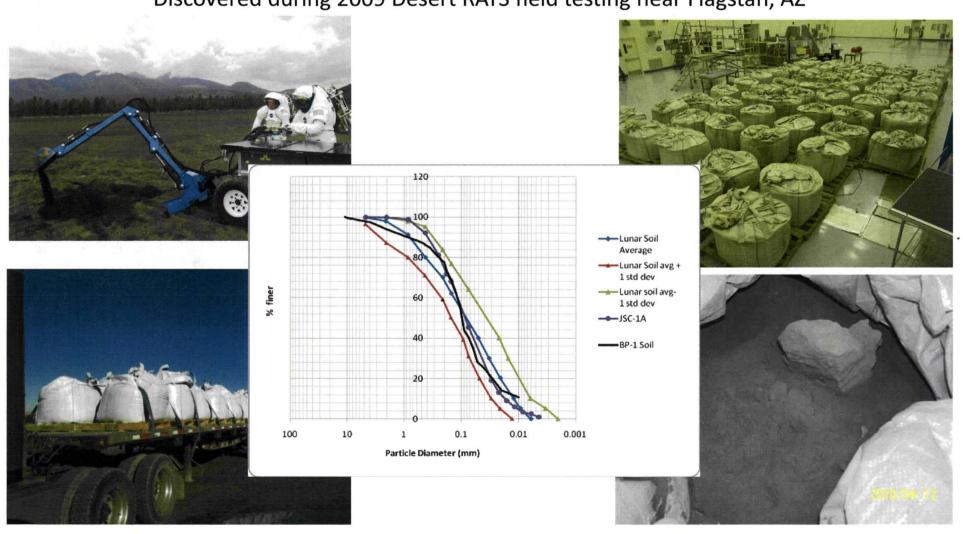
Annual NASA Lunabotics Mining Competition A Centennial Challenges Spinoff for University Teams

Held Annually since 2010

What is a Lunabot?


- Robot Controlled Remotely or Autonomously
- **♦** Visual and Auditory Isolation from Operator
- Excavates Black Point 1 (BP-1) Simulant
- Weight Limit 80 kg
- Dimension Limits 1.5m width x .75m length x .75m height
- Designed, Built and Tested by University Student Teams

LunArena (~25 ft x 25 ft)



Black Point 1 (BP-1) Lunar Regolith Simulant

Discovered during 2009 Desert RATS field testing near Flagstaff, AZ

Overview

- Design, build & compete remote controlled robot (Lunabot)
- Excavate Black Point 1 (BP-1) Lunar Simulant
- Deposit minimum of 10 kg of BP-1 within 10 minutes: 2 Competition Attempts Allowed
- \$5000, \$3000, \$2000, \$1000 Scholarships for most points scored in several judging criteria
- Held Annually: May 23-26 in 2012
- Located at Kennedy Space Center, FL Visitor's Center
- International Teams Invited

Judging Criteria for Lunabotics: 2012

Mining Category Elements	Specific	Actual	Units	LunaPoints
	Points			
Pass Inspections			a	1000
Regolith over 10 kg	+2/kg	110	kg	+200
Average Bandwidth	-1/50kb/sec	5000	kb/sec	-100
Lunabot Mass	-10 /kg	80	kg	-800
Report Energy Consumed	+100	1	1= Achieved	+100
			0= Not	
			Achieved	
Dust Tolerant Design &	0 to +200	150	0	+150
Dust Free Operation			Decision	
Autonomy through	+250	0	1= Achieved	0
Obstacles			0= Not	
			Achieved	_
Full Autonomy	+500	0	1= Achieved	0
			0= Not	
			Achieved	
Total				550

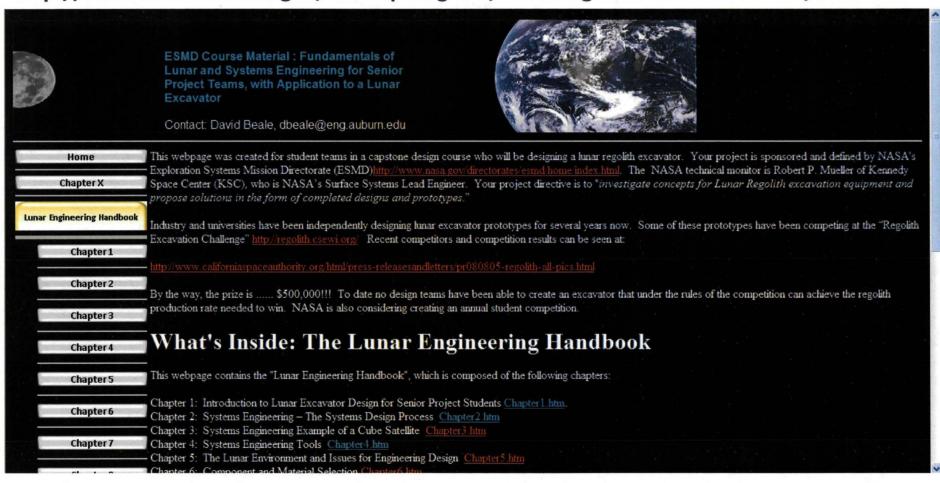
Benefits – Multiple Dimensions of Success

- The Lunabotics Mining Competition is a university-level competition designed to engage and retain students in science, technology, engineering and mathematics (STEM).
- NASA will directly benefit from the competition by encouraging the development of innovative lunar excavation concepts from universities which may result in clever ideas and solutions which could be applied to an actual lunar excavation device or payload (crowd sourcing)
- Prepare Students for Future Workforce Hands on Experience!
- 25' x 25' Regolith Bin for New Technologies Development
- Trigger New Concepts for Regolith Excavation Technologies
- Community Awareness of Future KSC Activities
- Outreach to local middle schools, FIRST Robotics, Girl Scouts and Boys & Girls Club
- KSC Visitor Center Tourist Attraction and Educational Event
- ◆ Industrial Sponsors can hire the best talent from all Lunabotics Teams
- Students get job opportunities

Competition Categories

- On-site Mining (\$3,000; \$2,000; \$1,000)
 - 1st, 2nd & 3rd Place Prizes for most lunar simulant deposited in collector within 2 x 10 minute rounds
 - Minimum of 10 kg required to qualify for a prize
- Systems Engineering Paper (mandatory) \$500
- Outreach Project (mandatory) \$500
- **♦** Slide Presentation (optional) \$500
- Team Spirit (optional) \$500
- Best Use of Social Media (optional)

Grand Prize:


Joe Kosmo Award for Excellence \$5,000

Systems Engineering Senior Design Capstone Project

http://education.ksc.nasa.gov/esmdspacegrant/LunarRegolithExcavatorCourse/index.htm

Lunabotics 2012 University Teams (Statistics)

- 73 Teams Registered
- 57 Teams Arrived at KSC (78% Success Rate)
- ◆ 55 Teams Competed at KSC (75 % Success Rate)
- ◆ 13 Teams Qualified with >10 Kg of regolith mined (24 % Success Rate)
- 0 Teams were successful with full autonomy (0% Success Rate)
- Over 600 students participated / 3,000 viewers average on NASA Edge Streaming
- Over 100 community volunteers at the 2012 competition
- 17 Judges from across the USA
- Support from industrial sponsors
- Support from NASA HQ
- Support from ASCE & AIAA
- Career Fair (7 students hired)
- College Recruitment Event for High School Students (\$14,000 in Scholarships)

Lunabotics 2012 International University Teams

- ◆ 19 International Teams
- 8 Countries Represented
 - Bangladesh (3)
 - Canada (3)
 - Columbia (2)
 - India (8)
 - Mexico (1)
 - Romania (1)
 - South Korea (1)
 - USA (38)

Goal: Every Continent Represented!

Lunabotics Mining Competition 2012: Results

Joe Kosmo Award for Excellence (Grand Prize)

The University of Alabama in collaboration with Shelton State Community College

On-Site Mining Award

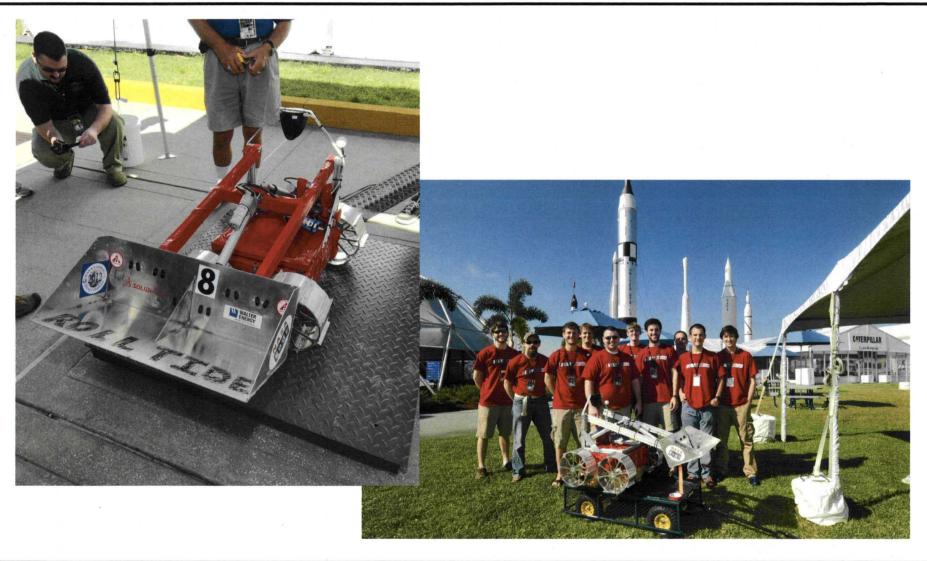
First Place - Iowa State University in collaboration with Wartburg College

Second Place - The University of Alabama in collaboration with Shelton State Community College Third Place - Milwaukee School of Engineering

Judges Innovation Award

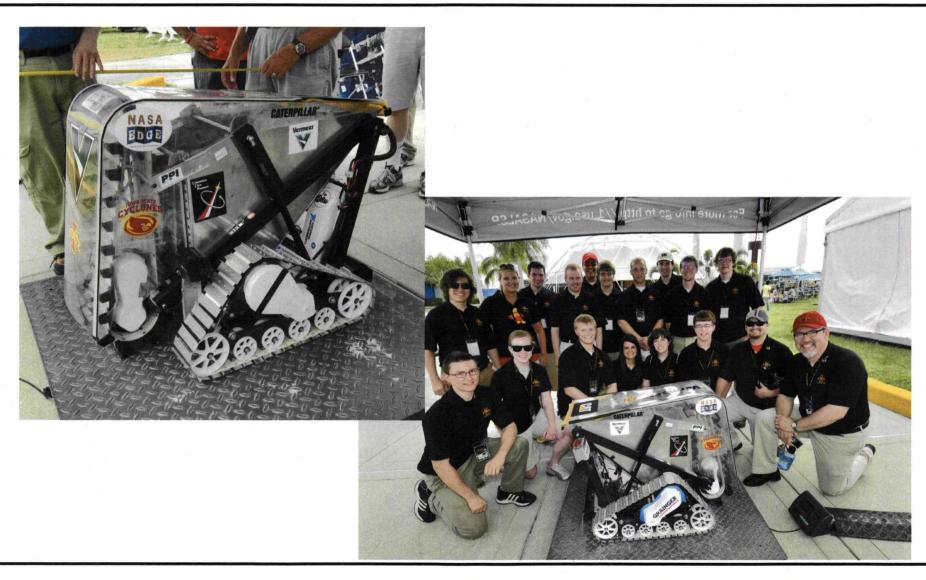
Polytechnic Institute of NYU

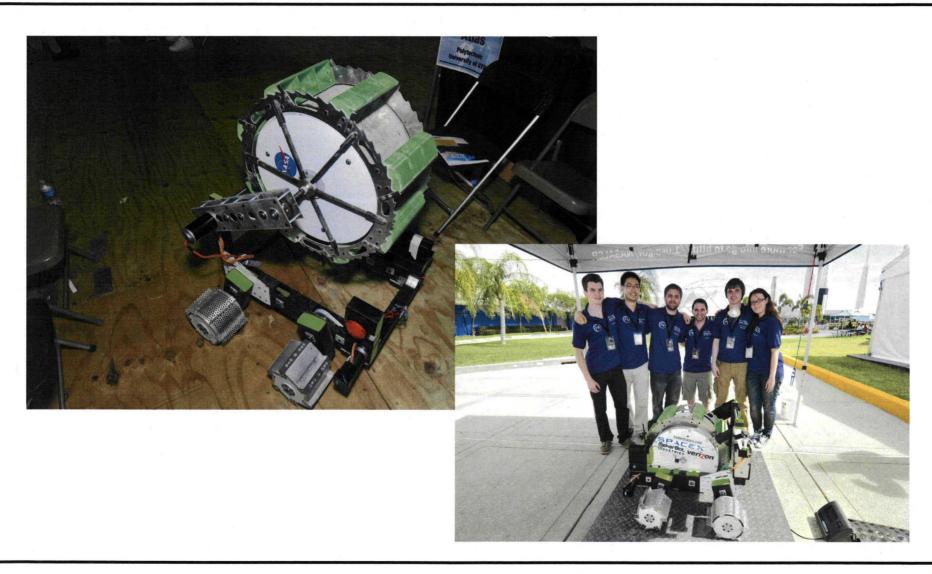
Efficient Use of Communications Power Award


Iowa State University in collaboration with Wartburg College

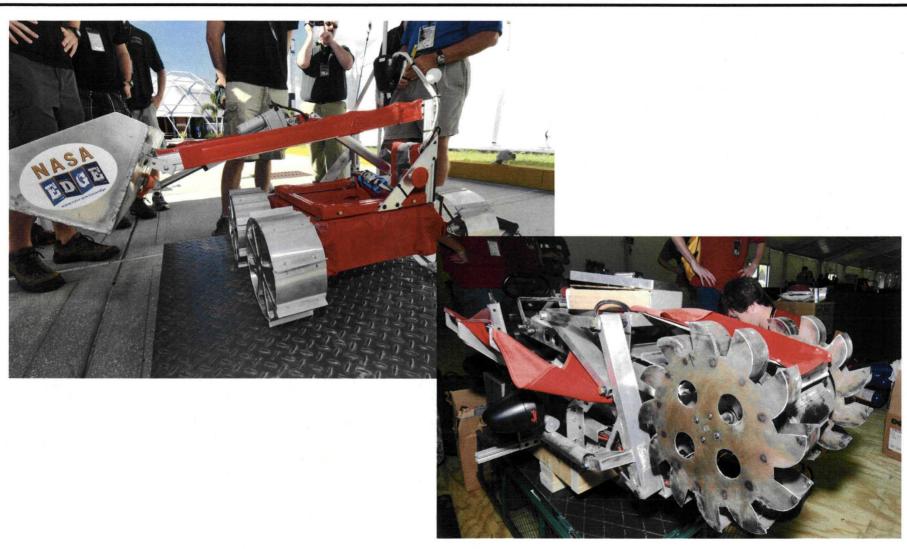
Best Use of Social Media

Universidad de Los Andes of Colombia


2012 Joe Kosmo Award for Excellence (Grand Prize) University of Alabama & Shelton Comm. College


2012 On-Site Mining Award lowa State University with Wartburg College

2012 Innovation Award: Polytechnic Institute of NYU


2012 Innovation Honorable Mention: Florida State University and FAMU

2012 Innovation Honorable Mention: University of Alabama and Shelton State C.C.

Lunabotics Mining Competition 2012: Results

Slide Presentation and Demonstration Award

First Place - The University of Alabama in collaboration with Shelton State Community College

Second Place - West Virginia University
Third Place - Universidad de Los Andes of Colombia

Outreach Project Report Award

First Place - Iowa State University in collaboration with Wartburg College Second Place - Montana State University - Bozeman Third Place - John Brown University

Systems Engineering Paper Award

First Place - Montana State University - Bozeman

Second Place - John Brown University

Third Place - University of Illinois at Urbana-Champaign

Team Spirit Award

First Place - The University of Alabama in collaboration with Shelton State Community College

Second Place - Instituto de Astrobiologia Colombia IAC

Third Place - Polytechnic Institute of NYU

Teams that Qualified in the On Site Mining Category (>10Kg Excavated in a round) 13 / 55 Teams

1 Iowa State University	LunaCY	1191
The University of Alabama 2	Alabama Lunabotics: Team NASACAR	920
Milwaukee School of 3 Engineering	Regolith Raiders	848
₄ John Brown University	Eaglenauts	785
5 Auburn University	Aubotics	684
6 Polytechnic University of NYU	Atlas	442
7 Laurentian University	Laurentian Lunabotics	419
Montana State University - Bozeman	Montana ALE (Autonomous Lunar Excavator)	406
9 University of New Hampshire	UNH LunaCats	376
10 West Virginia University	Mountaineers	298
11 Florida Institute of Technology	Pandia	251
12 Middle Tennessee University	Raider Robotics	233
Universidad Autónoma 13 Metropolitana	LUNABOTICS UAM TEAM	160


2012 Lunabotics Team Spirit: In Abundance!

Lunabot Design Taxonomy

Regolith Excavation Mechanisms

2012 Lunabotics Mining Competition

Regolith Excavation Mechanism	# of machines employing
	excavation mechanism
Bucket ladder (two chains)	29
Bucket belt	10
Bulldozer	10
Scraper	8
Auger plus conveyor belt / impeller	4
Backhoe	4
Bucket ladder (one chain)	4
Bucket wheel	4
Bucket drum	3
Claw / gripper scoop	2
Drums with metal plates (street sweeper)	2
Bucket ladder (four chains)	1
Magnetic wheels with scraper	1
Rotating tube entrance	1
Vertical auger	1

Regolith Transfer Mechanisms

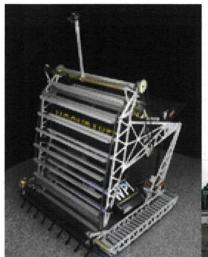
Regolith Transfer Mechanism	# of machines
	employing transfer
	mechanism
Bucket ladder	34
Conveyor belt	13
Impeller	3
Raising scraper with chute	3
Bucket belt	2
Bucket chain	2
Raising whole robot or main body	2
Auger	1
Catch bin with auger	1
Rotating tube (auger like)	1

Regolith Storage Mechanism

Regolith Storage Mechanism	# of machines	
	employing	
	storage	
	mechanism	
Hopper	56	
Scoop	14	
Scraper	3	
Backhoe scoop	1	
Bucket drum	1	
Bulldozer	1	
Inside tube body	1	

Regolith Dumping Mechanism

Regolith Dumping Mechanism	# of machines employing
	dumping mechanism
Raising / tilting hopper	32
Tilting / raising scoop	9
Conveyor belt (with attachments)	8
Chute	5
Raising hopper with back chute	5
Bucket ladder	3
Ramp plus rotating valve bottom	3
Angled auger	2
Angled vibrating hopper (stationary)	2
Cable pulling up bottom of hopper	2
Horizontal belt / back opens	2
Separate lifting ramp/storage bin	2
Tilting / raising scoop with overhead dump	2
Raising whole robot on second robot, then tilting hopper	2
with chute	
Swivel of backhoe arm, rotating scoop	2
Raising bucket drum, counter rotate	1
Rotating scoop (overhead)	1
Clamshell scoop opening	1


Robot Mobility Method

Robot Mobility Method	# of machines employing mobility method
Two tracks	26
Four fixed wheels	24
Four fixed wheels with grousers	12
Stationary with swivel	5
Four individually steerable wheels	4
Four fixed wheels with super profile	2
Six fixed wheels	2
Four individual steerable tracks	1
Four steerable wheels with grousers	1
Four wheels with grousers and suspension	1
Six fixed wheels with grousers	1
Stationary	1
Three wheels (one steerable)	1
Two tracks and two wheels (half track)	1
Two very wide tracks	1
Four fixed tracks	1

Is the Most Popular Winning Design the Best Lunabot Regolith Mining Design for the Moon??


2009: Paul's Robotics WPI

2010: Montana State U

2011: Laurentian University

2012: Iowa State U