
1 
 

Calibration of two-dimensional floodplain modeling in the 1 

Atchafalaya River Basin using SAR interferometry 2 

 3 

Hahn Chul Jung,1* Michael Jasinski,1 Jin-Woo Kim,2 C. K. Shum,2 Paul Bates,3  4 

Jeffrey Neal,3 Hyongki Lee, 4 and Doug Alsdorf 2 5 

 6 

1Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20871, USA 7 

2Division of Geodetic Science, School of Earth Sciences, Ohio State University, Columbus, OH 43210, 8 

USA 9 

3School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK 10 

4Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77004, USA 11 

 12 

*Corresponding Author 13 

Hahn Chul Jung 14 

Hydrological Sciences Laboratory, Code: 617 15 

NASA Goddard Space Flight Center 16 

Building 33, Greenbelt Road, Greenbelt, MD 20771, USA 17 

Email: hahnchul.jung@nasa.gov 18 

Phone: 301-614-6839 19 

 20 

 21 

Submitted to Water Resources Research 22 

  23 

https://ntrs.nasa.gov/search.jsp?R=20120012968 2019-08-30T21:42:40+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10569484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 

Abstract 24 

Two-dimensional (2D) satellite imagery has been increasingly employed to improve 25 

prediction of floodplain inundation models.  However, most focus has been on validation 26 

of inundation extent, with little attention on the 2D spatial variations of water elevation 27 

and slope. The availability of high resolution Interferometric Synthetic Aperture Radar 28 

(InSAR) imagery offers unprecedented opportunity for quantitative validation of surface 29 

water heights and slopes derived from 2D hydrodynamic models. In this study, the 30 

LISFLOOD-ACC hydrodynamic model is applied to the central Atchafalaya River Basin, 31 

Louisiana, during high flows typical of spring floods in the Mississippi Delta region, for 32 

the purpose of demonstrating the utility of InSAR in coupled 1D/2D model calibration. 33 

Two calibration schemes focusing on Manning’s roughness are compared. First, the 34 

model is calibrated in terms of water elevations at a single in situ gage during a 62 day 35 

simulation period from 1 April 2008 to 1 June 2008. Second, the model is calibrated in 36 

terms of water elevation changes calculated from ALOS PALSAR interferometry during 37 

46 days of the image acquisition interval from 16 April 2008 to 1 June 2009. The best-fit 38 

models show that the mean absolute errors are 3.8 cm for a single in situ gage calibration 39 

and 5.7 cm/46 days for InSAR water level calibration. The optimum values of Manning’s 40 

roughness coefficients are 0.024/0.10 for the channel/floodplain, respectively, using a 41 

single in situ gage, and 0.028/0.10 for channel/floodplain the using SAR. Based on the 42 

calibrated water elevation changes, daily storage changes within the size of ~230 km2 of 43 

the model area are also calculated to be of the order of 107 m3/day during high water of 44 

the modeled period. This study demonstrates the feasibility of SAR interferometry to 45 
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support 2D hydrodynamic model calibration and as a tool for improved understanding of 46 

complex floodplain hydrodynamics.   47 
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1. Introduction 48 

The Atchafalaya River Basin, a low-lying catchment in southern Louisiana 49 

consisting of wetlands and bayous, is the principal distributary of the Mississippi River.  50 

Given both its proximity and make-up, the Atchafalaya basin plays an important role in 51 

mitigating floods and preserving wetland resources in coastal Louisiana. For example, 52 

Mississippi River floodwaters in May 2011, resulting from unusually high precipitation 53 

in the watershed, were diverted through the Morganza Spillway into the Atchafalaya 54 

River Basin to prevent major inundations in populated cities including Baton Rouge and 55 

New Orleans [USACE, 2011]. Also, flood damage caused by Hurricane Katrina in 56 

August 2005 and Hurricane Rita in September 2005, although significant, was mitigated 57 

by flooding into the Atchafalaya basin [LPBF, 2008; Knabb et al, 2006, 2007]. Flood 58 

management has been enabled through the construction of levees, bank protection and 59 

spillways along the Lower Mississippi River, the Atchafalaya, and their tributaries. 60 

Although the man-made levees and river diversions abate flood damage, they also 61 

disrupt the natural floodplain environment. Of principal concern is the  reduction by more 62 

than 50% in the historically large sediment loads deposited within the Lower Mississippi 63 

River delta [LPBF, 2010], which is a major factor in the land loss in southeastern 64 

Louisiana [Meade, 1995]. Annual wetland loss in Louisiana has been estimated at 100–65 

150 km2 and the loss rate is increasing exponentially [Walker et al., 1987; Templet and 66 

Meyer-Arendt, 1988], although the Atchafalaya wetland is actually increasing in size. 67 

Comprehensive flood control and wetland loss studies on coastal Louisiana including the 68 

Atchafalaya River Basin have been initiated to further the understanding of its important 69 

role [USEPA, 1987].   70 
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Despite its importance to the Atchafalaya basin, knowledge of its floodplain 71 

dynamics remains poor. This is primarily due to a lack of in situ gage measurements in 72 

the floodplain. Most operational gages are located along main river channels and bayous 73 

for practical and economic reasons and rarely in floodplains [Allen et al., 2008; Kim et 74 

al., 2009]. Thus, despite long historical data records for the channels, there are 75 

insufficient in situ data for detailed calibration of 2D models resulting in limited accuracy 76 

[Allen et al., 2008]. This is because water flow across wetlands is more complex than 77 

channel routing [Alsdorf el al., 2007; Jung et al., 2010] as flow paths and water sources 78 

are not constant in space and time, but rather vary with floodwater elevations. Therefore, 79 

2D flood modeling combined with emerging remotely sensed data would greatly 80 

facilitate the investigation of the temporal and spatial variations of the floodplain water 81 

movement and further the understanding of the linkage between channels and 82 

floodplains. 83 

The first popular approach to fluvial hydraulics modeling was one-dimensional 84 

finite difference solutions of the full St. Venant equations along the river reach [e.g. 85 

Fread, 1984; Samuels, 1990; Ervine and MacLeod, 1999] since the 1D model design and 86 

implementation are simple and computationally efficient (e.g. MIKE11 [DHI Water and 87 

Environment, 2001], ISIS [Halcrow and HR Wallingford, 2001], FLUCOMP [Samuels 88 

and Gray, 1982] and HEC-RAS [USACE, 2001]). However, when applied to floodplain 89 

flows, the 1D model cannot simulate lateral diffusion of the flood wave. This is because 90 

floodplain topography is discretized as cross-sections rather than as a surface and flow 91 

depends on the location and orientation of finite cross-section measurements [Hunter et 92 

al., 2008].  93 
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The advances in computing resources and the growing availability of spaceborne 94 

data have enhanced the opportunities to estimate flood inundation extent, floodplain 95 

water elevation, and to model floodplain hydrodynamics [Hess et al, 1995; Smith, 1997; 96 

Alsdorf et al., 2000; Bates et al., 1992]. For instance, high-resolution Light Detection 97 

And Ranging (LiDAR) elevation maps enable modelers to represent an improved spatial 98 

resolution of channel and floodplain hydraulics that are consistent with known processes 99 

[Bates et al., 2005]. Repeat-pass synthetic aperture radar (SAR) interferometry has 100 

recently been employed to estimate water level changes with time [Alsdorf et al. 2000] 101 

and when combined with modeling storage changes [Alsdorf, 2003] and flow hydraulics 102 

[Alsdorf et al., 2005]. Satellite SAR interferometry offers the opportunity to characterize 103 

complex fluvial environments in combination with sparse in situ gages and satellite 104 

altimetry [Kim et al., 2009; Lu et al., 2009; Lee et al., 2009; Jung et al., 2010]. The 105 

floodplain waters and lake habitats can provide double-bounce backscattering, which 106 

allows SAR interferometric coherence to be maintained and provides water elevation 107 

changes [Lu et al., 2005; Lu and Kwoun, 2008; Jung and Alsdorf, 2010].  108 

Two-dimensional models in conjunction with suitably resolved and accurate 109 

digital elevation models (DEMs) of the channel and floodplain surface, and with suitable 110 

inflow and outflow boundary conditions, allow the water depth and depth-averaged 111 

velocity to be computed [Bates et al., 2005]. Many 2D hydraulic modeling approaches 112 

discretized the floodplain as a high resolution regular grid [e.g. TUFLOW [Syme, 1991], 113 

DIVAST [Falconer, 1986], TRENT [Villanueva and Wright, 2006], JFLOW [Bradbrook 114 

et al., 2004], and LISFLOOD-FP [Bates and De Roo, 2000], and structured grid 2D flood 115 
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inundation modeling has been widely used to predict floodplain inundation since first 116 

proposed by Zanobetti et al. (1970).  117 

The work presented here complements previous investigations of Atchafalaya 118 

River hydrology. For example, previous modeling studies have focused on the spatial and 119 

volumetric changes of water, sediment, and salinity in the delta and coastal regions 120 

located at outlets of the Atchafalaya River Basin [e.g. Donnell et al., 1991; Donnell and 121 

Letter, 1992; Wang et al., 1995; Vaughn et al., 1996]. However, these studies did not 122 

implement 2D hydrodynamic modeling to reveal the floodplain water variations within 123 

the levee-protected areas. Other studies using SAR interferometry showed the feasibility 124 

to measure floodplain water elevation changes in combination with in situ measurements 125 

and altimetry [Lu et al., 2005; Lu and Kwoun, 2008; Lee et al., 2009; Kim et al., 2009]. 126 

These studies were focused on the number of SAR data acquisition and areas of 127 

coverage. Other studies using visible and infrared Landsat imagery have delineated land-128 

water classification within the Atchafalaya River Basin [Allen et al., 2008]. 129 

 130 

2. Study Objective 131 

The calibration of 2D floodplain modeling investigations is usually limited by few 132 

or no water level gages in the floodplain.  In many counties, post-flood field surveys are 133 

conducted to determine flood damage and extent. While coupled 1D/2D flood modeling 134 

offers improved estimation of inundation extent, few studies are able to validate detailed 135 

spatial variations in floodplain water elevations. Remote sensing methods for flood 136 

inundation extent were utilized to measure the fitness of the floodplain model results [e.g. 137 

Wilson et al., 2005; Di Baldassarre et al., 2009]. Few modeling studies have taken 138 
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advantage of current satellite SAR interferometric phase measurements of water elevation 139 

changes since the SAR interferometric processing is not straightforward to generate the 140 

hydrologic products for the specified model use.  141 

The goal of the present study is to investigate to what extent SAR interferometry 142 

can be used to improve model calibration. Specifically, the 2D LISFLOOD-ACC model 143 

[Bates et al., 2010] is applied to the central Atchafalaya River Basin together with repeat-144 

pass interferometry from the Advanced Land Observing Satellite (ALOS) Phased Array 145 

type L-band Synthetic Aperture Radar (PALSAR). LISFLOOD provides 1D diffusive 146 

channel flow and 2D simplified shallow water floodplain flow [Bates et al., 2010]. 147 

Satellite InSAR data, namely PALSAR, are used to derive flood levels changes and water 148 

surface slopes at times of SAR data acquisitions.   149 

LISFLOOD is calibrated using two different approaches, both focusing primarily 150 

on Manning’s equation. First, a traditional approach using gage measurements is 151 

employed.  Second, the same model is calibrated using the 2D water level and slope data 152 

extracted from two PALSAR interferometric images, acquired 46 days apart. The results 153 

of both approaches are compared and the merits and disadvantages of each are discussed. 154 

The PALSAR-derived floodplain water elevation change is also used to generate time 155 

series of water storage change in the model area.  156 

This study offers to add new insights in 2D hydrodynamic modeling particularly 157 

in floodplain environments. The complexity of floodwaters has not been well captured 158 

because floodwaters move laterally across wetlands and this movement is not bounded 159 

like that of typical channel flow. This study of 2D hydrodynamic modeling and 160 

implementation of SAR interferometry for model calibration aims to improve our 161 
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understanding of the Atchafalaya floodplain dynamic knowledge and provide an 162 

opportunity to investigate the impacts of flood hazard in the coastal Louisiana regions.  163 

 164 

3. Study Area 165 

The Atchafalaya River Basin is located west of the Lower Mississippi River in 166 

south Louisiana within the coastal margin of the Gulf of Mexico. This region includes 167 

about 2,500 km2 of the Nation’s most significant extents of bottomland hardwoods, 168 

swamps, bayous, and backwater lakes [Allen et al., 2008]. The Atchafalaya River’s 169 

immense floodplain is bounded on the east and west sides by levees. Gates along the 170 

main stem are used to divert nearly 30% of the Mississippi River water into the 171 

Atchafalaya and this flows south through the floodplain to the Gulf of Mexico along 172 

approximately 225 km of river reach [LDNR, 2010; Kim et al., 2009].  173 

As a consequence of frequent flooding, the basin is a sparsely populated area 174 

holding a rich abundance and diversity of terrestrial and aquatic species. In the spring, the 175 

basin receives well-oxygenated water carrying high loads of sediment and nutrients 176 

[Allen et al., 2008]. In addition to the Atchafalaya River, Wax Lake Outlet inside the Six 177 

Mile Lake Water Management Unit (WMU) governs the outflow from the levee 178 

protected basin to the Gulf of Mexico for water management. 179 

Figure 1 shows the location map including rivers, levees, gages, ALOS PALSAR 180 

swath, and model area. The USGS National Wetlands Research Center and the U.S. 181 

Army Corps of Engineers (USACE) provide current stage data on nearly three dozen 182 

stations in the basin. Gage stations used in this study are indicated in Figure 1.  183 
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The USACE has identified 13 subbasins or WMUs because of morphological 184 

diversity within the basin [USACE, 1982]. Figure 2 shows the WMUs outlined in gray. 185 

Because of the unique character of each WMU, fluctuating river levels can result in very 186 

different patterns of water distribution among the WMUs. The seasonal flow of water 187 

through the basin is critical to maintaining its ecological integrity.  188 

For the current study, LISFLOOD is applied specifically to the Buffalo Cove 189 

WMU, an area of 230 km2 in the central Atchafalaya River Basin (See Figure 1, 2). The 190 

WMU is characterized by a swamp forest with paths of slowly moving water or bayous. 191 

This WMU is selected because of the proximity of in situ and satellite measurements, and 192 

because its upstream, downstream, and lateral boundaries are well defined.  Buffalo Cove 193 

is surrounded by the main channel on the east and a levee on the west (Figure 2) with 194 

water level gage stations at Myette Points (C3) in the channel and Buffalo Cove (B1) in 195 

the bayou, shown in Figure 3. Moreover, the Buffalo Cove and Upper Bell River WMUs 196 

show clearer flow pattern of floodwater in the PALSA interferometric phase as compared 197 

to any other WMUs (Figure 4). This provides more spatial variation in water elevation 198 

changes and is therefore a more rigorous test of the floodplain model performance.  199 

 200 

4. Methods and Data 201 

4.1. Hydrodynamic Model 202 

An inertial and parallel version of LISFLOOD-FP hydrodynamic model, or 203 

LISFLOOD-ACC [Bates and De Roo, 2000; Bates et al., 2010], is applied to the Buffalo 204 

Cove WMU. LISFLOOD-ACC is a simplified shallow water model that allows the use of 205 

a larger stable time step than previous LISFLOOD-FP variants, and hence quicker run 206 
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times in addition to a better representation of the flow physics [Bates et al., 2010; Neal et 207 

al., 2011]. Channel flow is represented using the diffusive approximation to the full 1D 208 

St. Venant equations solved using a fully implicit Newton-Raphson scheme. Floodplain 209 

flows decoupled in x and y are implemented for a raster grid to give an approximation to 210 

a 2D inertial wave. Mass conservation was simulated through the continuity equation 211 

(Equation 1). The LISFLOOD-ACC momentum equation includes the gravity and local 212 

acceleration terms from the shallow water equations but not the convective acceleration 213 

and is solved using an explicit finite difference scheme (Equation 2). 214 

 215 

                                        (1) 216 

ℎ ℎ

ℎ ℎ
                                        (2) 217 

 218 

where  is the cell water depth,   is the depth between cells through which water can 219 

flow,  is the flow between cells,  is the cell size,  is Manning’s roughness 220 

coefficient,  is Q from the previous time step divided by cell width and  is gravity. 221 

Model implementation involves use of the diffusive solver for channel flow and 222 

Equations (1) and (2) for 2-D inundation flow modeling, which has been parallelized 223 

using the shared memory Open Multi Processor (OpenMP) [Neal et al., 2009] to reduce 224 

model run time. 225 

The Buffalo Cove model was run over a 62-day simulation period from 1 April 226 

2008 to 1 June 2008 to accommodate at least two ALOS PALSAR acquisition dates on 227 

April 16 2008 and 1 June 2008. Figures 3a and 3b illustrate that the simulation period 228 
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runs during high flow conditions associated with upper Mississippi River basin snowmelt 229 

and spring rains, typical for this time of year.  230 

Inputs include floodplain topography, bathymetric depths, channel widths, flow 231 

boundary conditions, and Manning’s roughness coefficients for channels ( ) and 232 

floodplains ( ). The floodplain topography was constructed using a high resolution 1 m 233 

LiDAR DEM of the whole basin published by USGS National Geospatial Program and 234 

USGS Coastal and Marine Geology Program [USGS, 2011]. The LiDAR survey was 235 

acquired in November 2010 during an optimal data collection window in terms of 236 

average river stage, average minimum temperature, and tree canopy as compared to the 237 

previous LiDAR data collections in years of 2000, 2002, and 2003. The vertical accuracy 238 

requirements meet or exceed the required RMSE of 18.5 cm. The 1 m LiDAR data was 239 

aggregated to 90 m to decrease grid resolutions and reduce model run time. The pixel-to-240 

pixel noise is uncorrelated and reduces linearly in proportion to  as the data are 241 

aggregated, where n is the number of pixels being averaged [Rodriguez et al., 2006]. The 242 

input LiDAR noise for model grids at 90 m is less than 0.2 cm. The averaging can result 243 

in a terrain data error due to smoothing out hydraulically relevant topography. This 244 

resolution has been shown in a number of previous studies to be appropriate to predict 245 

flood inundation in rural areas providing care is taken over the representation of linear 246 

features, such as embankments or levees, which can control the flow development [Bates 247 

and De Roo, 2000; Horritt and Bates, 2001]. Levees in the domain are narrow, typically 248 

less than 10 m wide and are sufficiently high so that floodwaters cannot overtop them for 249 

the chosen simulation period. In order to handle these subgrid-scale features [Yu and 250 

Lane, 2011], the levees in 1 m resolution are vectorized, extracted, and input into the 90 251 
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m resolution floodplain topography directly, without averaging out adjacent elevations 252 

that would have resulted in an uncharacteristically low height at 90 m resolution.  253 

Bathymetry was based on USACE data. The USACE developed updated flood 254 

control, navigation maps, and hydrographic survey maps for the Atchafalaya River as 255 

part of a comprehensive mapping project [USACE, 2006]. The mapping project provided 256 

bathymetric depth measurements every ten feet along the river cross sections. Based on 257 

the bathymetry dataset, the average bed elevations and channel widths were calculated as 258 

equivalent area rectangular cross sections at about every 1 km along the 34 km reach of 259 

the main channel in the Buffalo Cove region.  260 

To facilitate model set up, the model coordinates were rotated 15.67  clockwise 261 

about the North. The coordinate rotation makes the vertical component of Y axis in the 262 

model system parallel to the main channel direction and the horizontal component of X 263 

axis to the floodplain flow condition. Figure 2 shows schematic local hydrodynamics in 264 

the study area. Flow pathways are well protected by high levees, thus water discharge per 265 

each cross section along the main river channel is conservative. The continuity constraint 266 

is given by:  267 

 268 

                                     (3) 269 

 270 

where the superscript  represents time varying discharge ( ), subscript digits are cross 271 

section locations, and the subscript letters  and  represent the channel and floodplain, 272 

respectively. The channel flow from upstream to downstream results in more overbank 273 

flooding into the floodplain, thus the upstream channel discharge is greater than the 274 
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downstream channel discharge (i.e. ). The upstream floodplain 275 

discharge is lower than the downstream floodplain discharge and floodplains around 276 

WMU1 and WMU2 are not flooded due to high levees which prevent overbank flow 277 

(i.e.  ).  278 

Boundary conditions for fluvial flooding applications normally consist of the 279 

time-dependent discharge in the compound channel at the upstream end of the reach and 280 

the time varying water elevation or gradient at the downstream end of the channel [Bates 281 

et al., 2005]. Since there is no discharge station at the upstream boundary of the WMU1 282 

domain, a virtual location C2 was created for which flow,   was estimated using an 283 

inverse distance squared weighting (IDW) interpolation with channel discharges  at 284 

Krotz Springs and  at Myette Point [Heijden and Haberlandt, 2010]. The upstream 285 

channel boundary condition is thus calculated as:  286 

 287 

                                   (4) 288 

 289 

where  is the distance between locations of  and .  290 

In addition to upstream channel discharge, upstream floodplain discharge is also 291 

set as a boundary condition. Although non-channel flow at the boundary of the domain is 292 

usually negligible for fluvial flooding applications [Bates et al., 2005], a time dependent 293 

floodplain discharge is necessary since the upper domain boundary crosses the floodplain 294 

and substantial flow crosses into the domain during the 62 day simulation period. The 295 

upstream floodplain discharge derived from Equation (3) and (4) (i.e. 296 
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 was distributed equally among all the upstream boundary grid 297 

cells. 298 

For the downstream condition, water elevation data at Myette Point ( ) were 299 

used. The other boundaries of the domain within the rectangular grid are set to a free flux 300 

condition to force the model to calculate the slope used for the normal depth calculation 301 

between the last two points. Figure 3 shows daily time series of water elevations and 302 

discharges at gage stations. Gage stations are located at Krotz Springs (C1) and Myette 303 

Point (C3) along the main channel and at Buffalo Cove (B1) in the bayous, whereas C2 is 304 

a virtual station. The gage vertical datum are converted from the National Geodetic 305 

Vertical Datum of 1929 (NGVD29) into the National American Vertical Datum of 1988 306 

(NAVD88) [Milbert, 1999] to fit the LiDAR floodplain elevations and bathymetry 307 

dataset from USACE. In this study, focus is on right (i.e. west) bank flooding in the 308 

Buffalo Cove WMU from the main channel of the Atchafalaya River.  309 

 To calibrate the model response to Manning’s roughness coefficients, a matrix of 310 

36 simulations was run with values of  varying from 0.020 to 0.030 in steps of 0.002 in 311 

the channel, and  varying from 0.05 to 0.30 in steps of 0.05 in floodplain. The range of 312 

values was chosen based on tables of typical    in various types of channels and 313 

floodplain [Chow, 1959]. Previous modeling in the Atchafalaya River Delta suggested 314 

that Manning’s roughness coefficients in the area ranged from 0.01 to 0.06 for navigable 315 

waters, 0.01 to 0.02 for bayous, 0.03 to 0.06 for obstructed canals, and 0.2 to 0.5 for 316 

marsh and/or subaerial delta lobes [Donnel et al., 1991; Donnel and Letter, 1992].  317 

The Mean Absolute Error (MAE) and bias were used to evaluate the sensitivity of 318 

the model to the range of Manning’s coefficients, or:  319 
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 320 

                                             (5) 321 

 322 

                                             (6) 323 

 324 

where  is model and  is observation (i.e. gage height or interferometry height 325 

differences). The MAE and bias were computed for all points where there were 326 

observations and were weighted equally. All model results for the total model period of 327 

62 days are included in this calibration. Further details of both calibration approaches, 328 

using water elevations of gage measurements and water elevation changes from SAR 329 

interferometry, are described in 5.1 and 5.2, respectively.  330 

 331 

4.2. SAR Interferometry 332 

The Japan Aerospace Exploration Agency’s (JAXA’s) Advanced Land Observing 333 

Satellite (ALOS), a follow-on mission for the Japanese Earth Resources Satelite-1 (JERS-334 

1), carries the Phased Array type L-band Synthetic Aperture Radar (PALSAR).  The 335 

PALSAR scenes are HH polarized and L-band (wavelength: 23.62 cm). The incidence 336 

angles of PALSAR scenes are approximately 38.7° from descending passes. The 337 

PALSAR swath of path 168 and frame 590 were collected on 16 April 2008 and 1 June 338 

2008. As illustrated in Figure 1, the SAR image covers the central Atchafalaya River 339 

Basin including the Buffalo Cove WMU.  340 

Measurements of water elevation changes ( ) for the model domain were 341 

obtained from repeat-pass PALSAR interferometry and are used in model calibration. 342 
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SAR Interferometric processing follows the two pass method [Massonnet et al., 1993]. 343 

The interferometric phase includes satellite orbit, topographic relief, and any changes in 344 

the radar range (i.e. floodplain water elevation change in this study). The orbit related 345 

phase is subtracted through flat earth phase removal that calculates satellite state vectors 346 

given by the system file and adjusts baseline errors based on the residual phase in the 347 

interferogram. As the most critical parameter in SAR interferometry, baseline is a 348 

measure of the distance between the two SAR antenna locations. The topographic related 349 

phase is subtracted using the Shuttle Radar Topography Mission (SRTM) C-band 350 

elevation data to make the remaining differential phase dependent on floodplain water 351 

elevation changes. Interferometrically measured water elevation changes in the direction 352 

of the radar line-of-sight (LOS) are converted to a vertical displacement in terms of the 353 

wavelength and incidence angle of the PALSAR scenes [Massonnet and Feigl, 1998]. In 354 

this processed interferogram, 2 π radians of interferometric phase are equivalent to 15.1 355 

cm of vertical height change.  356 

Figure 4 shows differential wrapped interferometric fringes in the floodplain. The 357 

patterns of a cycle of interferometric phase (i.e. fringe) imply that the basin consists of 358 

various independent hydrodynamic units as defined by the USACE (1982). Distinct 359 

changes in the interferometric  measurements are located along WMU boundaries. 360 

Most of the WMUs exhibit homogenous values in the interferogram. However, WMUs 361 

Buffalo Cove and Upper Bell River show sheet flow pattern and WMU Bayou DeGlais 362 

shows a sharp distinction in the middle of the floodplain due to a navigable waterway. 363 

The differential phase wrapped in a cycle of 2 π radians is unwrapped with minimum cost 364 

flow techniques and a triangular irregular network to provide water elevation changes. In 365 
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the phase unwrapping stage, adaptive radar interferogram filtering is applied to reduce 366 

noise and enhance fringe visibility. The unwrapped differential phase corresponds to 367 

relative water elevation changes. The interferometric SAR measurements require a 368 

reference datum to convert from the relative water elevation changes to absolute values 369 

[Jung et al., 2010]. For this reference datum, gage B1 was used, where the water level 370 

decreased 71 cm. (i.e.  = -71 cm over 46 days from 16 April 2008 to 1 June 2008, 371 

see  in Figure 3b). The unwrapped and absolute interferometric measurements, shown 372 

in Figure 8c, were used to calibrate model water elevation changes. 373 

 374 

5. Results 375 

5.1. Calibration of Model Water Elevations ( ) with Gage Measurement 376 

LISFLOOD was first calibrated in terms of water elevations at the Buffalo Cove 377 

(B1) gage using a matrix of 36 simulations with various Manning’s roughness 378 

coefficients of the channel (  and the floodplain, . For each simulation, the MAE was 379 

computed based on the daily water elevation differences between model and gage 380 

measurement for the entire 62 day simulation period. The best-fit model of  and   381 

was then determined as the lowest MAE in the three dimensional space plot of MAE,  382 

and . Figure 5 shows calibration surfaces for MAE and bias. The models with 0.022 to 383 

0.026 in  and 0.10 to 0.20 in   show less than 10 cm in MAE. The optimum lies at 384 

0.024 in  and 0.10 in   with 3.8 cm in MAE. The calibration surfaces show the L-385 

shaped optimal region typical for 2D hydraulic models optimized against single gage or 386 

flood extent data (see for example Fewtrell et al., 2011).  Here an increase in channel 387 

friction can be compensated for by a decrease in floodplain friction (and vice versa) to 388 
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yield identical MAE or global goodness of fit for a range of channel and floodplain 389 

friction combinations. It can be seen that as one moves away from the optimal L-shaped 390 

region, MAE is greater with increasing gradient.  391 

The bias calibration surface shows that as  increases, bias increases and 392 

becomes less sensitive to . It implies that modeling water elevations at gage B1 in 393 

bayous is more dependent on the Manning’s roughness coefficient of the main channel 394 

relative to that of the surrounding floodplain. The generally positive bias means that 395 

modeled water elevations are greater than the gage measurement (see Equation 6). This 396 

agrees with the notion that water elevation and storage must increase since higher 397 

channel roughness decreases water velocity, thereby requiring a greater cross-section to 398 

maintain the same outflow. The daily time series of water elevation in the best-fit model 399 

is shown in Figure 6. It reveals that after 2 days of initiating the simulation, the model 400 

reaches a stable stage and the model results fit the gage water elevations within  4 cm 401 

MAE. This is an excellent result given typical terrain and discharge errors, and within an 402 

engineering study would likely be used to indicate a model that could be used to take 403 

flood risk management decisions. In scientific terms, it is however a relatively limited 404 

test since the model performance is only evaluated at a single point with the domain. 405 

 406 

5.2. Calibration of Model Water Elevation Changes ( ) with SAR 407 

Interferometry 408 

The model is calibrated in terms of water elevation changes in the Buffalo Cove 409 

WMU using the same simulations as performed in 5.1. However, instead of using one in 410 
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situ gage with a continuous height record, calibration is conducted using two images of 411 

height covering the entire flooded domain, separated by 46 days.    412 

The MAE is again used to find the best-fit model of  and  against water 413 

elevation changes calculated from ALOS PALSAR interferometry from 16 April 2008 to 414 

1 June 2008. Figure 7 shows calibration surfaces for MAE and bias. The models with 415 

0.024 to 0.028 in  and 0.10 in   show a MAE of less than 8 cm over the 46 day 416 

period. The optimum lies at 0.028 in  and 0.10 in   with a MAE of 5.7 cm, which are 417 

similar but not identical to Manning’s roughness coefficients calibrated in 5.1. The bias 418 

calibration surface shows that as  increases, bias decreases, being less sensitive to . 419 

It implies that obtaining an optimal match between floodplain  measurements and 420 

the LISFLOOD-ACC model for the Buffalo Cove WMU is more dependent on the 421 

Manning’s roughness coefficient of the floodplain compared to that of the main channel. 422 

The negative bias means that model water elevation change is actually less than that 423 

indicated by the interferometric measurements (see Equation 6). This is consistent with 424 

the notion that floodplain water elevations are less sensitive with higher roughness in the 425 

floodplain due to the lower floodplain velocities. Total frictional force (F) is proportional 426 

to Manning’s roughness ( ) and the square of flow velocity ( ) so model sensitivity to 427 

friction is a non-linear function of the flow velocity (v).  When v is low, the modeled 428 

water levels become dramatically less sensitive to . 429 

Figure 8 shows water elevation change maps calculated from the best-fit model 430 

and SAR interferometry. The modeled  is calculated by subtracting the water 431 

elevation map on 16 April 2008 from that on 1 June 2008. The interferometrically 432 

measured  in Figure 8 is absolute water elevation changes which are referenced 433 
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and unwrapped from the differential wrapped interferogram in Figure 4. The  in 434 

Buffalo Cove WMU ranges from -100 to -50 cm over 46 days showing that the 435 

floodplain is draining over the this period. The largest difference in  between 436 

model and SAR interferometry is exhibited in the southwest part of the WMU. It appears 437 

that inside waterways hold floodwater moving from east to west and add more 438 

complexity into the local floodplain dynamics than is captured by this model. The 439 

Amazon floodplain channels are discovered to govern the complex water flow in the 440 

locally confined hydrodynamics [Alsdorf et al., 2007; Jung et al., 2010]. The 441 

interferometry demonstrates that the southwest part exhibits a distinct difference in the 442 

spatial gradients of water elevation changes as compared to the surrounding area, which 443 

is  micro-terrain effects that are not predicted by the model in a 90 m grid, 444 

 445 

5.3. Estimation of Water Storage Changes ( ) in Buffalo Cove WMU 446 

The daily modeled  is calculated by multiplying  by the grid cell 447 

area. The model  calibrated by SAR interferometry is used to calculate dS/dt. 448 

 449 

                            (7) 450 

 451 

where  ranges from 1 to 62 as a simulation day and  and  are  90 m for a given grid 452 

box.  453 

The time series  is shown in Figure 9a for daily as well as 5 and 10 day moving 454 

averages. The daily storage changes in the model domain of about 230 km2 range 455 

approximately from  m3/day to  m3/day during the modeled period. The water 456 
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storage changes are positive at the beginning whereas they turn to be negative after 27 457 

April 2008 with some variations.  458 

The relationship between the model water storage changes ( ) and water 459 

elevation changes ( ) at the Buffalo Cove gage (B1), shown in Figure 9b, shows a 460 

strong linear relationship, except for three outliers generated at the beginning of the 461 

simulation. It implies that the model requires more than 3 days to wet the whole 462 

floodplain and to provide reasonable values of water elevations in the floodplain of the 463 

WMU. The first polynomial regression model (464 

) exhibits an R2 of 0.94. The residuals of the regression model explain that 465 

 at the Buffalo Cove gage cannot be representative of  across all of the 466 

Buffalo Cove WMU floodplain. As can be seen in Figure 8, the  varies markedly in 467 

space.  Maps of  and  in Figure 10 exhibit water storage changes that are positive, 468 

near zero, and negative. The maps of  show instances of floodplain filling and emptying. 469 

For instance, the average  of the WMU between 15 April 2008 and 16 April 2008 470 

is 2.4 cm/day when the corresponding  is 5.5x  m3/day. On the contrary, the 471 

 average of the WMU between 31 May 2008 and 1 June 2008 is -2.9 cm/day when 472 

the corresponding  is -6.6x  m3/day. The  maps in the lower panel of 473 

Figure 10 show less variation within the WMU as compared to the  maps shown in 474 

Figure 8 because the time interval ( ) is 1 day shorter than 46 days in Figure 8. 475 

 476 

6. Discussion 477 

Two approaches to calibrate a 2D hydrodynamic model were investigated, one 478 

using a single in situ gage measurement and the second using SAR interferometry. Each 479 
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approach calibrates the model in terms of different model products that have different 480 

space (i.e. dimensionality) and time scales. The first calibration uses time series of water 481 

elevations at one specified gage station for the total simulation period of 62 days. Due to 482 

the gage location in the bayou, the calibration shows more dependency on channel 483 

roughness relative to floodplain roughness.  484 

The second calibration uses water elevation changes calculated from SAR 485 

interferometry across the whole WMU area for one time interval of 46 days between two 486 

successive overpasses of the PALSAR satellite. The latter is a particularly stern test for a 487 

2D hydrodynamic model as to require accurate prediction of spatial patterns of water 488 

elevation change over a long simulation period. Since SAR interferometry receives strong 489 

scatters in the floodplain due to the double bounce effect as compared to specular 490 

scattering of open water [Lu and Kwoun, 2008; Jung and Alsdorf, 2010], this calibration 491 

shows more dependency on floodplain roughness.  492 

Most 2D floodplain modeling requires a longer spin-up time, as compared to 1D 493 

channel modeling, in order to wet the floodplain as well as channel for stabilization of the 494 

floodplain dynamic in the model. The spin-up time in the calibration with SAR 495 

interferometry requires at least 3 days more than the 2 days required with only gage 496 

measurements. The different calibration methods suggest the same floodplain roughness, 497 

but different channel roughness in their best-fit models, which can be explained by 498 

different model products used in their calibrations. The pattern and trend of the MAE and 499 

bias calibration surfaces imply that calibration against different data sets would lead a 500 

user to make different conclusions regarding the model’s differential sensitivity to 501 

channel and floodplain friction. Practically, the real meaning of roughness as an effective 502 
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parameter is a component of topography that has to be calculated to optimize the 503 

agreement between model predictions and measurements [Lane, 2005]. The calibrated 504 

roughness can be a valuable reference to the hydrodynamic modeling community as it is 505 

properly adjusted along water stage, grid resolution, and model feature. 506 

The impact of the results to uncertainty in upstream discharge was investigated by 507 

changing the flow by +/- 20 percent in increments of 5 %, for both calibration 508 

approaches. Root-Mean-Square-Deviation (RMSD) in the modeled  and  was 509 

computed for each flow, averaged across the domain, using the best-fit model of 0.028 in 510 

 and 0.10 in . Assuming that even for good gages, Q error is likely to be ± 10 %., 511 

Figure 11 indicates that this likely error in upstream Q leads ~10 cm of errors in the 512 

modeled  maps on both 16 April 2008 and 1 June 2008 and less than 2.5 cm in the 513 

modeled  map (Figure 11). This implies that the effect of an error in Q on the 514 

absolute water elevations is much larger than the effect of the same Q error on the water 515 

elevation changes. The deviation on absolute water elevations can be compensated for in 516 

any modeling study with a uniform offset derived from a contemporaneous ground truth 517 

campaign. The deviation of 2.5 cm in the modeled  can be regarded as the range of 518 

acceptable differences between the observed  and the modeled one. It suggests that 519 

within the Q ± 10 % error ranges, 54 % of  map in Figure 8d shows a good 520 

agreement between the model and the interferometric measurement. The slight difference 521 

in channel roughness between two calibration methods (i.e. 0.024 / 0.1 and 0.028 / 0.1 in 522 

 / , respectively) leads ~1.5 cm of the modeled  difference in Figure 7a and 523 

this can be also explained by within the Q ± 10 % error ranges.  524 
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SAR interferometry with a short baseline is the more appropriate to provide water 525 

elevation changes and calibrate the corresponding model products as compared to long 526 

baseline. Short perpendicular components in the baseline yield more topographic relief 527 

per phase cycle than long baselines, thus more reliable estimates of water elevation 528 

changes [Zebker and Villasenor, 1992]. In this study, the ALOS PALSAR L-band 529 

interferogram were processed with a perpendicular baseline of -219 m at the center of the 530 

satellite acquisition. The short baseline indicates that 2 π radians of phase are equivalent 531 

to ~204 m of topographic relief (i.e. the ambiguity height) whereas depending on the 532 

incidence angle, the same 2 π radians are also equivalent to about 15.1 cm of vertical 533 

water elevation change [Massonnet and Feigl, 1998]. The short perpendicular baselines 534 

and the C-band SRTM relative height errors of 5.5 m [Farr et al., 2007] cause 0.17 535 

radians of phase change, which are equivalent to 0.4 cm of vertical displacement. The 536 

accuracy of this displacement measurement is a function of the local coherence as well as 537 

of our ability to separate the topographic phase component from the total observed phase. 538 

The mean coherence of 0.35 in the modeled floodplain yields an expected phase noise 539 

value of less than 0.4 radian error for 21 looks used in the processing [Zebker and 540 

Villasenor, 1992; Li and Goldstein, 1990], which is equivalent to less than 1.0 cm of 541 

vertical displacement. The scale errors in the observed  are small enough to 542 

calibrate the modeled  and provide the optimum Manning’s roughness.  543 

In both gage stage  and interferometric SAR  calibrations, the tolerable 544 

difference between model and data is much smaller as some of key errors drop out. Error 545 

sources in the LiDAR data, a terrain data error resulting from the averaging to 90 m, the 546 

observed  data, and the measured  are less than 1 cm whereas the likely ±10% 547 
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errors in Q result in less than 2.5 cm in the modeled . It is noted that these errors 548 

are not necessarily additive and not all will be at a maximum at the same time.  549 

This model domain is mostly covered with woody wetland, yet the Atchafalaya 550 

River Basin includes more various land covers of urban, pasture, cultivated crops, woody 551 

wetlands, and emergent herbaceous wetlands in 2006 National Land Cover Data  552 

(NLCD) distributed by USGS [Fry et al, 2011]. For large floodplain modeling, the 553 

roughness can be assigned in more detail based on land use and land cover [Kalyanapu et 554 

al., 2009]. To take advantage of land cover data to the roughness assignment, 555 

optimization algorithms need to be utilized for multi parameter calibration [Zhang et al., 556 

2008]. 557 

 558 

7. Conclusions 559 

The 2D LISFLOOD-ACC model was applied to spring flooding in the central 560 

Atchafalaya River Basin and calibrated using two independent approaches.  A traditional 561 

approach used a continuous temporal record of in situ, point water level gage 562 

measurements. The second new approach, employed temporal ( ) and spatial 563 

( , ) variations of water levels derived from ALOS PALSAR interferometry, 564 

observed at two separate times. Although the two different approaches yielded slightly 565 

different values for channel Manning’s , the close comparison in results establish the 566 

feasibility of satellite based approach, at least for this particular basin and flow 567 

conditions. Results were facilitated by a relatively simple spring hydrograph with few 568 

spikes in river discharge, and well defined floodplain boundaries. Overall, the results 569 



27 
 

offer a new approach for satellite-based calibration of hydrodynamic models, especially 570 

in regions of sparse in situ data. 571 

The slight difference in calibration results are to be expected given that the two 572 

independent approaches relied on two different data sets, in one case a continuous time 573 

series of channel elevations at a single point, and in the second, a continuous spatial 574 

distribution of water levels and slopes at two points in time.  However, differences also 575 

might be due to artifacts in the observed data, or micro-terrain effects that are not picked 576 

up in a 90 m grid, or error associated with assumptions in the hydraulic model. Results 577 

indicate that even a few observations can quantify the floodplain water elevation and 578 

reveal the complexity of the floodplain hydrodynamics. This study highlights the 579 

importance and potential advantage of 2D interferometric SAR techniques to support 2D 580 

floodplain model calibration.  581 

Second, results on the spatial and temporal variations of water elevations ( , 582 

) are demonstrated to be useful to estimate daily time series of water storage changes 583 

( ) in Buffalo Cove WMU. Since the model is validated in terms of  from 584 

SAR interferometry, the improved model can generate reliable estimates of  and 585 

the moving averages can be useful to see the trend of basinwide water storage changes.  586 

Lastly, results indicate the feasibility of using SAR interferometry for enhanced 587 

prediction and assessment capabilities for future flood events in the floodplain. The 588 

hydrodynamic modeling calibrated by SAR interferometry can be extended into higher 589 

grid resolution and/or larger domains to study the floodplain hydrodynamics in more 590 

detail. For the purpose of future flood control and risk management, modeling could 591 
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focus on monitoring the basin in near real time with the help of parallel computation 592 

using multi core processors. 593 
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Figure Captions 789 

Figure 1. LiDAR map over the study area. The Atchafalaya River Basin is bounded on 790 

the east and west sides by levees in south central Louisiana, United States. The upstream 791 

main channel in the basin diverts the Lower Mississippi River and flows out to the Gulf 792 

of Mexico. The orange rectangular box locates hydrodynamic model study area and green 793 

diagonal box indicates the ALOS PALSAR swath used in this study. The Atchafalaya 794 

River and Mississippi River are represented by blue lines. Levees and gages are marked 795 

with red lines and inverted black triangles. Gage stations are located at Krotz Springs 796 

(C1) and Myette Point (C3) along the main channel and at Buffalo Cove (B1) in bayou 797 

whereas C2 is a virtual station.  798 

 799 

Figure 2. Schematic of local hydrodynamics in the Atchafalaya River Basin including 13 800 

water management units (WMUs): 1-Lake Henderson , 2-Alabama Bayou, 3-Werner, 4-801 

Lost Lake, 5-Cow Island, 6-Bayou DeGlais, 7-Cocodrie Swamp, 8-Pigeon Bay, 9-Beau 802 

Bayou, 10-Flat Lake, 11-Buffalo Cove, 12-Upper Bell River, 13-Six Mile Lake [USACE, 803 

1982]. Black and light blue arrows are indicative of channel and floodplain flow 804 

directions. Light blue dotted lines represent floodplain flow boundary condition segments 805 

in the model. These lines are normal to the main channel direction between C2 and C3. 806 

 807 

Figure 3. Daily time series of water discharges and elevations at gages in the model area 808 

during 2008. Panels (a) and (b) show a one year hydrograph including the model period 809 

during high water. The solid lines represent the first and last day in simulation on 1 April 810 

2008 and 1 June 1 2008. Channel water elevations  and  are required for 811 
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downstream channel boundary condition and calibration, respectively. Channel discharge 812 

 and floodplain discharge  are collected and calculated for upstream boundary 813 

condition. Panels (c) and (d) are fitted in the model period. The vertical dashed lines 814 

represent the ALOS PALSAR acquisition dates on 16 April 2008 and 1 June 2008. 815 

  816 

Figure 4. Differential wrapped interferogram of L-band PALSAR superimposed on the 817 

image reflectivity map in the Atchafalaya River Basin. The orange rectangular box 818 

locates the LISFLOOD model area. The color scale represents one cycle of 819 

interferometric phase that can be interpreted as 15.1 cm in vertical displacement. These 820 

fringes represent water elevation changes between 16 April 2008 and 1 June 2008.  821 

 822 

Figure 5. Calibration surfaces for mean absolute error (left) and bias (right) in terms of 823 

water elevations at gage Buffalo Cove (B1) as function of channel (horizontal axis) and 824 

floodplain (vertical axis) Manning’s roughness coefficients. The optimum roughnesses, 825 

determined as the lowest MAE equal to 3.8 cm, lies at 0.024 for channel  and 0. 10 for 826 

floodplain . 827 

 828 

Figure 6. Model water elevations compared to actual water elevations at gage Buffalo 829 

Cove (B1). The model after 2 days in simulation starts to fit the gage water elevations 830 

within  4 cm in MAE with Manning’s roughness coefficients of 0.024 in the channel 831 

and 0.10 in the floodplain. 832 

 833 
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Figure 7. Calibration surfaces for mean absolute error (left) and bias (right) in terms of 834 

water elevation changes in the Buffalo Cove WMU as function of channel (horizontal 835 

axis) and floodplain (vertical axis) Manning’s roughness coefficients ( ). The optimum 836 

lies at 0.028 for channel and 0. 10 for floodplain  with 5.7 cm MAE for the 46 day 837 

simulation. 838 

 839 

Figure 8.  (a) Water elevation maps on April 16 2008 (upper) and June 1 2008 (lower). 840 

(b) Water elevation change map calculated from the calibrated model. (c) Water elevation 841 

change map from SAR interferometry. (d) Difference of water elevation change from 842 

between the model (b) and the SAR interferometry (c). 843 

 844 

Figure 9. (a) Daily time series of water storage changes in the area of ~230 km2 in the 845 

Buffalo Cove WMU. The 5 and 10 day moving averages are performed to demonstrate 846 

the trend of the water storage changes. (b) Relationship between model  in Buffalo 847 

Cove WMU and  at the Buffalo Cove gage (B1). The goodness of fit (R2) is 0.94 848 

based on the first polynomial regression model without three outliers that are generated 849 

before the model is stabilized. 850 

 851 

Figure 10. (Upper) Water depth maps relative to the LiDAR floodplain elevation, and 852 

(lower) water depth change maps when  is positive (a), near zero (b), and negative 853 

(c).  854 

 855 



40 
 

Figure 11. Results of the modeled  and  to uncertainty in upstream Qs, varying 856 

from -20 % and 20 % in steps of 5 %. The calibrated model of 0.028 in  and 0.10 in  857 

 is used as a behavioral model. The  maps on 16 April 2008 and 1 June 2008 and 858 

 map for the 46 days are shown in Figure 8a and 8b. 859 

 860 
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