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AReconstruction Approach to High-Order Schemes
Including Discontinuous Galerkin for Diffusion

H. T. Huynh
NASA Glenn Research Center, MS 5-11, Cleveland, OH 44135, USA; E-mail: huynh@grc.nasa.gov

Abstract. We introduce a new approach to high-order accuracy for the numerical solution of diffusion
problems by solving the equations in differential form using a reconstruction technique. The approach has
the advantages of simplicity and economy. It results in several new high-order methods including a
simplified version of discontinuous Galerkin (DG). It also leads to new definitions of common value and
common gradient—quantities at each interface shared by the two adjacent cells. In addition, the new
approach clarifies the relations among the various choices of new and existing common quantities. Fourier
stability and accuracy analyses are carried out for the resulting schemes. Extensions to the case of
quadrilateral meshes are obtained via tensor products. For the two-point boundary value problem (steady
state), it is shown that these schemes, which include most popular DG methods, yield exact common
interface quantities as well as exact cell average solutions for nearly all cases.
Keywords. Discontinuous Galerkin methods, high-order methods, reconstruction, diffusion equation.

1. Introduction
In the field of Computational Fluid Dynamics, low-order methods are less accurate, but generally are

robust and reliable; therefore, they are routinely employed in practical calculations. High-order (third and
above) methods can provide accurate solutions; however, they are more complicated and less robust. The
need to improve and simplify high-order methods as well as to develop new ones with more favorable
properties has attracted the interest of many researchers. The current work is a step in this direction.

For simplicity, we discuss the case of one spatial dimension, which contains all of the key new ideas.
For this case, the solution u is approximated in each cell (interval) by the data at K points called solution
points ( 1≥K ). These K pieces of data determine a polynomial of degree 1−K , herein called a solution
polynomial. Such polynomials collectively form a function, which is generally discontinuous across cell
interfaces. One advantage of allowing such discontinuities is that the resulting method is local. Another
advantage is that the method can better resolve discontinuities such as shocks in the exact solution.
Calculating the first and second derivatives of u by those of the solution polynomials leads to incorrect
results, since these quantities involve no interaction of the data between cells. For interaction to take place,
at each interface, we need to define a value u and a derivative (gradient) value xu common to the two
adjacent cells; the first and second derivative estimates making use of these common quantities (value or
derivative) would involve interaction. These common quantities can be employed in two different
approaches.

The first approach, introduced by Reed and Hill (1973) for neutron transport equations, is the
discontinuous Galerkin or DG approach. It was developed for fluid dynamics equations by Cockburn and
Shu (1989), Bassi and Rebay (1997a, b), and numerous other researchers; see, e.g., the review paper by
Cockburn, Karniadakis, and Shu (2000). Aside from the discontinuous representation of the solution,
another key ingredient of the DG methods is the integral formulation using test functions. The DG
approach was applied to solve diffusion-type problems by several authors, e.g., Arnold (1982), Bassi and
Rebay (1997a), Cockburn and Shu (1998), Oden et al. (1998), Arnold et al. (2002). The common derivative
at each interface, which leads to a scheme with a rather wide stencil called BR1, was presented in (Bassi
and Rebay 1997a). It was modified so that the resulting scheme has a compact stencil including only
immediate neighbors (Bassi and Rebay 2000). This modification, often called BR2, was analyzed in
(Brezzi et al. 2000). In addition to the advantage of having a compact stencil, which simplifies the coding
of boundary conditions, another advantage of the BR2 scheme is that for the steady state case, the
coefficient matrix for the solution is invertible. The technique of compact stencil was applied by Peraire
and Persson (2008) to the case of one-sided common quantities; the resulting method, which is a
modification of the local DG or LDG scheme of Cockburn and Shu (1998), is named compact DG or CDG.
Finally, Van Leer and Nomura (2006) obtained common quantities by a recovery principle: a polynomial of
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degree 12 −K approximating the solution polynomials on a domain formed by the two cells adjacent to the
interface is constructed via least squares.

The second approach, introduced in (Kopriva and Kolias 1996) and (Kopriva 1998) for a quadrilateral
mesh, solves the differential form of the equation as opposed to the integral form. Here, the solutions are
evaluated at the K Chebyshev-Gauss points, and the fluxes, at the 1+K Chebyshev-Lobatto points. For
diffusion problems, the common quantities are defined as in the BR1 scheme. This approach on a triangular
mesh results in a scheme called spectral difference (Liu et al. 2006). These solution-point and flux-point (or
staggered-mesh) methods have the advantage of conceptual simplicity and the disadvantages of using two
sets of points (or grids) as well as being mildly unstable (Huynh 2007, Van den Abeele et al. 2008). 

In this paper, we present a new approach to high-order accuracy for diffusion problems using the
differential form. The approach has the advantage of simplicity and economy. It employs one set of points,
namely, the solution points, and fluxes are evaluated only at the cell boundaries. It was introduced to solve
advection-type problems in (Huynh 2007), where the objective was the evaluation of the first derivative.
Here, the approach is applied to solve diffusion problems, and the objective is the evaluation of the second
derivative. To this end, first, the common value at each interface can be defined as the average of the two
values just to its left and right as in the BR1 and BR2 schemes, or a one-sided value, say, the one to its left
as in the LDG and CDG scheme (other criteria will be introduced later). Next, we reconstruct the solution
by a function which is continuous across the interfaces and, in each cell, is a polynomial of one degree
higher than that of the solution polynomial so that its derivative is of the same degree. To assure continuity
across the interfaces, this reconstruction is required to take on the common interface value. In each cell, the
reconstruction is obtained by adding two correction functions to the solution polynomial, one to match the
common value at the left interface, and the other to match the common value at the right. Due to symmetry,
we only need to focus on the correction for the left interface. By rescaling, the problem reduces to defining
a correction function g on the interval ]1,1[− such that 1)1( =−g , 0)1( =g , and g is a polynomial of
degree K approximating the zero function in some sense. The condition 1)1( =−g deals with the jump at
the left interface whereas the condition 0)1( =g leaves the right interface value unchanged. The crucial
condition of approximating the zero function can be met by the least-squares principle: g is required to be
orthogonal to all polynomials of degree 2−K or less. Such a correction function turns out to be the Radau
polynomial, and the resulting method is identical to DG. The current version of the scheme, however, is
simpler than the standard version using integral formulation: at each solution point, it involves only a
straightforward derivative formula and a simple correction term regardless of the choice of solution points.
In addition to the Radau polynomial, two other choices for g that result in new methods will be discussed.

Next, the reconstruction for u is continuous across the interfaces, but its derivative can be
discontinuous. For the evaluation of second derivative, we can apply the above correction procedure to the
derivative of the reconstruction. Before this application, we need a common derivative at each interface, for
which the simplest choice is the average derivative employed in the BR2 method. This common derivative
was originally cast via the integral formulation; here, it is cast in a more intuitive manner via the
differential formulation. The concept of reconstruction also clarifies and simplifies its motivation and
calculation. Moreover, the current approach leads to several new criteria for the definition of common
quantities. In particular, a scheme that shares the high accuracy property of Van Leer’s recovery method
without the disadvantage of interpolating across cells is derived. The comparison and trade-offs among the
various choices of new and existing common values as well as choices of correction functions are carried
out by Fourier analysis. Extension to the case of quadrilateral meshes is obtained via tensor products, and
Fourier analyses in two dimensions are discussed. For the case of the two-point boundary value problem
(steady state), it is shown that these reconstruction schemes, which include BR2, LDG, CDG, and recovery
(RDG), yield exact common interface quantities as well as exact cell average solutions for almost all K .
Finally, as a side benefit of the current approach, the (continuous) reconstruction polynomials are shown,
via numerical examples, to be more accurate than the (discontinuous) solution polynomials.

In the hope of attracting the interest of researchers who are not familiar with these types of high-order
schemes, this paper is written in a self-contained manner. It is organized as follows. The diffusion equation,
solution polynomials, and various notations are introduced in Section 2. The evaluation of the first
derivative via reconstruction is presented in §3, and that for the second derivative, in §4. Fourier analysis
and the proof that the eigenvalues are independent of the solution points chosen can be found in §5.
Stability and accuracy of various schemes are presented in §6. Extensions to the case of two spatial
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dimensions are discussed in §7. Section 8 deals with numerical examples. Conclusions and discussions can
be found in §9. Finally, the appendix concerns the boundary value problem (steady state).

2. Diffusion Equation
On the domain ],[ ba , consider the diffusion equation

xxt uu = (2.1)
with initial condition

)()0,( 0 xuxu = . (2.2)
Let the domain ],[ ba be divided into possibly nonuniform cells or elements jE of cell widths jh and cell
centers jx , Jj ...,,1= . For the moment, the solution is assumed to be periodic; therefore, boundary
conditions are trivial: the data in the ghost cells 0=j and 1+= Jj are respectively identical to those in
cells J and 1 .

On each cell jE , let the solution be approximated by the K pieces of data kju , , Kk ...,,1= at locations

kjx , , which are called solution points. The K solution points are typically the Gauss or Lobatto points. For
(at least) linear problems, equidistant points can also be employed. In fact, it will be shown that the Fourier
stability and accuracy results are independent of the type of points chosen. For simplicity, we assume that
the same type and same number of points are employed for all cells.

At each solution point, the solution )(, tu kj depends on t ; )(,
n

kj tu , however, is abbreviated to kju , . At

time level n, suppose the data kju , are known for all j and k. We wish to calculate dttud kj /)(, at time
ntt = , which is abbreviated to dtud kj /, . That is, we wish to evaluate xxu at the solution points kjx , in

terms of the data. Then, we march in time by, say, a Runge-Kutta method.
Instead of dealing with the cell jE or the global description, it is often more convenient to deal with the

interval ]1,1[−=I or the local description; see, e.g., (Hughes 2000). With ξ varying on I and x on jE ,
the linear function mapping I onto jE and its inverse are

2/)( jj hxx ξξ += and jj hxxx /)(2)( −=ξ . (2.3a, b)
Let the solution points on I be denoted by kξ , Kk ...,,1= . The solution points on jE are, by (2.3a),

2/)(, jkjkkj hxxx ξξ +== . (2.4)
A function )(xrj on jE results in a function on I denoted by, for simplicity of notation, )(ξjr :

)())(()( xrxrr jjj == ξξ .
The derivatives in the global and local descriptions are related by the chain rule,

ξ
ξ

d
dr

hdx
xdr j

j

j )(2)(
= . (2.5)

On jE , for each k, let kj ,φ be the Lagrange polynomial of degree 1−K that takes on the value 1 at

kjx , and 0 at all other solution points. In the global and local descriptions, respectively,

∏∏
≠=≠=

−
−

=
−

−
=

K

kll lk

l
k

K

kll ljkj

lj
kj xx

xx
x

,1,1 ,,

,
, )(and)(

ξξ
ξξξφφ . (2.6a, b)

These kj ,φ are called basis (or cardinal or shape) functions. The solution polynomial, i.e., the polynomial
of degree 1−K interpolating kju , , Kk ...,,1= , can be written as,

∑∑
==

==
K

k
kkjj

K

k
kjkjj uuxuxu

1
,

1
,, )()(and)()( ξφξφ . (2.7a, b)

At each interface 2/1+jx , let −
+ 2/1ju and +

+ 2/1ju denote the values just to its left and right, respectively,

)(and)( 2/112/12/12/1 ++
+
++

−
+ == jjjjjj xuuxuu . (2.8a,b)
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In general, +
+

−
+ ≠ 2/12/1 jj uu . Using the local coordinate,

)1(and)1( 12/12/1 −== +
+
+

−
+ jjjj uuuu . (2.9a,b)

3. Evaluation of the First Derivative
The first task is to estimate xu at the solution points kjx , . To this end, the polynomials ju on jE

collectively (as j varies) form a function denoted by }{ ju , which is generally discontinuous across the
interfaces. If we ignore these discontinuities and estimate xu by xju )( , we obtain erroneous results. Such a
derivative estimate involves no interaction of the data between adjacent cells, and the solution never feels
the effect of the boundary conditions. Therefore, to estimate xu , we first reconstruct u by a piecewise

polynomial function }{ C
ju , which is continuous at the cell interfaces and, on jE , approximates ju in some

sense (the superscript ‘C’ stands for ‘continuous’ or ‘corrected’). To maintain accuracy, the polynomial C
ju

is required to be of degree K so that x
C
ju )( is of the same degree as ju . At the solution points, x

C
ju )(

provides a derivative approximation that takes into account the data interaction.
Common interface values. In order for }{ C

ju to be continuous at the interfaces, the reconstruction

polynomials C
ju and C

ju 1+ must take on the same value at 2/1+jx . Such a value is often called ‘numerical
flux’ (see the review paper by Cockburn, Karniadakis, and Shu (2000) or Bassi and Rebay (2000)); here,
since the property of commonality relative to the two adjacent cells is essential, and we also need a similar
quantity for the derivative, we use the term ‘common’. Thus, at each interface, we need to define a
common value and a common derivative. For an advection problem, between the left and right values

−
+ 2/1ju and +

+ 2/1ju , the common value is typically the upwind (flux) value. For diffusion problems, we use
the following weighted average: with 10 ≤≤ κ ,

+
+

−
++ −+= 2/12/1

com
2/1 )1( jjj uuu κκ . (3.1)

If 2/1=κ , we obtain the average (centered formula) employed by Bassi and Rebay (1997a, 2000)
)()2/1( 2/12/1

com
2/1

+
+

−
++ += jjj uuu . (3.2)

If 1=κ (or 0=κ ), we have a one-sided formula employed by Cockburn and Shu (1998),
−
++ = 2/1

com
2/1 jj uu . (3.3)

Next, we require )(xuC
j to take on the values com

2/1−ju at 2/1−jx and com
2/1+ju at 2/1+jx , to be of degree

K , and to approximate )(xu j in some sense (see Fig. 3.1(a)). Instead of defining )(xuC
j , we define

)()( xuxu j
C
j − , which approximates the zero function. Switching to the local coordinate ξ on ]1,1[−=I , at

the left and right interfaces respectively, )()( ξξ j
C
j uu − is required to take on the following known values:

)1()1()1(and)1()1()1( com
2/1

com
2/1 jjj

C
jjjj

C
j uuuuuuuu −=−−−=−−− +− . (3.4a,b)

We now separate the prescription of the left interface value from that of the right. This separation is
essential for the new approach to work. On the interval ]1,1[−=I , let LBg be the correction function for
the left boundary defined by the following conditions:

0)1(,1)1( LBLB ==− gg , (3.5)

and LBg is of degree K and approximates the zero function in some sense. The condition 1)1(LB =−g

deals with the jump (3.4a), i.e., )1(com
2/1 −−− jj uu , at the left interface, while the condition 0)1(LB =g leaves

the right interface value )1(ju unchanged. Let RBg be the correction function for the right boundary

defined as the reflection of LBg :
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0)1(,1)1( RBRB =−= gg , (3.6)

and RBg is of degree K and approximates the zero function. Employing LBg , the polynomial

))−−+)= − ξξξ (]1([()( LBcom
2/1

LB guuuu jjjj (3.7)

provides a correction for )ξ(ju at the left interface by changing its value from )−1(ju to com
2/1−ju , while

leaving the right interface value )1(ju unchanged. For later use, the polynomial

))−+)= + ξξξ (]1([()( RBcom
2/1

RB guuuu jjjj (3.8)

provides a correction for )ξ(ju at the right interface by changing its value from )1(ju to com
2/1+ju , while

leaving the left interface value )−1(ju unchanged. See Fig. 3.1(b). Next, the polynomial

))−+))−−+)=) +− ξξξξ (]1([(]1([(( RBcom
2/1

LBcom
2/1 guuguuuu jjjjj

C
j (3.9)

provides the corrections to both interfaces: using (3.5) and (3.6), one can easily verify that com
2/1)1( −=− j

C
j uu

and com
2/1)1( += j

C
j uu . See Fig. 3.1(a). Thus, the above )ξ(C

ju is of degree K , takes on the common values at

the two interfaces, and approximates )ξ(ju in the same sense that LBg and RBg approximate the zero

function. Finally, the derivative of )ξ(C
ju is

)′)−+)′)−−+)=) +− ξξξξ ξξ ()](1([()(]1([()(()( RBcom
2/1

LBcom
2/1 guuguuuu jjjjj

C
j . (3.10a)

At the solution point kξ , the corrected derivative is given by

)= k
C
jjkjx uhu ξξ ()()/2()( , . (3.10b)

Once the correction functions LBg and RBg are chosen on ]1,1[− , the above calculations can be carried
out in an economical and straightforward manner.

Note that the reconstruction polynomial )ξ(C
ju clarifies the ideas; in practice, however, we only need

the values of its derivative at the solution points.
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Figure 3.1. (a) Centered common values (dots) and reconstruction functions C

ju and C
ju 1+ for the case

of piecewise linear solution polynomials; here, }{ C
ju is continuous at all interfaces 2/1+jx . (b) Functions

LB
ju (corrected for the left boundary) and RB

ju (corrected for the right boundary).

Correction functions. In the rest of this section, we define three correction functions. To this end, we
need some reviews and preparations. Let the 2L inner product of any two polynomials v and w on jE be

∫
+

−

))=
2/1

2/1
((),( j

j

x

x
dwvwv ξξξ .

jcell

x1cell +j

jcell

x

u

)(xu j

)(C xu j )(RB xu j
)(LB

1 xu j+
)(C

1 xu j+

)(1 xu j+

u

com
2/1−ju
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For any integer 0≥m , let mP be the space of polynomials of degree m or less. Then mP is a vector
space of dimension 1+m . When the domain, say, jE , of the polynomials is important, we use the notation

)( j
m EP . On ]1,1[−=I , a polynomial v is orthogonal to )(Imm PP = if, for each k , mk ≤≤0 , 

0(),( =)= ∫
1

1−
ξξξξ dvv kk .

Clearly, the criterion of being orthogonal to mP provides 1+m conditions (or equations).
Again, on ]1,1[−=I , for ...,2,1,0=k , let the Legendre polynomial kP be the unique polynomial of

degree k that is orthogonal to 1−kP and satisfies 1)1( =kP . Thus, if mk > , then kP is orthogonal to mP .
The Legendre polynomials are given by the following recurrence formula (see, e.g., Hildebrand 1987):

,,1 10 ξ== PP
and, for 2≥k ,

)
−

−)
−

=) −− ξξξξ (1(12( 21 kkk P
k

kP
k

kP . (3.11)

The first few Legendre polynomials are plotted in Fig. 3.1(a). Properties of the Legendre polynomials that
will be employed are listed below. First, kP is an even function (involving only even powers of ξ ) for
even k , and an odd function for odd k . For all k , the values at the boundaries (or end points) are

k
kP )1()1( −=− , 1)1( =kP . (3.12a,b)

The derivative values at the end points are
2)1()1()1( 1 +−=−′ − kkP k

k , 2)1()1( +=′ kkPk . (3.13a,b)
In addition,

)12(2),( += kPP kk , and, for lk ≠ , 0),( =lk PP . (3.14a,b)
Finally, the zeros of kP are the k Gauss points on ]1,1[− .
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Figure 3.1. (a) Legendre polynomials and (b) right Radau polynomials.

The right Radau polynomial of degree k ( 1≥k ) is defined by

)(
2

)1(
1, −−

−
= kk

k

kR PPR . (3.15)

The first few Radau polynomials are plotted in Fig. 3.1(b). Here, the letter R stands for ‘Radau’ and the
subscript R for ‘right’; the factor k)1(− is nonstandard and is needed so that (3.16a) below holds.

Equation (3.15) implies that kRR , is orthogonal to 2−kP . In addition,

0)1(and1)1( ,, ==− kRkR RR . (3.16a,b)
Note that kRR , , which is of degree k , is determined by the above two conditions and the 1−k conditions

that it is orthogonal to 2−kP . This definition of the Radau polynomial shows that it is a natural choice for
the correction function. At the two boundaries, using (3.13), we have

2)1( 2
, kR kR −=−′ , and 2)1()1( 1

, kR k
kR

−−=′ . (3.17a,b)

ξ
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The zeros of the Radau polynomial kRR , are the k right Radau points.
The Lobatto polynomial of degree k ( 1≥k ) is defined by

2Lo −−= kkk PP . (3.18)
Using (3.15), the Lobatto polynomial can be expressed in terms of Radau polynomials:

)()1(2Lo 1,, −−−= kRkR
k

k RR . (3.19)
The zeros of the Lobatto polynomial of degree k are the k Lobatto points; they include the two boundary
points 1± . As shown in Fig. 3.1(b), they are also the ξ -coordinates of the intersections of the graphs of

kRR , and 1, −kRR .

Returning to the correction functions, we always choose RBg by reflection: )()( LBRB ξξ −= gg . As a

result, we need to focus only on LBg . For simplicity of notation, set
LBgg = .

Since g is of degree K , it is determined by 1+K conditions. Two conditions, namely, 1)1( =−g and
0)1( =g , are known; therefore, 1−K additional conditions remain. We discuss below three choices for g .

If the 1−K additional conditions are the requirement that g is orthogonal to 2−KP , then g is the
right Radau polynomial of degree K defined in (3.15). The resulting method yields a solution identical to
that of DG (Huynh 2007). Therefore, we use the notation DGg :

KRRg ,DG = . (3.20)
The reason the DG scheme can be cast in the above reconstruction form is sketched below. In the

current formulation, since the projections of LBg and RBg onto )(2 IK −P are zero, the projections of the

polynomials )(xuC
j (degree K ) and )(xu j (degree 1−K ) onto )(2

j
K E−P are identical. In the standard

formulation, if φ is a test function of degree 1−K , then xφ is of degree 2−K , and the expression

dxu xj∫ φ contains the projection of ju onto )(2
j

K E−P .

Loosely put, the current formulation is a finite-difference DG formulation (versus finite-element). It
involves no quadratures and has the advantage of simplicity and economy. In addition, regardless of the
choice of solution points, no matrix inversion is needed. For example, if we choose the Lobatto points as
solution points, then, since the corresponding basis functions are not orthogonal, the standard DG
formulation requires a matrix inversion, whereas the current formulation does not. In other words, the mass
matrix inversion is built in.

For the next two choices, in addition to 1)1( =−g and 0)1( =g , we require g to be orthogonal to
3−KP (yielding 2−K conditions) together with one additional condition. It was observed in (Huynh 2007)

using Fourier analysis that the requirement of g being orthogonal to 3−KP gives rise to stable schemes for

convection. (The converse is not true, however: there are correction functions not orthogonal to any kP
that result in stable schemes).

The second choice for g requires that it vanishes at the 1−K Gauss points. (These points are the zeros
of 1−KP and are completely different from the K Gauss points, which typically are the solution points).
For obvious reason, this choice is denoted by Gag . It will be shown later that

1,,Ga 12
1

12 −−
−

+
−

= KRKR R
K

KR
K
Kg . (3.21)

Note that this g results in a scheme very similar to the staggered-grid scheme of Kopriva and Kolias
(1996) as well as the spectral-difference method of Liu et al. (2006). The key difference is that the current
scheme employs only one grid, and it is stable, whereas the staggered-grid and spectral-difference methods
employ two grids, and they are mildly unstable (Huynh 2007).

The third choice for g , requires that g′ vanishes at 1−K of the K Lobatto points (Legendre-Lobatto,
not Chebyshev-Lobatto). It can be written as (compared to Gag , the weights are switched),
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1,,LoLump, 1212
1

−−
+

−
−

= KRKR R
K
KR

K
Kg . (3.22)

For this correction function, if the solution points kξ are chosen to be the Lobatto points, then the

derivative ξ)( LB
ju at all solution points are the same as the uncorrected value ξ)( ju except at the left

boundary. In other words, this g lumps the correction to the left boundary—thus, the notation LoLump,g .
We will also need the following derivative values at the left boundary: by (3.17a), (3.21), and (3.22),

2/)1( 2
DG Kg −=−′ , 2]1)1([)1(Ga +−−=−′ KKg , and 2/)1()1(LoLump, −−=−′ KKg (3.23)

The plots of the three correction functions for the cases of 2=K and 4=K are shown in Fig. 3.2.
Loosely put, among the three correction functions, DGg is the steepest, and LoLump,g , least steep. Note that
for each K , the ξ -coordinate of the intersections of the three curves are the K Lobatto points, and the
derivative of LoLump,g vanishes at these points except at the left boundary 1−=ξ . Also note that as K
gets larger, Gag gets closer to LoLump,g .
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Figure 3.2. Correction functions for (a) 2=K and (b) 4=K .

Concerning practical calculations, one can derive the equations for these correction functions (for
arbitrary K ) by a software package such as Mathematica or Maple.

Readers who are not interested in the proofs can skip the rest of this section with no loss in continuity.
We now discuss the derivation of the last two correction functions. Since both KRR , and 1, −KRR are

orthogonal to 3−KP , these two correction functions can be written as, with 10 <<α ,
1,, )1( −−+= KRKR RRg αα . (3.24)

Due to (3.16), the above obviously satisfies the conditions 1)1( =−g and 0)1( =g .
Concerning Gag defined by (3.21), we need to prove that it vanishes at the 1−K Gauss points. To this

end, by expanding (3.21) in terms of the Legendre polynomials using (3.15),
])12(2[])1()12([)1( 21Ga −−+−−−= −− KPKPKPKg KKK

K .
By (3.11), or the recurrence formula for KP , we have 21 )1()12( −− −+=− KKK PKPKPK ξ . Thus,

211 )1()12()1()12( −−− −+−−=−− KKKK PKPKPKPK ξ .

The above two equations imply that 1Ga )1(]2/)1([ −−−= K
K Pg ξ ; therefore, Gag and 1)1( −− KPξ have

the same zeros. This completes the proof for Gag .
As for LoLump,g , it is defined by (3.24) where α is chosen so that the point 1=ξ is a zero of

multiplicity two, i.e., 01 =′ )(g . Using (3.17b), one can verify that 01 =′ )(g if )12/()1( −−= KKα . This
α results in (3.22). It turns out that ′)( LoLump,g vanishes not only at 1=ξ , but also at 1−K of the K
Lobatto points. (The proof of this fact involves some algebra and can be found in (Huynh 2007).)

ξ
DGg

DGg

Gaussg

LoLump,g Gaussg

ξ

LoLump,g
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4. Evaluation of the Second Derivative
Unless otherwise stated, all discussions concerning stability and accuracy are based on Fourier (Von

Neumann) analysis. Recall that for the diffusion equation, if an explicit time-stepping method is employed
(say, Runge-Kutta), the time step size has a limit, above which the solution becomes unstable. This stability
limit is inversely proportional to the largest magnitude of the eigenvalues of the discretization. It turns out
that the eigenvalues are real and negative. Therefore, to compare the stability limits of schemes, we only
need to compare the minimum eigenvalues: the scheme with a larger minimum eigenvalue (i.e., the
minimum eigenvalue has a smaller magnitude) has the advantage of possessing a larger stability limit.

Next, a scheme using K solution points is super-convergent (or super-accurate) if its order of accuracy
is higher than the expected order of K . All schemes discussed here are super-convergent for 3≥K : their
orders of accuracy are at least )1(2 −K . In general, super-convergence does not carry over to nonlinear
equations: due to nonlinear errors, the order of accuracy is typically only K . For comparison, we discuss
the main trade-offs in accuracy and stability here; additional details will be provided in §6. In general, a
less steep correction function for the solution points results in a scheme with the advantage of a larger
stability limit and the disadvantage of lower accuracy.

Returning to our current task, recall that }{ C
ju is continuous across the interfaces; as a result, x

C
ju )(

provides an approximation to xu that takes into account the data interaction. For each cell jE , at the
solution points kjx , , set

)()( ,, kjx
C
jkj xuv = . (4.1)

These K (derivative) values define a polynomial of degree 1−K denoted by )(xv j that is identical to

)()( xu x
C
j . Note that the function }){()}({}{ x

C
jjj uxvv == can be and usually is discontinuous across the

interfaces. Therefore, to calculate xxu , we can apply the reconstruction procedure once again to the

discontinuous function }){(}{ x
C
jj uv = . To this end, we must define a common derivative (or common

gradient) at the cell interfaces.
Common derivatives. At each interface, in formula (3.1) for the common value, with 10 ≤≤ κ , the

weight for −
+ 2/1ju is κ and that for +

+ 2/1ju , κ−1 . To define the common derivative, we switch the two
weights. Loosely put, this switch serves the purpose of canceling out the one-sidedness so that the scheme
is consistent with the centered or unbiased nature of the diffusion process. Since the corrected derivative

x
C
ju )( is readily available, an obvious choice is

)+))−= ++++ 2/112/1
com

2/1 ()(()(1()( jx
C
jjx

C
jjx xuxuu κκ . (4.2)

The function C
ju involves the data in the cells 1−j , j , and 1+j . Consequently, the above formula has a

four-cell stencil involving the data from 1−jE to 2+jE as can be seen in Fig. 4.1(a) for the centered case

( 1/2=κ ). Since the calculation of xxu in the cell jE employs com
2/1)( −jxu and com

2/1)( +jxu , the corresponding
scheme has a five-cell stencil.

We now define a common derivative at each interface 2/1+jx in a manner that it involves only the data
in the two adjacent cells, namely, jE and 1+jE . A scheme with such a compact stencil is desirable since it
is easy to code, the boundary conditions involved are simple, and the resulting implicit version has a
sparser as well as invertible matrix. With )(LB

1 xu j+ by (3.7) and )(RB xu j by (3.8), set

)()()()(1()( 2/1
LB

12/1
RBcom

2/1 ++++ +)−= jxjjxjjx xuxuu κκ . (4.3)

The functions RB
ju and LB

1+ju for the centered case are shown in Fig. 4.1(b) and, for the one-sided case with
1=κ , Fig. 4.2(a). The above can be expressed as:
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{ }
{ }.])1()[(]1([1()(2

])1()[(]1([1()(21()(

LB
1

com
2/11

1

RBcom
2/1

com
2/1

−′)−−+)−

+′)−+))−=

+++
+

++

guuu
h

guuu
h

u

jjj
j

jjj
j

jx

ξ

ξ

κ

κ

(4.4)

Note the dependence only on com
2/1+ju and the data on jE and 1+jE .
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Figure 4.1. Centered common value and derivative. (a) ]()(()([)2/1()( 2/112/1
com

2/1 )+)= ++++ jx
C
jjx

C
jjx xuxuu

has a four-cell stencil. (b) )]()()()[()2/1()( 2/1
LB

12/1
RBcom

2/1 ++++ += jxjjxjjx xuxuu has a two-cell stencil. In

both figures, the solution polynomials are linear, and the correction function is DGg .

As for the boundary corrections )1()( LB −′g and )1()( RB ′g , they can be expressed in a formula. Recall

that due to symmetry, )1()()1()( LBRB −′−=′ gg . The three correction functions in the order of increasing

steepness are LoLump,g , Gaussg , and DGg . The corresponding )1()( RB ′g are, respectively, by (3.23),

2/)1( −KK , 2]1)1([ +−KK , and 2/2K .
Note that for steady state problems, if we use LoLump,g for the definition of the common interface

derivative, the resulting matrix for the solution of kju , becomes singular. Thus, LoLump,g is to be avoided
for steady state case. (It can still be used for the correction at solution points, however.)

Also note that at the common interface 2/1+jx , the common derivative evaluated by (4.3) or (4.4)
involve corrections only at that interface. On the other hand, at the solution points of jE , the derivative

evaluated by (4.1) using C
ju involves corrections at both interfaces of jE .

With the common derivative defined by (4.4), set
com

2/1
com

2/1 )( ++ = jxj uv .

Finally, by applying the reconstruction procedure to the data kjv , of (4.1) and the above common
quantities, at each solution point, the corrected second derivative is given by

)()()( ,, kjx
C
jkjxx xvu = . (4.5)

A few remarks are in order concerning the trade-offs between (4.2), which has a wide stencil, and (4.3),
which has a compact stencil.

If the centered common value is employed, then as shown in Fig. 4.1, expressions (4.2) and (4.3) yield
different schemes. These two schemes are comparable in terms of accuracy and stability; the scheme using
(4.2) is slightly more accurate but its stability limit is smaller. However, the disadvantages of (4.2) are
numerous: its stencil is large and thus, the coding of boundary conditions is more complex; it has a zero
spurious eigenvalue with an undamped eigenfunction; and the steady state case results in a singular matrix.
Therefore, unless otherwise stated, we employ only the compact stencil formula, namely, (4.3).

If DGg is employed as correction functions at both the solution points and interfaces, then, with the
centered common values, (4.2) results in a method identical to BR1, and (4.3), BR2 (Bassi and Rebay

jcell

x1cell +j

jcell

x1cell +j

u

)(xu j

)(C xu j )(RB xu j )(LB
1 xu j+)(C

1 xu j+

)(xu j

u
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1997a, 2000). These two BR schemes were originally formulated in the finite-element framework whereas
the current versions are formulated in the finite-difference one.

In the case of common quantities via one-sided choice (e.g., the value to the left and the derivative to
the right), for the one-dimensional case discussed here, the schemes corresponding to (4.2) and (4.3) are
identical. For the two-dimensional case, however, they can be different. If, in addition, DGg is employed as
correction functions for both the interfaces and the solution points, then (4.2) results in a method identical
to the local discontinuous Galerkin or LDG (Cockburn and Shu 1998), and (4.3), the compact
discontinuous Galerkin or CDG (Peraire and Persson 2008). Again, these DG schemes were originally
formulated in the finite-element framework whereas the current versions are formulated in the finite-
difference one.

Comparing the centered versus one-sided common values with DGg as correction function (i.e., BR2
versus CDG), the former is of order )1(2 −K ; the latter, order K2 ; the former, however, has the advantage
that its stability limit is more than two times larger than the latter. Since super-convergence (accuracy
higher than K ) does not hold for the general case of nonlinear equations, the scheme using centered
common values appear to have an edge. (For additional comparisons, see the numerical examples in §8.)
Criteria with high accuracy for common derivatives. Continuing with the derivation of the common

derivative, new criteria with the advantage of high accuracy can be obtained as follows.
We reconstruct the solution on the domain 12/32/1 ],[ ++− = jjjj EExx U in a manner that (a) it takes on

the common value which is the weighted average (3.1) at 2/1+jx , and (b) it approximates the data on jE
and 1+jE without the requirement of leaving the interface values at 2/1−jx and 2/3+jx , respectively,

unchanged. In other words, for the cell 1+jE , to correct for its left boundary 2/1+jx , with LBgg = , we
require that 1)1( =−g , while )1(g is allowed to be arbitrary and, critically, we require g to approximate
the zero function to a degree as high as possible. A similar statement holds for the cell jE and its right
boundary 2/1+jx . Thus, to calculate the common derivative (but not the derivative at the solution points)

we can employ the Legendre polynomial of degree K , which is orthogonal to 1−KP , as the correction
function:

KK
K PgPgg =−== RBLB

Le and)1( . (4.6)
By (3.13b), for this correction function,

2/)1()1()()1()( LBRB +=−′−=′ KKgg .
The common derivative is again given by (4.4).

For the case of centered common values using DGg as correction function at the solution points, the
method using (4.6) has the following order of accuracy: for odd K , the order is K2 , and for even K ,

)1(2 −K ; e.g., both the schemes with 3=K and 4=K are of order 6.
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Figure 4.2. (a) The common derivative )= +++ 2/1

LB
1

com
2/1 ()()( jxjjx xuu , which corresponds to (4.3) with 1=κ ,

has a two-cell stencil. (b) Using Van Leer and Nomura’s recovery, the common value )(ˆ 2/1+jxu and
common derivative )(ˆ 2/1+jx xu have a two-cell stencil.

jcell

x1cell +j

)(xu j

)(ˆ 2/1 xu j+

jcell

x1cell +j

u
)(RB xu j )(LB

1 xu j+

)(xu j
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We present now a new criterion for the common quantities (both value and derivative) that is centered
(or unbiased) and, with DGg as correction function at the solution points, yields a scheme of order K2 for

all K . At each interface 2/1+jx , let com
2/1+ju be an unknown. Using the Legendre polynomial (4.6) as

correction function for the interface (a different g results in a lower order of accuracy), the corresponding

corrected derivatives )()( 2/1
RB

+jxj xu and )()( 2/1
LB

1 ++ jxj xu can easily be obtained as linear functions of
com

2/1+ju . The unknown com
2/1+ju is then determined by requiring that these two derivatives are equal:

)()()()( 2/1
LB

12/1
RB

+++ = jxjjxj xuxu . (4.7)
In other words, on ),( 2/32/1 +− jj xx , both the reconstruction and its derivative are required to be continuous
across 2/1+jx . (Note that the continuity requirement simultaneously for all interfaces involving a
tridiagonal solver was briefly discussed by Kopriva (1998) for his staggered-mesh methods. The current
method is considerably simpler, however.)

For our final criterion, we define both com
2/1+ju and com

2/1)( +jxu via the recovery approach of Van Leer and

Nomura (2006). Let the recovery function û be a polynomial of degree 12 −K on the domain
12/32/1 ],[ ++− = jjjj EExx U determined by the K2 conditions that: û and ju have the same projection on

)(1
j

K E−P , and û and 1+ju have the same projection on )( 1
1

+
−

j
K EP . In other words, for 10 −≤≤ Ki ,

,)()()()(ˆ ∫∫ −=−
jj E

i
jjE

i
j dxxxxudxxxxu (4.8a)

and

∫∫
++

+++ −=−
11

)()()()(ˆ 111
jj E

i
jjE

i
j dxxxxudxxxxu . (4.8b) 

The common quantities at the interface are then defined as )(ˆ 2/1+jxu and ))(ˆ( 2/1+jx xu . See Fig. 4.2(b).
Compared to the averages (3.1) and (4.3), the common quantities via recovery above has the advantage

of higher accuracy and the disadvantage of being costly. In fact, based on Fourier analysis for K up to 10
(with 10>K , the errors become exceedingly small), the gain in accuracy is considerable: using DGg as
correction function at the solution points, for odd K , the order of the recovery scheme is 13 −K , and for
even K , 23 −K . A peculiar property of these methods is the following: for 4≥K , two of the spurious
eigenvalues become complex for a certain range of wave numbers, which means that the corresponding
components are propagated as well as damped. These complex eigenvalues, however, pose no problem
since the corresponding components are damped very quickly. Also note that we can consider the averages
(3.1) and (4.3) as lower order approximations to )(ˆ 2/1+jxu and ))(ˆ( 2/1+jx xu , respectively.

Algorithm. The algorithm for the diffusion equation is summarized below. Let the data kju , at the

solution points kjx , be given for all cells.

� At each interface 2/1+jx , calculate −
+ 2/1ju and +

+ 2/1ju by (2.8a,b) and the common value com
2/1+ju by

(3.1). Next, obtain the common derivative com
2/1)( +jxu by (4.4). Alternatively, com

2/1+ju and com
2/1)( +jxu

can be estimated via the continuity requirement (4.7) or via the recovery û defined by (4.8).
� For each cell, at the solution points, calculate )()()( ,, kjx

C
jkjj xuxv = via (3.10). With

com
2/1

com
2/1 )( ++ = jxj uv at the interfaces, the values of xxu at the solution points are given by

)()( ,kjx
C
j xv .

Boundary conditions. We end this section with a discussion of boundary conditions. Let the left
boundary of the domain be 2/1+lx for some l . If we have a Dirichlet condition Du at this boundary, then
we define the common value by
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Dll uuu == −
++ 2/1

com
2/1 . (4.9a) 

This definition corresponds to 1=κ in (3.1). Next, using (4.3) for the common derivative, set
)()()( 2/1

LB
1

com
2/1 +++ = lxllx xuu . (4.9b) 

On the other hand, if we have a Neumann boundary condition Nxx uu )(= at the left boundary 2/1+lx for

some real number Nxu )( , then we define

Nxlxlx uuu )()()( 2/1
com

2/1 == −
++ . (4.10a)

The value com
2/1+lu is determined by the condition that Nlxl uxu =++ )()( 2/1

LB
1 , i.e.,

)1()()]1()()2/[()1( LB
111

com
2/1 −′−−+−= ++++ guuhuu lNlll ξ . (4.10b)

The boundary conditions on the right end of the domain follow by reflection.
As will be shown later, for the case where the exact solution is a parabola, and two Gauss points (linear

element) are employed in each cell, the standard DG schemes do not recover the exact solution. Together
with the above boundary conditions, the two schemes that recover the exact solution are: the scheme using
the Legendre polynomial with the continuity requirement (4.7) and the recovery scheme (4.8).

5. Fourier (Von Neumann) Analysis
Fourier analysis provides information on both stability and accuracy. On (−∞, ∞), consider the equation

(2.1), i.e., xxt uu = , with the periodic initial condition xwiexu =)(init , where the wave number w lies
between π− and π . Low frequency data corresponds to w of small magnitude; high frequency, to w

near π± . The exact solution is xwitw eetxu
2

),(exact
−= . At )0,0(),( =tx ,

2
exact )0,0()( wu t −= . (5.1)

The cells are ]2/1,2/1[ +−= jjE j . The data are ])2/([exp, kkj jwiu ξ+= . However, it is not the data
but their following property, which plays a key role in the calculation of eigenvalues,

kj
wi

kj ueu ,,1
−

− = . (5.2)
To calculate the eigenvalues, the K solution points are grouped together as a vector: set

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=
1

Kj

j

j

u

u

,

,

Mu . (5.3)

For the case of three-cell stencil, the solution can be expressed as

∑
−=

+=
1

1l
ljl

j

dt
d

uC
u

. (5.4)

Using (5.2), we replace lj+u by j
wlie u ,

j
l

l
wlij e

dt
d

uC
u

)(
1

1
∑
−=

= (5.5)

where lC are KK ⋅ matrixes. Thus, the spatial discretization (semidiscretization) results in

j
j

dt
d

uS
u

= where ∑
−=

=
1

1l
l

wlie CS . (5.6, 5.7)

Here, S, for ‘space’ or ‘semidiscrete’, is a KK ⋅ matrix with K eigenvalues. The one approximating 2w−
(the exact eigenvalue for 22 / x∂∂ ) is called the principal eigenvalue and is denoted by )(wS :

2)( wwS −≈ . (5.8)
All others are spurious eigenvalues. For stability, all eigenvalues must have nonpositive real parts.

If an explicit time-stepping method such as the standard four-stage Runge-Kutta is employed, then the
stability limit of a scheme is proportional to the inverse of the largest magnitude of all eigenvalues.
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Accuracy. Concerning accuracy, note first that for a uniform mesh of cell width h , S approximates
222 / xh ∂∂ . A scheme is accurate to order m if S approximates 222 / xh ∂∂ to )( 2+mhO , i.e., for small w ,

)()( 22 ++−= mwOwwS . (5.9)
In practice, it is difficult if not impossible to derive an expression for the principal eigenvalue )(wS when
the number of solution points is greater than 2 or 3. Therefore, we obtain the order of accuracy by the
following approximation. Let w be fixed, say, 8/π=w . We calculate the error

2)()( wwSwE += . (5.10)
By halving w (i.e., doubling the number of cells), the error corresponding to w/2 (say, 16/2/ π=w ) is

2)2/()2/()2/( wwSwE += .

Since )()2/1())2/(( 222 +++ = mmm wOwO , for a scheme to be m-th order accurate,

)()2/1()2/( 2 wEwE m+≈ . (5.11)

That is, 22)2/()( +≈ mwEwE . Using the logarithm function, the order of accuracy is given by the integer

2)2(Log
)2/(

)(Log −⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≈

wE
wEm . (5.12)

Choice of solution points. Next, we discuss the choice of solution points. The two common choices are
the Gauss and Lobatto points. While these choices may be advantageous for the nonlinear case, from the
consideration of linear stability and accuracy, all choices are equivalent. In fact, we claim that the
eigenvalues of S are independent of the solution points chosen.

To prove this claim, consider the local coordinate ξ on ]1,1[−=I with solution points kξ and data ku ,

Kk ...,,1= . Denote the vector K
kku 1}{ = by u . Recall that the solution polynomial is ∑ =

)=
K
k kkup

1
(ξφ .

Next, let lξ
~ , Kl ...,,1= be another set of solution points (we assume no two points are the same), and let

lu~ be the value )~( lp ξ ,

∑ =
)=

K
k lkkl uu

1

~(~ ξφ . (5.13)

Set K
llu 1}~{~
==u . In addition, for Klk ≤≤ ,1 , set

)= lkklm ξφ
~( . (5.14)

Denote the KK ⋅ matrix }{ klm by M . Then, it follows from the above two expressions that

Muu =~ . (5.15)
Since we can obtain u from u~ , M is invertible. Next, equation (5.7a) takes the form,

uSu =dtd / . (5.16)
For the solution points lξ

~ , the corresponding equation is

uSu ~~/~ =dtd . (5.17)

We wish to show that S~ and S are similar, and thus, have the same eigenvalues. To this end, multiplying
(5.16) on the left by M , we have

uMSuM =dtd / . 
Since M is independent of t and is invertible

))((/)( 11 uMMSMuMMSMuM −− ==dtd . (5.18)
Therefore, by (5.18),

uMSMu ~)(/~ 1−=dtd . (5.19)
Comparing (5.17) with the above and, since u~ is arbitrary, we have

1~ −= MSMS . (5.20)
This completes the proof.
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6. Stability and Accuracy of Schemes for Diffusion
In this section, we employ the Fourier analysis of the previous section; therefore, the mesh is uniform,

and the cell width is 1. With K solution points, all schemes discussed have order of accuracy of at least
)1(2 −K . As a consequence, for 2≥K , the order of accuracy is at least 2. For 1=K , however, the order

of accuracy can be 0, which implies that the corresponding scheme is inconsistent. Again, concerning the
super-convergence or super-accuracy property (order higher than K ), for the nonlinear case such as the
Navier-Stokes equations, due to nonlinear errors, it is expected that the schemes discussed are accurate to
order no higher than K . Unless otherwise stated, all schemes have real negative eigenvalues ( 0≤ ).

A scheme is determined by the following choices. First, for the common quantities at each interface, the
four choices are: (a) centered, (b) one-sided, (c) continuous (condition (4.7) or the derivative values to the
left and right of the interface being equal), and (d) recovery, namely (4.8). Next, for the cases (a), (b), and
(c), the derivative at the interface requires a correction function; in the order of decreasing steepness, the
choices are: Leg , RaDG gg = , Gag , and LoLump,g . To denote the scheme using a certain choice at the
interface, we use the following self-explanatory notation: Ga-centered-I g , or DG-continuous-I g , or

recovery-I . Finally, for the derivative values at the solution points, the correction functions in the order of
decreasing steepness are: DGg , Gag , and LoLump,g . The corresponding schemes are denoted by, DG-SP g ,
etc... We refer to a scheme by the choice at the interface and that at the solution points, e.g.,

GaDG -SP/-centered-I gg .
That is, the common quantities are centered, and the derivatives just to the left and right of the interface are
calculated via DGg ; for the solution points, the correction function is Gag .
6.1. The case 1=K . Here,

)/2−==== ξ1(LoLump,GaDG gggg .
Therefore, there is only one correction function for the solution point. At the interface, however, there are
two correction functions: the above g and the Legendre polynomial ξ−=Leg .

The three schemes Le-centered-I g , recovery-I , and DG-sided-one-I g yield a result identical to the
standard second-order accurate method

jjjjxx uuuu 2)( 11 −+= −+ .

Next, for the scheme DGDG -SP/-centered-I gg , i.e., BR2 scheme, we have 2/)( 1
com

2/1 ++ += jjj uuu .
Therefore,

2/)()(and2/)()( 1
com

2/12/11
com

2/112/1 jjjjjxjjjjjx uuuuuuuuuu −=−=−=−= ++
−
++++

+
+ .

Thus, 2/)()( 1
com

2/1 jjjx uuu −= ++ , and

2/)2()( 11 jjjjxx uuuu −+= −+ .
This quantity approximates 2/xxu . As a result, this scheme has an error of )1(O and is inconsistent.

6.2. The case 2=K . All correction functions are different from each other (see Fig. 3.2(a)). The plots
of eigenvalues as functions of wave numbers for six representative schemes are shown in Fig. 6.1.

The minimum eigenvalues, orders of accuracy, and errors of 18 schemes (with 2=K ) are shown in
Table 6.1. The last column shows the value )1(−′g where g is the correction function for the left interface.
Note that all schemes are of order 2 or higher. The three schemes 11, 14, and 15 are fourth-order accurate.
Schemes 4, 7, and 10, which employ LoLump,g at the interfaces, have a zero spurious eigenvalue at 0=w ;
thus, the corresponding eigenvector is not damped. (For the steady state case, such a scheme results in a
singular matrix for the solution and is to be avoided.) Scheme 10 is a limiting case: the spurious and
principal eigenvalues become identical for all w . Scheme 15 (which is identical to CDG and LDG) has the
drawback that the stability limit is rather small (the magnitude of the minimum eigenvalue is second largest
on the list). Scheme 0 or DGDG -/SP3-centered-I gg has the smallest stability limit of all with no
improvement in accuracy. In general, a steeper correction for the derivative at interface results in a scheme
with a smaller stability limit. From here on, therefore, we will not use a correction function steeper than
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Leg at the interface. As a limiting case, scheme LoLump,LoLump, -SP/-continuous-I gg (not listed) is
inconsistent: it has an eigenvalue that is identically 0 for all w .
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Figure 6.1. Eigenvalues as functions of wave numbers for six representative schemes with 2=K .

Scheme
for 2=K

Min.
Eigval.

Ord.
Acc. Error

For g-I ,
)1(−′g

0. DGDG -/SP3-centered-I gg .60− 2 )(12/ 64 wOw +− 6−

1. DGLe -/SP-centered-I gg .24− 2 )(12/ 64 wOw +− 3−

2. DGDG -/SP-centered-I gg .13− 2 )(12/ 64 wOw +− 2−
3. DGGa -/SP-centered-I gg .12− 2 )(12/ 64 wOw +− 5.1−

4. DGLoLump, -/SP-centered-I gg * .12− 2 )(12/ 64 wOw + 1−
5. GaDG -/SP-centered-I gg 7.9− 2 )(24/ 64 wOw +− 2−
6. GaGa -/SP-centered-I gg .8− 2 )(24/ 64 wOw +− 5.1−

7. GaLoLump, -/SP-centered-I gg * .8− 2 )(12/ 64 wOw + 1−
8. LoLump,DG -/SP-centered-I gg .8− 2 )(12/ 64 wOw + 2−
9. LoLump,Ga -/SP-centered-I gg .6− 2 )(12/ 64 wOw + 5.1−

10. LoLump,LoLump, -/SP-centered-I gg * .4− 2 )(12/ 64 wOw + 1−
11. DGLe -/SP-continuous-I gg .24− 4 )(1440/ 86 wOw + 3−

12. DGDG -/SP-continuous-I gg .12− 2 )(24/ 64 wOw + 2−
13. GaLe -/SP-continuous-I gg .16− 2 )(24/ 64 wOw + 3−

14. DG-Precovery/S-I g .15− 4 )(360/ 86 wOw + *

15. DGDG -/SP-sided-one-I gg .36− 4 )(540/ 86 wOw + 2−
16. LoLump,LoLump, -/SP-sided-one-I gg 5.10− 2 )(3/ 64 wOw + 1−
17. DGDG -cell)/SP-(4-centered-I gg .16− 2 )(24/ 64 wOw +− 2−

Table 6.1. Minimum eigenvalues, orders of accuracy, and errors for schemes with 2=K .
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Figure 6.2. Eigenvalues as functions of wave numbers for six representative schemes with 3=K . 

Scheme
for 3=K

Min.
Eigval.

Ord.
Acc.

Coarse mesh
error,

8/π=w

Fine mesh
error,

16/π=w

For g-I ,
)1(−′g

1. DGLe -/SP-centered-I gg .75− 6 81006.5 −⋅− 101097.1 −⋅− 6−
2. DGDG -/SP-centered-I gg .60− 4 61015.2 −⋅ 81040.3 −⋅ 5.4−
3. DGGa -/SP-centered-I gg .60− 4 61014.5 −⋅ 81097.7 −⋅ 5.3−
4. DGLoLump, -/SP-centered-I gg * .60− 4 6108.7 −⋅ 7102.1 −⋅ 3−
5. GaDG -/SP-centered-I gg .42− 4 6106.5 −⋅ 81072.8 −⋅ 5.4−
6. GaGa -/SP-centered-I gg .36− 4 61062.8 −⋅ 71033.1 −⋅ 5.3−
7. GaLoLump, -/SP-centered-I gg * .36− 4 51013.1 −⋅ 71073.1 −⋅ 3−
8. LoLump,DG -/SP-centered-I gg .42− 4 61093.9 −⋅ 71054.1 −⋅ 5.4−
9. LoLump,Ga -/SP-centered-I gg .30− 4 5103.1 −⋅ 710.2 −⋅ 5.3−
10. LoLump,LoLump, -/SP-centered-I gg * .26− 4 51057.1 −⋅ 7104.2 −⋅ 3−
11. DGLe -/SP-continuous-I gg .74− 6 91087.1 −⋅ 121031.7 −⋅ 6−
12. DGDG -/SP-continuous-I gg .42− 4 61018.2 −⋅ 81041.3 −⋅ 5.4−
13. GaLe -/SP-continuous-I gg .60− 4 6104.3 −⋅ 81031.5 −⋅ 6−
14. DG-Precovery/S-I g .33− 8 111075.4 −⋅ 141064.4 −⋅ *
15. DGDG -/SP-sided-one-I gg .148− 6 9105.4 −⋅ 111075.1 −⋅ 5.4−
16. LoLump,LoLump, -/SP-sided-one-I gg 5.76− 4 51055.1 −⋅ 71039.2 −⋅ 3−
17. DGDG -cell)/SP-(4-centered-I gg .65− 4 81084.6 −⋅ 101064.2 −⋅ 5.4−

Table 6.2. Minimum eigenvalues, orders of accuracy, and errors for schemes with 3=K .   
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Figure 6.3. Eigenvalues as functions of wave numbers for six representative schemes with 4=K .

Scheme
for 4=K

Min.
Eigval.

Ord.
Acc.

Coarse mesh
error,

8/π=w

Fine mesh
error,

16/π=w

)1(−′g
( g-I )

1. DGLe -/SP-centered-I gg .187− 6 91031.5 −⋅− 111016.2 −⋅− 10−
2. DGDG -/SP-centered-I gg .170− 6 91006.5 −⋅− 111014.2 −⋅− 8−
3. DGGa -/SP-centered-I gg .170− 6 91078.3 −⋅− 111098.1 −⋅− 5.6−
4. DGLoLump, -/SP-centered-I gg * .170− 6 9105.4 −⋅ 111075.1 −⋅ 6−
5. GaDG -/SP-centered-I gg .122− 6 101093.9 −⋅− 121005.5 −⋅− 8−
6. GaGa -/SP-centered-I gg .98− 6 below 121089.3 −⋅− 5.6−
7. GaLoLump, -/SP-centered-I gg * .98− 6 91064.6 −⋅ 111059.2 −⋅ 6−
8. LoLump,DG -/SP-centered-I gg .122− 6 91019.2 −⋅ 121063.7 −⋅ 8−
9. LoLump,Ga -/SP-centered-I gg .89− 6 91098.2 −⋅ 121055.8 −⋅ 5.6−
10. LoLump,LoLump, -/SP-centered-I gg * .83− 6 91043.8 −⋅ 111029.3 −⋅ 6−
11. DGLe -/SP-continuous-I gg .183− 8 131057.8 −⋅ 161038.8 −⋅ 10−
12. DGDG -/SP-continuous-I gg .122− 6 91024.2 −⋅ 121076.8 −⋅ 8−
13. GaLe -/SP-continuous-I gg .170− 6 91021.4 −⋅ 111064.1 −⋅ 10−
14. DG-Precovery/S-I g .68− 10 141077.1 −⋅− 181037.4 −⋅− *
15. DGDG -/SP-sided-one-I gg .439− 8 121096.1 −⋅ 151092.1 −⋅ 8−
16. LoLump,LoLump, -/SP-sided-one-I gg .272− 6 81050.1 −⋅ 111085.5 −⋅ 6−
17. DGDG -cell)/SP-(4-centered-I gg .176− 6 91039.1 −⋅− 121046.5 −⋅− 8−

Table 6.3. Minimum eigenvalues, orders of accuracy, and errors for schemes with 4=K .

6.3. The case 3=K . The plots of eigenvalues as functions of wave numbers for six representative
schemes are shown in Fig. 6.2.

The minimum eigenvalues, orders of accuracy, and errors of 17 schemes for 3=K are shown in Table
6.2. Note that all schemes are of order at least 4 or )1(2 −K . The three schemes 1, 11, and 15 are of order
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6, and scheme 14 (recovery), order 8. Schemes 4, 7, and 10, which employ LoLump,g at interfaces, have a
zero spurious eigenvalue at π=w (not at 0=w as in the case of 2=K ); the corresponding eigenvector
is not damped; and the matrix for steady state equation is singular. Schemes LoLump,-continuous-I g (not
listed), regardless of the choice of g-SP , are inconsistent: they have an eigenvalue that is identically 0 for
all w . The recovery scheme ( DG-Precovery/S-I g or scheme 14) is more complicated than the others but,
among the schemes of Table 6.2, it has the advantages of highest accuracy and third largest CFL limit (the
amplitude of the minimum eigenvalue is 33).
6.4. The case 4=K . The plots of eigenvalues as functions of wave numbers for six representative

schemes are shown in Fig. 6.3.
The minimum eigenvalues, orders of accuracy, and errors of 17 schemes for 4=K are shown in Table

6.3. Again, the last column shows the value )1(−′g . Note that all schemes are of order at least 6 or
)1(2 −K . Schemes 11 and 15 are of order 8, and the scheme 14 (recovery), order 10. Schemes 4, 7, and 10,

which employ LoLump,g at interfaces, have a zero spurious eigenvalue at 0=w ; the corresponding
eigenvector is not damped; and the matrix for steady state equation is singular. For scheme 6, or

GaGa -/SP-centered-I gg , the error crosses zero near 8/π=w . Therefore, to calculate the order of
accuracy, we set 16/π=w for the coarse mesh and 32/π=w for the fine mesh. The errors are
respectively 121089.3 −⋅− and 141098.1 −⋅− , and the scheme is of order 6. Schemes

LoLump,-continuous-I g (not listed), regardless of the choice of g for the solution points, are inconsistent:
they have an eigenvalue that is identically 0 for all w . Note that for a certain range of w , two spurious
eigenvalues of the recovery scheme become complex—a rather peculiar property. Since the real parts of
these complex values are roughly 45− , the corresponding eigenvectors are damped quickly. The property of
possessing complex eigenvalues is unique for the recovery scheme and it holds true for all 4≥K (this
author tested for K up to 10 ).
6.5. Arbitrary K . For a majority of schemes, the author tested with values K of up to 10. The

following conclusions can be drawn.
All schemes are of order at least )1(2 −K . In the order of increasing accuracy, scheme 1 or

DGLe -/SP-centered-I gg is of order K2 for odd K and )1(2 −K for even K . Schemes 11 and 15, i.e.,

DGLe -/SP-continuous-I gg and DGDG -/SP-sided-one-I gg , respectively, are of order K2 for all K .
Scheme 14 or DG-Precovery/S-I g is of order 13 −K for odd K and 23 −K for even K .

In general, LoLump,g is a limiting case in the sense that (a) a less steep correction function may lead to
instability, and (b) for the steady state case, the scheme LoLump,-I g results in a singular solution matrix.

Based on the above results using Fourier analyses together with the fact that the super-convergence
(super-accuracy) property does not hold for the general case of nonlinear systems, the following
recommendations can be made. Scheme 2 (or DGDG -/SP-centered-I gg or BR2) and 15 (or

DGDG -/SP-sided-one-I gg or CDG) appear to be good choices: they are simple to code and, concerning
the stability limit, the BR2 method has an edge. Scheme 9 or LoLump,Ga -/SP-centered-I gg is simple to
code and, while not quite as accurate as the above two, has a rather large stability limit. If accuracy is a key
concern, then at the cost of some additional coding, scheme 11 or DGLe -/SP-continuous-I gg is of order

K2 . Among all methods, scheme 14 or DG-Precovery/S-I g is the most accurate and has the largest
stability limit for 4≥K , but it is also the most complicated since the recovery is across two cells (not one
at a time as the other methods).

7. Two Dimensional Extensions
For the two-dimensional (2D) extension to a quadrilateral mesh of the current reconstruction approach,

the solution procedure reduces to a series of one-dimensional (1D) operations in a manner similar to the
extension of the staggered-grid scheme in (Kopriva 1998). The key difference is that the current extension
is simpler since it involves only one grid instead of three.

With ),,( tyxuu = , consider the 2D diffusion equation



20

yyxxt uuu += (7.1)
with initial condition

),()0,,( init yxuyxu = . (7.2)
For the case of the Navier-Stokes equations, we have

0),(. =∇∇+ uuFut

where u is the (column) vector of conservative variables and ),( uuFF ∇= is the flux vector. Next,
),()( uuFuFF ∇+= va where aF and vF are the advective and viscous flux vectors respectively. In

addition, ),( gfF = where f and g are the two Cartesian components; similarly, ),( aaa gfF = and
),( vvv gfF = . The above equation can be written as

0=++ yxt gfu . (7.3)
Clearly, (7.1) is a special case of (7.3): with u=u and u∇=∇ ),( uuF , i.e., xu=f and yu=g , equation
(7.3) takes the form

).( uut ∇∇= . (7.4)
Let the domain of calculation be divided into an unstructured (or structured) mesh of quadrilaterals jE

where Jj ...,,1= . Dropping the subscript j , let the mapping from the biunit square 22 ]1,1[−==⋅ III
onto E be denoted by

)),),,=), ηξηξηξ (((( yxx . (7.5)
This mapping can be isoparametric and the cell E can have curved edges. For simplicity, however, we
assume that the mapping is bilinear: denoting the four corners of E by (counterclockwise) )−,−= 11(1 xx ,

)−,= 11(2 xx , ),= 11(3 xx , and ),−= 11(4 xx , then
.})1)(1()1)(1()1)(1()1)(1({)4/1(( 4321 xxxxx ηξηξηξηξηξ +−++++−++−−=), (7.6)

See Fig. 7.1. Under this mapping, (7.3) is transformed to

0
~~

~ =
∂
∂

+
∂
∂

+
ηξ
gfut (7.7) 

where
gfggffu ξξηηξηηξ xyxyJuyxyxJ +−=−==−= ~and,~,~, . (7.8) 

Here, J represents the volume element. As for f~ (and similarly for g~ ), along a vertical edge, say, 41 xx ,
the covariant base vector is ),( ηη yx . The vector ),( ηη xy − represents the product of the unit normal with

the edge length of 41 xx ; therefore, gff ηη xy −=
~ represents the normal flux across this edge (with the

edge length accounted for). That is, the above differential formulation can be considered to be equivalent to
the integral formulation.

Similar to the discussion before (7.3), the flux vector f~ consists of two parts: af
~ and vf

~ . The

advective part af
~ is dealt with as in (Huynh 2007). As for the diffusive part, once we obtain the solution

for the diffusion equation (7.4), with appropriate and trivial modifications, the solution for (7.3) follows.
Therefore, we focus only on the scalar equation (7.4) with

,, yx uu == gf (7.9)
and

yxyx uxuyxyuxuyxy ξξξξηηηη +−=+−=−=−= gfggff ~and,~ . (7.10)
Let the solution points on ]1,1[−=I be kξ , Kk ...,,1= . For simplicity (and not necessity), the solution

points in the η direction is assumed to be the same as those in the ξ direction: ll ξη = , Kl ...,,1= . The
KK ⋅ solution points on the biunit square are ),( lk ηξ , Klk ...,,1, = . The solution points on E are

),(),( ,,, lklklklk yx ηξxx == . (7.11)
In addition, let the solution points along the edges, which are the small squares in Fig. 7.1, be called flux
points. For the methods discussed here, flux points always lie on cell edges. On each cell E , let the
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solution u be approximated by KK ⋅ pieces of data lku , at the solution points lk ,x , Klk ...,,1, = .
Again, boundary conditions are assumed to be periodic and are omitted.

(a) (b)
Figure 7.1. (a) Solution points (circular dots), which are Gauss points here, and flux points (squares along
the edges) for 3=K on the biunit square 2I . At each flux point, we need the common value and common
gradient. (b) The corresponding quantities for cell E in the physical domain.

At time level n , suppose the data lku , are known for all cells and all k, and l. For each cell, we wish to

calculate dttud lk /)(, at time ntt = (denoted by dtud lk /, ) in terms of the data. That is, we wish to

calculate xxu and yyu at the solution points. Then, we march in time by, say, a Runge-Kutta method.
The first task is to approximate the solution by a polynomial. To this end, let kφ denote the 1D basis

function on I given in (2.6). Let the 2D basis functions on 2I be defined via tensor product: for each
),( lk , Klk ...,,1, = ,

)(((,, ηφξφηξφφ lklklk )=),= . (7.12)

Thus, lk ,φ takes on the value 1 at ),( lk ηξ and 0 at all other 12 −K solution points as shown in Fig. 7.2.

Using the local coordinates ),ηξ( for the cell E , the polynomial interpolating lku , at ),( lk ηξ is given by

∑∑
==

))=),=),
K

lk
lklk

K

lk
lklkE uuu

1,
,

1,
,, (((( ηφξφηξφηξ . (7.13)

Note that for each fixed η , ),ηξ(Eu is a polynomial of degree 1−K in ξ , and vice versa. That is, Eu is
in 1111 −−−− ⊗= KKK,K PPP ; e.g., for 2=K , Eu is bilinear; for 4=K , bicubic.
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Figure 7.2. Basis functions for 3=K with Gauss points as solution points. (a) The functions 2φ and 3φ for
the 1D case. (b) The function )(( 323,2 ηφξφφ )= for the 2D case.

For each fixed lη (Fig. 7.1(a)), the interpolation along the ξ -direction reduces to a 1D interpolation of
the data lku , where k varies. (A similar statement holds for each fixed kξ .) On E , we can evaluate
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ξ)( Eu and η)( Eu (or the uncorrected gradient) at the solution points by the 1D procedure. We can also
calculate the values of Eu at the flux points on the cell edge of E in a 1D manner.

Common interface values and corrected f~ and g~ at the solution points. On an arbitrary edge, say,
in the local description, a vertical edge (similarly for a horizontal edge), let E and F denote the two
adjacent cells as shown in Fig. 7.3(a). To define the common value and common derivative, let fx be a
flux point on this edge, e.g., ),−=),= lFlEf ηη 1(1( xxx . At this point, with ),1()( lEfE uu η=x and

),1()( lFfF uu η−=x , let the centered common value be defined by

)]()([)2/1()(comcom
fFfEf uuuu xxx +== . (7.14)

(a) (b)
Figure 7.3. (a) Employing )ξ(RB

Eu (corrected for the right boundary) and )ξ(LB
Fu (corrected for the left

boundary) to calculate the common gradient at fx results in a formula of two-cell stencil. (b) Employing
C
Eu and C

Fu to calculate the common gradient results in a formula of eight-cell stencil.

The one-sided common value can be defined in a manner similar to (3.1) provided that a selection of
left and right sides is assigned to the interface. Next, on a general cell, say, E , with the common values at
all flux points defined as above, we can obtain the corrected ξ -derivative as in the 1D case of (3.10): for
each fixed lη ,

)′)−)+

)′)−−)−+)=)

ξηη

ξηηηξηξ ξξ

()](,1(,1([

()(],1(,1([,()(,()(

RBcom

LBcom

guu

guuuu

lEl

lEllEl
C
E

. (7.15)

The corrected η -derivative is calculated in the same manner. At the solution points, the values of the

corrected ξ - and η -derivatives, namely )= lk
C
Euu ηξξξ ,()( and )= lk

C
Euu ηξηη ,()( can easily be evaluated.

The quantity u∇ follows by the chain rule:
yyyxxx uuuuuu ηξηξ ηξηξ +=+= and . (7.16)

Then, the corrected yx uxuy ηη −=f~ and yx uxuy ξξ +−=g~ can be obtained at all solution points of E .
Common gradients. We now define the common gradient or, more precisely, in the local description,

com~f on the vertical edges and com~g on the horizontal ones. Again, on an arbitrary edge, let E and
F denote the two adjacent cells as shown in Fig. 7.3(a). At a flux point fx on this edge, similar to the 1D

case, if we employ C
Eu and C

Fu to calculate the common gradient, the resulting formula generally has a
large stencil involving eight cells as shown in Fig. 7.3(b).

A formula for com~f that has a compact stencil involving only the two adjacent cells E and F can be
obtained as follows. Without loss of generality, assume again the edge is vertical, i.e., for some fixed lη ,

),−=),= lFlEf ηη 1(1( xxx (see Fig. 7.3(a)). We can define )ξ(RB
Eu (corrected for the right boundary of

E F
fx

FE

fx
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E ) and )ξ(LB
Fu (corrected for the left boundary of F ) in a manner similar to (3.7) and (3.8). For the cell

E , the corrected ξ -derivative at fx is

])1()[(]1([1()()1()( RBcomRB
,

′)−+)== guuuuu EEEE ξξξ (7.17a)
and, for the cell F ,

])1()[(]1([1()()1()( LBcomLB
, −′)−−+)−=−= guuuuu FFFF ξξξ . (7.17b) 

We now discuss the evaluation of ηu at fx . Since the common values comu at the flux points along
the common edge are readily available, they can be employed to evaluate ηu . Alternatively, we can
calculate ηu with no correction by first obtaining the values of Eu at the flux points along the common
edge (and then Fu ); however, this procedure is slightly costlier. Note that for the case of a uniform
Cartesian mesh (used in Fourier analysis), ηu at fx is not needed.

For cell E , with )1()( RB
ξξ Euu = via (7.17a) and ηu discussed above, we can evaluate Eu)(∇ at fx by

the chain rule. The normal flux along the common edge namely E)~( f can then be estimated by the formula

yx uxuy ηη −=f~ . Similarly, in the case of cell F , with )1()( LB −= ξξ Fuu via (7.17b) and ηu discussed

above, we can evaluate Fu)(∇ at fx by the chain rule, and then evaluate F)~( f . To define com~f , we
could employ the weighted average (4.3) provided a selection of left and right sides is assigned to the
interface. For simplicity, the centered formula is shown here:

])~()~[()2/1(~ com
FE fff += . (7.18)

The above 2D extension can easily be applied to the schemes of type continuous-I . More precisely, at
a flux point fx , the quantity comu is considered to be an unknown, and it is calculated by requiring that

FE )~()~( ff = . Here, assuming that the common edge is of vertical type for cell E , the calculation of ηu
with no correction by first obtaining the values of Eu at the flux points simplifies the scheme (see the
discussion after (7.17)).

The 2D extension for scheme recovery-I or (4.8) to the case of a uniform mesh of squares is simple;
however, that for a general quadrilateral mesh is considerably more involved.
Algorithm. The algorithm for the 2D diffusion equation is summarized below. Let the data lku , at the

solution points lk ,x be given for all cells.

� On each edge, compute comu and com~f at the flux points as follows. Assume that edge e is of
vertical type (horizontal type is similar). Let E and F be the two cells sharing this edge. First,
obtain the values of Eu and Fu at the flux points on e . Next, at each flux point fx of e ,

evaluate and store comu by the centered formula (7.14) or the one-sided formula (3.1). Using this
comu , calculate the corrected (at one boundary only) ξ -derivative )(, fEu xξ and )(, fFu xξ by

(7.17a) and (7.17b). Compute )( fu xη using the common values comu at the flux points along e .

Using )(, fEu xξ and )( fu xη , evaluate Eu)(∇ at fx by the chain rule. Again at fx , estimate

E)~( f via yx uxuy ηη −=f~ . Evaluate Fu)(∇ and F)~( f in a similar manner. Calculate and store
com~f by (7.18). Alternatively, comu and com~f can be obtained via the continuity requirement

(4.7). Store the values comu and com~f at the flux points of all edges.

� For each cell, calculate tu at the solution points as follows. Using comu on the four edges of the

cell, compute ξ)( C
Eu and η)( C

Eu at the solution points via (7.15). Again at the solution points,

calculate u∇ by the chain rule, and then yx uxuy ηη −=f~ and, similarly, yx uxuy ξξ +−=g~ .
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Next, using com~f at the flux points on the two edges of vertical type, obtain the corrected

derivative ξ)
~( f at the solution points. Similarly, using com~g at the flux points on the two edges

of horizontal type, obtain the corrected derivative η)
~(g . Finally, calculate tu~ at the solution points

via (7.7). This completes the algorithm.

Fourier analysis in 2D. We now carry out the Fourier (Von Neumann) accuracy and stability analysis
for the 2D case. On the domain ),(),( ∞−∞⋅∞−∞ , consider the diffusion equation

yyxxt uuu += . (7.19)
The cells are the squares ]2/1,2/1[]2/1,2/1[, +−⋅+−= jjiiE ji centered at ),( ji . Denote by ji,u the

column vector of 2K components
)...,,...,,...,,,...,,,( ,,,1,,,,2,,1,2,,,1,,2,1,,1,1,,, KKjiKjiKjijiKjijijiji uuuuuuu=u . (7.20)

Note that for the cell ),( ji , at a fixed ),( 00 lk , the evaluation of xxu is exactly the same as the 1D case
using the data ),( 0lk , where k varies in the cell ),( ji , ),1( ji − , and ),1( ji + . A similar statement holds
for yyu . Thus, the 2D solution follows immediately from the 1D solution, and the result can be written as

1,1,01,1,0,10,1,10,1,0,0
,

+−−+−− ++++= jijijijiji
ji

dt
d

uCuCuCuCuC
u

. (7.21)

Here, 0,0C , 0,1−C , 0,1C , 1,0 −C , and 1,0C are 22 KK ⋅ matrices. Let the wave number in the x -direction

be denoted by xw , and that in the y -direction, yw (involving no partial derivative here). Let the
imaginary number be denoted by I instead of the standard notation i to avoid confusion with the index i .
Replacing ji ,1−u , ji ,1+u , 1, −jiu , and 1, +jiu respectively by ji

wxe ,u
I− , ji

wxe ,u
I , ji

wye ,u
I− , and ji

wye ,u
I ,

we obtain

( ) ji
wwwwji yyxx eeee

dt
d

,1,01,00,10,10,0
, uCCCCC
u IIII ++++= −

−
−

− . (7.22)

Set

1,01,00,10,10,0 CCCCCS IIII yyxx wwww eeee ++++= −
−

−
− . (7.23)

Then S is a 22 KK ⋅ matrix. The semidiscretization results in

ji
ji

dt
d

,
, uS
u

= (7.24)

For all the schemes discussed here, S has 2K eigenvalues. The eigenvalue that approximates the exact
eigenvalue—there is one and only one such value—is called the principal eigenvalue and denoted by

),( yx wwS :
22),( yxyx wwwwS −−≈ . (7.25)

All others are spurious eigenvalues. All eigenvalues must lie in the left half of the complex plane for the
semidiscretization to be stable.

It turns out that for all methods discussed, via Fourier analysis, the 2D and corresponding 1D schemes
have identical order of accuracy. Concerning stability limits, the 2D method has a limit of 1/2 that of the
1D version for nearly all schemes and, for a few exceptions, approximately 1/2. In other words, the largest
magnitude of all eigenvalues for a 2D scheme is essentially twice that of the corresponding 1D method.
This reduction by a factor of 2 in the stability limit for the 2D diffusion equation here is consistent with the
reduction by a factor of 2 for the 2D advection equation in (Huynh2007): each derivative corresponds to
a factor of 2 . 

The minimum eigenvalues, orders of accuracy, and errors of 16 schemes for the 2D case with 4=K
are shown in Table 7.1. In the calculations of order of accuracy, the coarse mesh corresponds to 8/= πxw
and 10/= πyw , and the fine mesh, 16/= πxw and 20/= πyw . Note that all schemes are of order at least
6 or )1(2 −K , and the orders of accuracy are identical to those of the corresponding 1D schemes in Table
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6.3. Again, schemes 11 and 15 are of order 8, and scheme 14 (recovery), order 10. For scheme 6, or
GaGa -/SP-centered-I gg , the error crosses zero near 8/π=xw and 10/π=yw . Therefore, to calculate

the order of accuracy, we set 16/π=xw and 20/π=yw for the coarse mesh and 32/π=xw and

40/π=yw for the fine mesh. The errors are respectively 121064.4 −⋅− and 141032.2 −⋅− , and the
scheme is of order 6. The recovery scheme ( DG-Precovery/S-I g or 14) is more complicated than the
others, but it has the advantages of highest accuracy and largest stability limit.

Schemes in 2D
4=K

Min.
Eigval.

Ord.
Acc.

Coarse mesh error,
8/π=xw

10/π=yw

Fine mesh error,
16/π=xw
20/π=yw

1. DGLe -/SP-centered-I gg .374− 6 91022.6 −⋅− 111053.2 −⋅−
2. DGDG -/SP-centered-I gg .340− 6 91094.5 −⋅− 111050.2 −⋅−
3. DGGa -/SP-centered-I gg .340− 6 91051.4 −⋅− 111033.2 −⋅−
4. DGLoLump, -/SP-centered-I gg * .340− 6 91025.5 −⋅ 111005.2 −⋅
5. GaDG -/SP-centered-I gg .244− 6 91018.1 −⋅− 121093.5 −⋅−
6. GaGa -/SP-centered-I gg .196− 6 onexplainatisee 121064.4 −⋅−
7. GaLoLump, -/SP-centered-I gg * .196− 6 91076.7 −⋅ 111003.3 −⋅
8. LoLump,DG -/SP-centered-I gg .244− 6 91054.2 −⋅ 121089.8 −⋅
9. LoLump,Ga -/SP-centered-I gg .177− 6 91042.3 −⋅ 121091.9 −⋅
10. LoLump,LoLump, -/SP-centered-I gg * .165− 6 91085.9 −⋅ 111084.3 −⋅
11. DGLe -/SP-continuous-I gg .367− 8 131050.9 −⋅ 161028.9 −⋅
12. DGDG -/SP-continuous-I gg .244− 6 91062.2 −⋅ 111002.1 −⋅
13. GaLe -/SP-continuous-I gg .340− 6 91091.4 −⋅ 111092.1 −⋅
14. DG-Precovery/S-I g .135− 10 141089.1 −⋅− 181067.4 −⋅−
15. DGDG -/SP-sided-one-I gg .878− 8 121017.2 −⋅ 151012.2 −⋅
16. LoLump,LoLump, -/SP-sided-one-I gg .544− 6 81075.1 −⋅ 111083.6 −⋅

Table 7.1. Minimum eigenvalues, orders of accuracy, and errors for schemes in 2D with 4=K .

8. Numerical Results
As preliminary tests, we apply the schemes discussed above to solve the steady diffusion equations (or

two-point boundary value problem). Here, the problem is solved not by time-marching, but by inversion of
the implied coefficient matrix of kju , , Jj ...,,1= and Kk ...,,1= . Unless otherwise stated, the solution
points are the Gauss points and, in the graphs, the crosses represent the exact solutions, while the dots, the
numerical ones.

The first test is the Poisson equation

2=xxu (8.1)

on the domain ]1,1[− with boundary conditions

1)1()1( ==− uu . (8.2)
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The exact solution is 2
exact )( xxu = . We employ piecewise linear methods to solve this problem. On each

cell jE of center jx and length jh , the two (Gauss) solution points are denoted by 1,jx and 2,jx . The

projection of 2x onto the space of linear functions on jE is

)(212/)( 22
jjjjj xxxhxxl −++= .

That is, jl provides the best linear approximation to 2x on jE in the least-squares sense. Note that jl is

identical to the line defined by the values of 2x at the two Gauss points as shown in Fig. 8.1. (In general, if
p is of degree K , then the projection of p onto )(1

j
K EP − is determined by the values of p at the K

Gauss points.) It appears desirable that the linear solution recovers jl : at the Gauss points,

2
2,2,

2
1,1, )(and)( jjjj xuxu == .

However, as shown in Fig. 8.1, only two schemes yield this solution: DGLe -/SP-continuous-I gg and

DG-Precovery/S-I g . All other schemes, e.g., BR2 and CDG do not. Concerning Fig. 8.1(c) for the CDG
scheme, note that for each cell except the last one, the value of the solution polynomial at the right
interface—thus, the common value—is exact. That is, at 1−=x , i.e., the left boundary, 12/1

com
2/1 == −uu ; at

each interior interface, )1(2/1
com

2/1 jjj uuu == −
++ . At the right boundary, however, the choice is switched:

12/13
com

2/13 == +
++ uu . This switch causes a loss in accuracy: loosely put, the cancellation of errors no longer

holds. Also note that for all solutions of Fig. 8.1, the common interface values com
2/1+ju are exact. Concerning

the cell average values, however, the BR2 and CDG schemes do not recover the exact solutions.

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

(a) DGLe -/SP-continuous-I gg
and DG-Precovery/S-I g

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

(b) Scheme BR2, i.e.,
DGDG -/SP-centered-I gg

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

(c) Scheme CDG or
DGDG -/SP-sidedone-I gg

Figure 8.1. Solutions for 2=xxu on ]1,1[− with boundary conditions 1)1()1( ==− uu using three cells.
Only the schemes DGLe -/SP-continuous-I gg and DG-Precovery/S-I g recover the projection of the

exact solution 2
exact )( xxu = onto the space of piecewise linear functions (the lines through the crosses).

The second test is the Poisson equation employed in (Van Leer and Nomura 2005)

)sin(24)( 2 xxsuxx ππ−== (8.3)

on the domain ]1,0[ with boundary conditions

12)0( −= πxu and 0)1( =u . (8.4)

The exact solution is xxxu −+= 1)sin(2)(exact π . The projection of )(xs onto )(1
j

K E−P is denoted by
)(xs j . At the solution points, the source terms are set as, for Kk ...,,1= , )( ,, kjjkj xss = .

Figure 8.2 shows the solutions with 2=K using three cells: in the order of decreasing accuracy, (a)
DGLe -/SP-continuous-I gg , (b) DGDG -/SP-centered-I gg or BR2, and (c) DGDG -/SP-sided-one-I gg

or CDG. The solution by DG-Precovery/S-I g is nearly identical to that by DGLe -/SP-continuous-I gg
and is omitted. The smooth green curves are the exact solutions and the dots, the approximate solutions.
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The brown curves are the reconstruction polynomials }{ C
ju ; for all solutions, }{ C

ju are more accurate than
the piecewise linear solutions. Concerning Fig. 8.2(c) or the CDG solution, at each interior interface,

)1(2/1
com

2/1 jjj uuu == −
++ , but at the right boundary, the choice is switched: 02/13

com
2/13 == +

++ uu . Note that this

solution is asymmetric. Also note that com
2/1+ju for all solutions are again exact.

0.2 0.4 0.6 0.8 1

-0.5

0.5

1

1.5

(a) DGLe -/SP-continuous-I gg

0.2 0.4 0.6 0.8 1

-0.5

0.5

1

1.5

(b) Scheme BR2

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

1.5

(c) Scheme CDG
Figure 8.2. Solutions for )sin(24 2 xuxx ππ−= on ]1,0[ with boundary conditions 12)1( −=− πxu and

0)1( =u using three cells.

Scheme
)4( =K

Order of
accuracy

Max. Error;
4 cells

Error
ratio

Max. Error;
8 cells

Error
ratio

Max. Error;
16 cells

DG-Precovery/S-I g * 510215. −⋅ 810712. −⋅ 1010280. −⋅
8 )2or( K 302. 236.

DG-Precovery/S-I g 410769. −⋅ 510302. −⋅ 610100. −⋅
5 )1or( +K 26. 30.

DGLe -/SP-continuous-I gg 410433. −⋅ 510170. −⋅ 710562. −⋅
5 )1or( +K 25. 30.

DGDG -/SP-centered-I gg 210115. −⋅ 310106. −⋅ 510805. −⋅
4 )or( K 11. 13.

DGDG -/SP-sidedone-I gg 210115. −⋅ 410877. −⋅ 510574. −⋅
4 )or( K 13. 15.

LoLump,Gauss -/SP-centered-I gg 210179. −⋅ 310151. −⋅ 510912. −⋅
4 )or( K 12. 16.

Table 8.1. Maximum errors and corresponding orders of accuracy. For the line DG-Precovery/S-I g *, the
exact values at the solution points in the error calculations are the values of the projection of the exact
solution onto )(1

j
K E−P ; for all other cases, the exact values (with no projection) are employed.

Table 8.1 shows the maximum errors at the solution points and orders of accuracy of various schemes
with 4=K for (boundary value) problem (8.3)-(8.4). As for the recovery scheme, we consider two types
of errors: in the first type, the exact values at the solution points are the values of the projection of the exact
solution onto )(1

j
K E−P ; in the second, the standard exact values (with no projection) are employed. Note

that with the first type of errors, the recovery scheme is of order K2 ; with the second, order 1+K . For all
other schemes, the two types of errors are comparable; therefore, only errors of the second type, which are
more straightforward, are listed. These results on order of accuracy were tested for K from 2 to 7. With

2=K , Fourier analyses showed that most schemes are of order 0)1(2 =−K ; for the steady state case
considered here, however, these schemes are of order 2. Although not listed, all interface quantities as well
as cell average values are exact (up to machine errors).
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The third test is a 2D problem: on the domain ]1,0[]1,0[ ⋅ , with 2.=a , consider the Poisson equation

)sin(3)sin(31),( 2 yx
a

yxsuu yyxx ππ−==+ . (8.7)

The Dirichlet boundary conditions are

0)1,()0,(),1(),0( ==== xuxuyuyu . (8.8)

The exact solution is

)sin(3)sin(3
)3(2

1),( 2exact yx
a

yxu ππ
π

−= . (8.9)

The domain ]1,0[]1,0[ ⋅ is divided into JJ ⋅ uniform squares. On each cell (square), we employ KK ⋅
solution points, which are the Gauss points. For simplicity, at the solution points, the source term is
evaluated with no projection: for Jji ...,,1, = and Klk ...,,1, = ,

)( ,,,,,, lkjilkji xss = . (8.10)

Figure 8.3 shows (a) the exact solution and (b) the solution with 44 ⋅ cells and 4=K using
DGDG -/SP-centered-I gg or BR2 scheme. The solutions by other schemes are very similar.
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0.8

(a) Exact solution (b) Solution by BR2 scheme
Figure 8.3. Solutions for problem (8.7), (8.8) on ]1,0[]1,0[ ⋅ : (a) exact and (b) with 44 ⋅ cells and 4=K
using DGDG -/SP-centered-I gg . 

Scheme
)4( =K

Order of
accuracy

Max. Error;
2 cells

Error
ratio

Max. Error;
4 cells

Error
ratio

Max. Error;
8 cells

DG-Precovery/S-I g 210358. −⋅ 310132. −⋅ 510378. −⋅
5 27. 35.

DGLe -/SP-continuous-I gg 210237. −⋅ 410720. −⋅ 510214. −⋅
5 33. 34.

DGDG -/SP-centered-I gg 110117. −⋅ 310851. −⋅ 310116. −⋅
4≈ 14  7  

DGDG -/SP-sidedone-I gg 110117. −⋅ 210180. −⋅ 310127. −⋅
4≈ 7. 14.

LoLump,Gauss -/SP-centered-I gg 110450. −⋅ 210147. −⋅ 310134. −⋅
4≈ 30 11

Table 8.1. Maximum errors of values at solution points and corresponding orders of accuracy.
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Table 8.2 shows the maximum errors at the solution points and orders of accuracy of various schemes
with 4=K for the 2D problem (8.7)-(8.8). Note that the orders of accuracy are essentially the same as
those of Table 8.1.

9. Conclusions and discussion
In summary, a new approach to high-order accuracy for diffusion problems with the advantages of

simplicity and economy was introduced. The approach evaluates the derivative for the discontinuous
solution polynomial by first obtaining the derivatives at the solution points in a straightforward manner.
These derivatives are then corrected, in each cell, by quantities proportional to the jumps at the two cell
interfaces. The key idea is to solve the equations in differential form using a reconstruction technique
where the discontinuous solution polynomials are approximated by piecewise polynomials that are
continuous across the interfaces and of one degree higher than that of the solution polynomials. The
approach resulted in several new methods including a simplified version of the DG scheme. It also led to
new choices of common value and common gradient. Fourier stability and accuracy analyses were carried
out. For the two-point boundary value problem, it was shown that nearly all of these reconstruction
schemes (which include a majority of popular DG methods) yield exact common interface quantities as
well as exact cell average solutions.

The approach can be extended to the case of the Navier-Stokes equations on a 2D quadrilateral mesh
via tensor products. The extension to the case of a triangular mesh appears to be more complex and remains
to be explored since the concept of tensor product is no longer available.
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Appendix. Boundary Value problem (or Steady State Case)
In this appendix, we show that for the 1D boundary value problem, assuming that the solution exists,

then the common interface values and derivatives and the cell average values of the solution are exact for
essentially all schemes discussed.

More precisely, on the domain ],[ ba , consider the Poisson equation

suxx = (A.1)

with the Neumann boundary condition on the left and Dirichlet boundary condition on the right,

α̂)( =aux and β=)(bu (A.2)

where α̂ and β are given constants and, for simplicity, )(xss = is assumed to be piecewise continuous.
Let exactu be the exact solution and xuv )( exactexact = . Then, for y in ],[ ba ,

∫+=
y

a
dzzsyv )(ˆ)(exact α (A.3)

and, by integrating from right to left,

∫+=
x

b
dyyvxu )()( exactexact β . (A.4) 

Next, consider the following three sets of boundary conditions:
α=)(au , β=)(bu ,
α=)(au , α̂)( =aux , and

β=)(bu , β̂)( =bux .

(A.5a) 
 (A.5b)

(A.5c)
We now show that each of them can be recast in the form (A.2). For the case (A.5a), by (A.4) and (A.3),

∫ ∫+−+=
x

b

y

a
dydzzsbxxu )()(ˆ)(exact αβ .

Therefore,

∫ ∫−−−=
b

a

y

a
dydzzsabau )()(ˆ)(exact αβ .

Or

∫ ∫−−−=
b

a

y

a
dydzzsab )()(α̂βα .

If α and β are given, we can evaluate α̂ in terms of α and β by the above equation. Therefore, (A.5a)
can be cast in the form (A.2). The other two cases are similar and are omitted.
On domain ]1,1[−=I . First, we consider the case of only one cell on the domain ]1,1[],[ −=ba .

Assume that 1≥K . Denote by s~ the projection of s onto )(1 IK −P , the space of polynomials of degree
1−K or less on I . Using kP , the Legendre polynomial of degree k , set

∑
−

=
− ==

1

0
1 )(Pr~

K

k
kkK Pss γ
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where, for 1...,,0 −= Kk , kγ is defined by

),(),( kkkk PsPP =γ . (A.6)

The exact solutions for the problem (A.1) and (A.2) on the domain ]1,1[− are

∫−+=
y

dsyv
1exact )(ˆ)( ξξα (A.7)

and

∫+=
x

dyyvxu
1 exactexact )()( β . (A.8)

The exact solutions for the same problem with s replaced by s~ are

∫−+=
y

dsyv
1

)(~ˆ)(~ ξξα (A.9) 

and

∫+=
x

dyyvxu
1

)(~)(~ β . (A.10)

Here, since s~ is of degree 1−K , v~ is of degree K , and u~ , degree 1+K .
We claim that

∫∫ −−
=

1

1

1

1
)()(~ ξξξξ dsds ; equivalently, )1()1(~

exactvv = . (A.11a,b)

In addition, if 2≥K , then

∫∫ −−
=

1

1 exact
1

1
)()(~ ξξξξ dvdv ; equivalently, )1()1(~

exact −=− uu . (A.12a,b)

And, if 3≥K , then

∫∫ −−
=

1

1 exact
1

1
)()(~ ξξξξ dudu . (A.13)

To prove this claim, note first that the projection of s~ and s onto )(1 IK −P are equal; that is, for any
polynomial p of degree 1−K or less,

),(),~( psps = . (A.14)

If 1≥K , then )(1 IK −P contains 1=p . The above for 1=p yields

∫∫ −−
=

1

1

1

1
)()(~ ξξξξ dsds , (A.15)

which is (A.11a). By (A.7) and (A.9), equation (A.11a) is equivalent to equation (A.11b).
Next, if 2≥K , then )(1 IK −P contains ξξ =)(p . Equation (A.14) for this p yields

∫∫ −−
=

1

1

1

1
)()(~ ξξξξξξ dsds . (A.16)

Note that by (A.9), )=)′ ξξ (~(~ sv . Applying integration by parts to the left hand side above, we obtain

∫∫∫ −−−
−−+=′=

1

1

1

1

1

1
~)1(~)1(~~~ ξξξξξ dvvvdvds .

As for the right hand side of (A.16),

∫∫∫ −−−
−−+=′=

1

1 exactexactexact
1

1 exact
1

1
)1()1( ξξξξξ dvvvdvds .

Since α̂)1()1(~
exact =−=− vv and, by (A.11), )1()1(~

exactvv = , the above three equations imply

∫∫ −−
=

1

1 exact
1

1
~ ξξ dvdv , (A.17)

which is (A.12a). By (A.8) and (A.10), equation (A.12a) is equivalent to equation (A.12b).
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Finally, if 3≥K , then )(1 IK −P contains 2ξ=p . Equation (A.14) for this p yields

∫∫ −−
=

1

1
21

1
2 )()(~ ξξξξξξ dsds . (A.18)

Again, by (A.9), )=)′ ξξ (~(~ sv . Applying integration by parts to the left hand side above, we have

∫∫∫ −−−
−−−=′=

1

1

1

1
21

1
2 ~2)1(~)1(~~~ ξξξξξξ dvvvdvds . (A.19)

In a similar manner, by (A.10), vu ~~ =′ . Applying integration by parts to the last integral above, we obtain

∫∫∫ −−−
−−+=′=

1

1

1

1

1

1
~)1(~)1(~~~ ξξξξξ duuududv . (A.20)

Substituting the above into (A.19), i.e., after integrating by parts twice, the result is

∫∫ −−
+−−−−−=

1

1

1

1
2 ~2)1(~2)1(~2)1(~)1(~~ ξξξ duuuvvds .

A similar argument for the right hand side of (A.18) leads to

∫∫ −−
+−−−−−=

1

1 exactexactexactexactexact
1

1
2 2)1(2)1(2)1()1( ξξξ duuuvvds .

Recall that that α̂)1()1(~
exact =−=− vv and, by (A.11), )1()1(~

exactvv = ; in addition, β== )1()1(~
exactuu

and, by (A.12), )1()1(~
exact −=− uu . Therefore, the above two equations and (A.18) imply

∫∫ −−
=

1

1 exact
1

1
)()(~ ξξξξ dudu .

This completes the proof.
Note that an argument along the same line as the above for the recovery scheme was discussed in (Van

Leer et al. 2007).
Exactness of common interface quantities and cell average values regardless of the scheme. Let the

domain ],[ ba be partitioned into (possibly irregular) cells jE of center jx and length jh , Jj ...,,1= .

Assume that 1≥K . Let kjx , , Kk ...,,1= , be any set of solution points. On each cell jE , denote by

)(xss jj = the polynomial of degree 1−K that is the projection of s onto )(1
j

K E−P :

)(Pr 1 ss Kj −= . (A.21)

For the s values at the solution points, we employ, with Kk ...,,1= ,

)( ,, kjjkj xss = . (A.22)

The problem takes the form: find kju , such that for all j and k

kjkjxx su ,,)( =

with the following boundary conditions: 

α̂)()( com
2/12/1 == xx uu and β== ++

com
2/12/1 JJ uu .

At each interface 2/1+j , let com
2/1+ju be the common value and com

2/1)( +jxu the common derivative. They can

be calculated from kju , and kju ,1+ , Kk ...,,1= .
The following claim is in order. Assuming that the solution exists, then, regardless of the method, (a)

the common derivatives are exact; (b) if 2≥K and the correction function g for the solution points has a
zero average on ]1,1[− , then the common interface values are exact. In addition, (c) if 3≥K and the

correction function g for the solution points is orthogonal to 1P , then the cell average values of the
solution are also exact.



33

Concerning statement (b) in the above claim, since g is orthogonal to 3−KP , g has a zero average if

3≥K . Moreover, if DGgg = , then, since DGg is orthogonal to 2−KP , it has a zero average if 2≥K .

Concerning statement (c), since g is orthogonal to 3−KP , g is orthogonal to 1P if 4≥K . Moreover, if

DGgg = , then, since DGg is orthogonal to 2−KP , g is orthogonal to 1P if 3≥K .
To prove the claim, we employ the reconstruction functions. Recall that the reconstruction scheme has

the following properties:
)(xuC

j is of degree K and takes on the value com
2/1−ju at 2/1−jx and com

2/1+ju at 2/1+jx ;

)}()()({ xuxv x
C
jj = is a discontinuous piecewise polynomial of degree 1−K ;

)(xvC
j is of degree K and takes on the value com

2/1−jv at 2/1−jx and com
2/1+jv at 2/1+jx ;

}){( x
C
jv is a discontinuous piecewise polynomial of degree 1−K .

If kju , are the solution of the boundary value problem, then, in each cell, the corresponding x
C
jv )( ,

which is of degree 1−K , satisfies, for Kk ...,,1= ,

kjkjx
C
j sxv ,, )()( = . (A.23)

Since )(xs j is the (unique) polynomial of degree 1−K interpolating 1,js , …, Kjs , , the above implies

)()()( xsxv jx
C
j = . Therefore, recalling that com

2/1
com

2/1 )( −− = jxj uv ,

∫
−

+= −
x

x jjx
C
j

j
dzzsuxv

2/1
)()()( com

2/1 . (A.24)

Consequently,

∫
+

−

+= −+
2/1

2/1
)()()( com

2/1
com

2/1
j

j

x

x jjxjx dzzsuu . (A.25)

Concerning the above integral, since )(Pr 1 ss Kj −= , we have

∫∫
+

−

+

−

= 2/1

2/1

2/1

2/1
)()( j

j

j

j

x

x

x

x j dxxsdxxs . (A.26)

We now march from 1=j to Jj = . For 1=j , at the left interface of 1E , namely, at ax =2/1 , the

quantity α̂)( com
2/1 =xu is known and is exact. We can calculate com

2/3)( xu by applying (A.25) with 1=j .

Equations (A.26) and (A.3) then imply that com
2/3)( xu is exact. Continuing for 2=j , …, J , respectively,

we conclude that all common interface derivatives com
2/1)( +jxu are exact regardless of the method: for all j ,

2/1exact
com

2/1 )()( ++ = jjx vu . (A.27)

Note that in the proof, the key ingredient is jx
C
j sv =)( ; we do not need jv .

To show part (b), i.e., the exactness of the common interface values com
2/1+ju , we integrate from right to

left and make use of the same result in the local coordinate, namely, (A.12). Note first that by
(A.24), )(xvC

j is independent of the method chosen; )(xv j , however, is method dependent. Therefore, we

wish to obtain com
2/1

com
2/1 +− − jj uu by integrating )(xvC

j instead of )(xv j . To this end, recall that by definition,

)()()( xuxv x
C
jj = . In addition, at all interfaces, com

2/12/1 )( ++ = jj
C
j uxu . Thus, for any x on jE ,

∫
+

+= +
x

x jj
C
j

j
dyyvuxu

2/1
)()( com

2/1 .

With 2/1−= jxx ,

∫
−

+

=− +−
2/1

2/1
)(com

2/1
com

2/1
j

j

x

x jjj dyyvuu . (A.28) 
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In the local coordinate, )+)+= ξξξξ (()()( RB
2

LB
1 gcgcvv j

C
j for some constants 1c and 2c . Now,

suppose the correction functions for the solution points satisfy, for LBgg = and RBgg = ,

∫− 0=
1

1
)( ξξ dg . (A.29)

Then,

∫∫
−

+

−

+

= 2/1

2/1

2/1

2/1
)()( j

j

j

j

x

x
C
j

x

x j dyyvdyyv . (A.30)

As a consequence, if (A.29) holds, then, by (A.28),

∫
−

+

=− +−
2/1

2/1
)(com

2/1
com

2/1
j

j

x

x
C
jjj dyyvuu . (A.31)

To show that these interface values are exact, we employ (A.12). Starting with the last cell JE , the

boundary quantity β=+
com

2/1Ju is exact. The polynomial C
Jv of degree K plays the role of v~ in (A.9).

Therefore, (A.12) implies that com
2/1−Ju is exact. By using this argument successively for 1...,,1−= Jj , i.e.,

marching from right to left, we conclude that the interface values com
2/1+ju are exact provided that 2≥K and

(A.29) holds.
Finally, assuming that 3≥K , we wish to employ (A.13) to show that the cell average values of the

solution are exact. The problem here is that u~ of (A.13) is of degree 1+K whereas ju is of degree 1−K .

To bridge this gap, we first observe that since RB
4

LB
3 gcgcuu j

C
j ++= for some constants 3c and 4c ,

and the averages of LBg and RBg are zero by our assumption, the average of ju on jE is the same as that

of C
ju (degree K ). Therefore, we only need to bridge the gap between C

ju (degree K ) and u~ (degree

1+K ). To this end, recall that we integrate js , which is of degree 1−K , to obtain C
jv , which is of degree

K ; here, C
Jv plays the role of v~ . Next, we integrate jv and C

jv to obtain C
ju , and u~ , respectively: for

any x on jE ,

∫
+

+= +
x

x jj
C
j

j
dyyvuxu

2/1
)()( com

2/1 ,

and

∫
+

+= +
x

x
C
jj

j
dyyvuxu

2/1
)()(~ com

2/1 .

Since RB
2

LB
1 gcgcvv j

C
j ++= , the problem reduces to the following. With LBgp = or RBgp = , set

∫−=
η

ξξη
1

)()( dpP . (A.32)

We wish to show that

∫− 0=
1

1
)( ηη dP . (A.33)

If we can show the above, then C
ju , and u~ have the same averages on jE .

In fact, we will show a more general and simpler to state result: if p is orthogonal to 1P , i.e.,

∫− 0=
1

1
)( ξξ dp and ∫− 0=

1

1
)( ξξξ dp , (A.34a,b)

then P defined by (A.32) satisfies (A.33). Indeed, by (A.34a) and definition (A.32) of P , we have
0)1( =P . Next, using integration by parts and (A.34b),

[ ] 0)()1()1()(()(
1

1

1

1
1
1

1

1 ∫∫∫ −−−−
=−−+=′−)= ξξξξξξξξξξ dpPPdPPdP . (A.35) 

This completes the proof.


