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N~~' l~~ Program Objectives 

1. Develop a design concept of a Variable Camber Continuous Trailing Edge 
Flap (VCCTEF) system. 

2. Define the flight control system requirements to continually shape the wing 
to achieve optimum performance for minimum drag. Provide faster flap 
response that will achieve level 1 handling qualities. 

3. Investigate use of Shape Memory Alloys and other actuation designs that 
will be the control effectors for achieving the wing shape needed to 
maintain optimum lift to drag ratios. 

4. Assess flight control modes to achieve satisfactory airframe aeroelastic 
stability margins and gust load allevation. 
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N~~' l~~ Wing Geometry and Flap Control Sections 
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N~~' l~~ 
Variable Camber Flap with Electric 

Motor Drive 
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N~~' l~~ 
Each Type for Actuation May 

Have a Role 

EXAMPLE: 3 - SECTION FLAP: 
(sections not to sea/e) 

1#1FLAPI J J 
I #2 FLAP I J 

1#3 FLAP I 

# 1 - Inner Flap - SMA/Hydraulic/EMA Hybrid Most Likely 
# 2 - Centermost Flap - SMA/EMAlHydraulic Trade Offs 
# 3 - Outermost Flap - EMA Best Candidate 

• Highest Operating Speed Required During Motion 
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N~~' l~~ Drag Comparison 
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N~~' l~~ 
Variable Camber Continuous 

Trailing Edge Flap 
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N~~' l~~ 
Example Drag Polars: Variable Camber 

Continuous Trailing Edge Flap 
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Wing Shaping: N~~' l~~ 
Optimized Aeroelastic Flap Design 

1. Increased wing flexibility can cause increase in cruise drag as wings 
operate at off-design conditions due to wing deflections. 

2. VCCTE flap will be designed by NASA to re-shape wings to restore 
optimal aerodynamics for reducing cruise drag. 

3. Flap design optimization needs to include aeroelasticity to account for 
wing deflections at cruise as a function of fuel weight and trim conditions. 

~ 
<.-------1 
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N~~' l~~ Aeroelastic Flutter Analysis 

1. Decrease in wing stiffness decreases flutter margin 

2. Determine LID payoff for decreased stiffness 

3. Discount engine I wing interaction for this study 

• Wing stiffness unchanged inboard of engine nacelles 

4. Outer wing bending - torsion occurs at higher airspeeds 

5. Determine control activation of VCCTE Flap to compensate outer 

wing 

• Active suppression to allowable ASE levels 

6. Determine wing stiffness boundary that requires active suppression 
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N~~' l~~ Aeroelastic Flutter Analysis 
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N~~' l~~ Summary 

1. VCCTE Flap project progressing, completed 1 st Quarter of 1 year 
study 

2. Flap geometry and hinge moment requirements for TE Flap 
determined 

3. Shape Memory Alloy actuation has light weight advantage 

4. Wing stiffness trade-off for increasing LID using GTM wing as the 
example for the project 

5. Determine wing flutter boundaries for decreasing wing stiffness, add 
active control for flutter suppression. 

6. Apply method I lessons learned to a Truss-Braced Wing aircraft as 
the next step. 
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