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Abstract: This paper proposes a reliability analysis framework for systems subject to multiple design require-
ments that depend polynomially on the uncertainty. Uncertainty is prescribed by probability boxes, also known
as p-boxes, whose distribution functions have free or fixed functional forms. An approach based on the Bern-
stein expansion of polynomials and optimization is proposed. In particular, we search for the elements of a
multi-dimensional p-box that minimize (i.e., the best-case) and maximize (i.e., the worst-case) the probability
of inner and outer bounding sets of the failure domain. This technique yields intervals that bound the range of
failure probabilities. The offset between this bounding interval and the actual failure probability range can be
made arbitrarily tight with additional computational effort.
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1. INTRODUCTION

This paper studies the reliability of a system for which a parametric mathematical model is available. The
acceptability of the system depends upon its ability to satisfy several design requirements. These requirements,
which are represented by a set of polynomial inequality constraints on selected output metrics, depend on the
uncertain parameter p. The reliability analysis of the system consists of assessing its ability to satisfy all the
requirements when the value of p is uncertain. In this article the uncertainty in p will be modelled as a p-
box. This means that the cumulative distribution function (CDF) for p lies within the bounds set by the p-box,
but that it is unknown which of the many CDFs satisfying such bounds actually describe the uncertainty in
p. The propagation of a p-box through the inequalities prescribing the requirements yields a range of failure
probabilities. The main goal of this paper is the generation of tight outer bounds to this range.

A significant thrust of this research is the generation of inner bounding sets to the safe and failure domains using
Bernstein expansions [1]. These sets are instrumental for generating intervals that bound the failure probability
range resulting from propagating all the elements of a p-box from the inputs to the output. The technique
proposed searches for the elements of the p-box that minimize and maximize the probability of inner and outer
bounding sets of the failure domain. The corresponding probabilities are the limits of the desired intervals.
Formulations applicable to p-boxes comprised of fixed-form- and arbitrary-form-distributions are proposed.

This paper is organized as follows. Basic concepts from reliability analysis, Bernstein polynomials, and im-
precise probabilities are introduced in Section 2. Formulations aiming at identifying the extreme distribution
functions from a p-box for a given set of polynomial requirement functions are presented and exemplified in
Section 3. Finally, a few concluding remarks close the paper.

2. BACKGROUND

2.1. Basic Concepts and Notions

A probabilistic uncertainty model of p ∈ Rs is prescribed by a random vector supported in the support set.
This set, which is comprised of all possible uncertain parameter realizations that may occur, will be denoted as
∆ ⊆ Rs. This model is fully prescribed by the joint cumulative distribution function Fp(p) : ∆→ [0,1].
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Consider a system that depends on the uncertain parameter p. The requirements imposed upon such a system
are prescribed as the vector1 inequality g(p) < 0. The requirement function g is defined as g : D → Rv, and
∆ ⊆ D ⊆ Rs, where D is the master domain.

The failure domain, denoted as F ⊂ Rs, is comprised of the parameter realizations that fail to satisfy at least
one of the requirements. Specifically, the failure domain is given by

F =

v⋃
i=1

{p : gi(p) ≥ 0} , (1)

The safe domain, given by S =C(F), whereC(·) denotes the complement set operatorC(Z)
∆
=D\Z , consists

of the parameter realizations satisfying all requirements. The failure probability associated with the distribution
function Fp is given by

PFp [F ] =

∫
F

1 dFp, (2)

where PFp [·] is the probability operator determined by the distribution Fp.

Techniques for bounding F and S will be presented below. The resulting bounding sets are unions of hyper-
rectangles. The hyper-rectangle having m > 0 as the vector of half-lengths of the sides and p̄ as its geometric
center, is given by

R(p̄,m) = {p : p̄−m < p ≤ p̄+m} = δ(p̄−m, p̄+m), (3)

where δ(x,y) = δ1 × δ2 × · · · × δs, is the Cartesian product of the intervals δi = (xi,yi].

A subdivision is the result of dividing a set in p-space into pairwise disjoint subsets. Let ρ(·) be an operator
whose input is any given set and its output are the subsets. A bisection-based subdivision of the hyper-rectangle
given in (3) in the ith direction is given by

ρ(R) = {R(p̄+w,m−w),R(p̄−w,m−w)}, (4)

where w = [0, . . . ,0,mi/2,0, . . . ,0]. That is, the hyper-rectangle is cut along its ith component into two
sub-hyper-rectangles of equal size.

2.2. Bernstein Polynomials

The image of a hyper-rectangle when mapped by a multivariable polynomial is a bounded interval. By ex-
panding that polynomial using a Bernstein basis over that rectangle, rigorous bounds to such an interval can
be calculated using simple algebraic manipulations. Bernstein polynomials will be used for determining if a
hyper-rectangle R ⊂ Rs is fully contained in the failure or safe domains associated with the vector inequality
g(p) < 0. Mathematical details of this technique can be found in [2].

The outcome of the set containment determination depends exclusively on the refinement of the partition of R
the analyst is willing to perform. Additional computational effort in the refinement of such a partition can be
used to render the tests conclusive.

2.3. Imprecise Probabilities

Imprecise probabilities is the subject of several theories involving models of uncertainty that do not assume a
particular underlying probability distribution. Instead, it assumes that the underlying distribution may be any
member of a family of distributions. Theories of imprecise probabilities are often expressed in terms of lower
and upper probabilities for every possible event from some universal set. Interval probabilities, Dempster-
Shafer structures and p-boxes can be regarded as special-cases of imprecise probabilities [3, 4].

1Throughout this paper, it is assumed that vector inequalities hold component-wise, super-indices denote a particular vector or set,
and sub-indices refer to vector components; e.g., p(j)

i is the ith component of the vector p(j).



Figure 1: P-box envelopes (dashed lines), p-box members (solid lines with circles), and requirement function
(thick solid line).

In this paper uncertainty will be prescribed via p-boxes. A one-dimensional p-box is a class of imprecisely
known distributions functions Fp(p) bounded between a pair of enveloping distribution functions F p(p) and
F p(p) supported in D such that F p(p) ≤ Fp(p) ≤ F p(p) for all p values. This means that the distribution for
the random variable p, Fp, is unknown except that it satisfies these inequalities.

P-boxes result from cases (i) where the distribution is known to take a particular form but its parameters can
only be specified by intervals, (ii) where envelopes of all distributions matching a given set of moments are
constructed from inequalities (e.g., Markov, Chebyshev), (iii) where empirical distributions functions are built
using data subject to measurement uncertainty, (iv) where the functional form of the distribution cannot be
determined due to limited amount of data (e.g., Kolmogorov-Smirnov, confidence bounds), and (v) where
several classes of uncertainty models are present (e.g., uncertainties are prescribed as a collection of intervals,
subsets of independent random variables and subsets of dependent random variables with unknown copulas
[4]).

In this paper, two types of p-boxes are considered. One type is an arbitrary distribution p-box. This type
of p-box is defined by specifying two envelope distribution functions, F p and F p, satisfying the restriction
that F p(p) ≤ F p for all p. A CDF Fp belongs to this p-box if it falls between these two envelopes; i.e., if
F p(p) ≤ Fp(p) ≤ F p for all p. Another type is a fixed form distribution p-box. This p-box only contains
members of a parametrized family of distributions. For example, to specify a fixed form distribution p-box one
might require that all CDFs in it be Gaussian distributions. The size of this p-box is limited by restricting the
allowable range of values for the defining parameters. In the Gaussian case, this might consist of requiring the
mean and standard deviation to fall in some specified intervals. Figure 1 shows the envelope distributions of an
arbitrary distribution p-box as well as two of its elements.

The set of p-boxes for a set of s uncertain parameters will be denoted as Bp, where Bpi for i = 1, . . . s is an
arbitrary distribution p-box or a fixed form distribution p-box as described above. Hereafter it is assumed that
the uncertainty in each component of p is given by a CDF belonging to a prescribed p-box. Furthermore, any
random variable associated with a possible distribution of pi is independent of those of pj for all i 6= j.

While the probability of an event for a given distribution is a scalar, the probability of an event for a p-box is
a range. This range can be an interval or a disconnected set. Each point on this range corresponds to at least
one element of the p-box. The reliability analysis of a system subject to the requirements g(p) < 0, where the
uncertainty model of p is an unknown element of the p-box Bp, consists of calculating or bounding the range



of all possible failure probabilities

X =

[
min

Fp∈Bp
PFp [F ], max

Fp∈Bp
PFp [F ]

]
. (5)

In most practical applications X cannot be calculated exactly. Instead, the inner and outer bounding intervals
X and X , satisfying

[ l, u ]
∆
= X ⊆ X ⊆ X ∆

=
[
l, u

]
, (6)

are calculated. The tightness of the bounds of X , measured by (u− u) + (l− l), will depend on a convergence
parameter set by the analyst. X enables estimating the portion of X that can be reduced with additional
computational effort. While the upper endpoint of X cannot be reduced more than u− u, the lower endpoint
cannot be increased more than l− l.

3. RELIABILITY ANALYSIS

In this section we present an algorithm for generating outer bounds to the failure probability range by searching
for the elements of the p-box Bp that minimize (i.e., best-case) and maximize (i.e., worst-case) the probability
of inner and outer bounding sets of the failure domain. The determination of extreme-case distributions, by
which we mean best- and worst-case distributions, has been the focus of attention recently [5]. The best- and
worst-case distributions, denoted as F b

p ∈ Bp and Fw
p ∈ Bp respectively, are distributions whose propagation

yields the lower and upper limits of X . Specifically,

F b
p = argmin

Fp∈Bp
PFp [F ], (7)

Fw
p = argmax

Fp∈Bp
PFp [F ]. (8)

These distributions, which depend on the geometry of F , may not be unique.

The distributions shown in Figure 1 are examples of a worst-case (orange line) and best-case (blue line) dis-
tribution, respectively, for the given p-box and the requirement g(p) < 0. Note that the worst-case distribution
rises the most over the failure domain, i.e., region over the abscissa colored in red, while the best-case dis-
tribution rises the most over the safe domain, i.e., region over the abscissa colored in green. Note that any
distribution passing through the points where Fw

p ∈ Bp (resp. F b
p ∈ Bp) crosses the failure domain’s boundary

is also worst-case (resp. best-case). These points are shown as small circles over the distributions.

A strategy for determining the extreme-case distributions corresponding to bounding sets of the failure domain
is presented below. An iterative procedure for generating these bounding sets is presented next.

3.1. Set Bounding

This section presents an algorithm to generate and sequentially expand subsets of the failure and safe domains.
These sets are unions of disjoint hyper-rectangles chosen from a partition Q of D. Let F sub and Ssub denote
subsets (i.e., inner approximations) of the failure and safe domains formed from selected elements of Q. Note
that ∅ ⊆ F sub ⊆ F ⊆ C(Ssub) ⊆ D, where C(·) is the complement set operator defined earlier, and that the
failure domain boundary, denoted as ∂F , lies in the region between the interiors of F sub and Ssub.

The sequences of inner bounds {Ssub
1 ,Ssub

2 , . . .} and {F sub
1 ,F sub

2 , . . .} are generated by the algorithm below.
These sequences are made to converge to the domain being bounded. In particular, the algorithm below iter-
atively generates indexed partitions Qi of D and indexed sets Ssub

i , F sub
i and Λi which are unions of hyper-

rectangles from Qi, where Ssub
i is an inner approximation to the safe domain, F sub

i is an inner approximation
to the failure domain, and Λi is a region comprised by the rectangles of Qi that are not in Ssub

i or F sub
i . Note

that while Qi is a list of hyper-rectangles, Ssub
i , F sub

i and Λi are sets comprised by the union of some of these



rectangles. The algorithm proceeds by successively selecting each of the component hyper-rectanglesR of Λi.
The tests in Theorems 1 and 2 in [2] for t = 1 are applied to R. If either of these tests determine that R ⊆ S
orR ⊆ F , thenR is removed from Λi and added to Ssub

i or F sub
i , respectively. If neither of these conditions is

satisfied,R is subdivided, and the resulting sub-rectangles replaceR in the partition. The algorithm terminates
when the volume of Λi is sufficiently small.

The algorithmic representation of this procedure is as follows. Let the inequality constraint g(p) < 0 defined
over p ∈ D prescribe the system requirements. Set i = 1, Q1 = {D}, Λ1 = D, F sub

1 = ∅, and Ssub
1 = ∅. Pick a

convergence criterion ε > 0.

1. Let L contain the elements of Qi comprising Λi.

2. Determine which elements of L are contained in the safe domain and which ones are contained in the
failure domain. Denote by U the list of elements contained by the safe domain, by V the list of elements
contained by the failure domain, and by W the list of elements that are not in U nor V . Furthermore, let
U , V andW be the union of the elements in U , V and W respectively.

3. Make Ssub
i+1 = Ssub

i ∪ U ; F sub
i+1 = F sub

i ∪ V; and Λi+1 = Λi \ (U ∪ V).

4. If Vol(Λi+1) < ε stop2. Otherwise, make Qi+1 = (Qi \W )∪ ρ(W), increase i by one, and go to Step 1.

As the number of iterations increases, Ssub
i andF sub

i approach the safe and failure domain. Note that the closure
of Λi not only covers the boundary of F but also approaches that boundary as i increases.

3.2. Extreme-Case Distributions over Bounding Sets

In this section we present techniques which utilize the inner bounding sets of Section 3.1 to calculate the
bounding intervals X and X of Equation (6). A left endpoint of X (resp. X) is found by seeking distributions
from the p-box which minimize the probability of an inner (resp. outer) bound to the failure set. For the right
endpoint, distributions in the p-box are sought which maximize these probabilities. The tighter the bounding
sets, the smaller the gap between X and X .

The bounding intervals corresponding to the partitionQi are denoted byX i andXi. Recall thatF sub
i , Ssub

i , and
Λi are comprised by elements of Qi. While the upper limit of Xi can be used to declare a system acceptable,
i.e., because it is smaller than the largest admissible failure probability, the upper limit of X i can be used to
declare it unacceptable, i.e., because it is larger than the largest admissible failure probability.

The formulations below enable calculating Xi and X i for the partition Qi that results from the ith iteration of
the algorithm in Section 3.1. The corresponding collection of bounding intervals defines sequences. Note that
the elements of the sequences X i and Xi satisfy X i ⊆ X i+1 ⊆ X ⊆ Xi+1 ⊆ Xi. By design, the sequences
for X i and Xi approach X monotonically as i increases.

The developments that follow enable calculating the bounding intervals corresponding to a given partition.
Formulations applicable to fixed form distribution and arbitrary distribution p-boxes are presented next.

3.2.1. Fixed Form Distribution P-Boxes

Recall that a fixed form distribution p-box assumes a parametrized functional form. Let θ denote the corre-
sponding vector of parameters. A fixed form p-box is fully prescribed by its functional form and the domain
of θ. This domain will be denoted as Θ. The parameters of the best-case and worst-case distribution for the
partition ρ(D) = {F sub

i ,Ssub
i ,Λi} are given by

θbi = argmin
θ∈Θ

 ∑
Rj⊆F sub

i

PFp(θ) [Rj ]

 , (9)

2In the context of Section 3.2, a better stopping criterion is Vol(Xi \Xi+1) < ε.



θwi = argmin
θ∈Θ

 ∑
Rj⊆Ssub

i

PFp(θ) [Rj ]

 . (10)

Therefore, the best-case distribution minimizes the probability of the inner bounding set of the failure domain
as if Λi were fully contained in the safe domain; while the worst-case distribution maximizes the probability of
the inner bounding set of the safe domain as if Λi were fully contained in the failure domain. The solution to
Equations (9) and (10) yields the outer bounding interval

Xi =
[
PFp(θbi )

[
F sub
i

]
,1− PFp(θwi )

[
Ssub
i

]]
. (11)

The inner bounding interval corresponding to the same partition is given by

X i =

{
[αi, βi] , if αi ≤ βi
∅ otherwise,

(12)

where αi = PFp(θli)

[
F sub
i

]
, βi = 1− PFp(θui )

[
Ssub
i

]
, and

θli = argmax
θ∈Θ

 ∑
Rj⊆Ssub

i

PFp(θ) [Rj ]

 , (13)

θui = argmax
θ∈Θ

 ∑
Rj⊆F sub

i

PFp(θ) [Rj ]

 . (14)

Therefore, the lower limit of X i corresponds to the distribution that maximizes the probability of the inner
bounding set of the safe domain as if Λi were fully contained in the failure domain; while the upper limit
corresponds to the distribution that maximizes the probability of the inner bounding set of the failure domain
as if Λi were fully contained in the safe domain. Note that θbi and θwi closely approximate θli and θui when
Vol(Λi)� Vol(D).

When the uncertain parameters are independent, the above probabilities can be readily evaluated using

PFp(θ) [R] =
s∏

j=1

PFpj (θ) [δj ] =
s∏

j=1

(
Fpj(θ)(bj)− Fpj(θ)(aj)

)
, (15)

where δj = (aj , bj ] is the projection ofR onto the pj axis.

Example 1: In this example we calculate the sequences of Xi and X i for the requirement functions

g1 = p2
1p

4
2 + p4

1p
2
2 − 3p2

1p
2
2 − p1p2 +

p6
1 + p6

2

200
− 7

100
, (16)

g2 = −p
2
1p

4
2

2
− p4

1p
2
2 + 3p2

1p
2
2 +

p5
1p

3
2

10
− 9

10
. (17)

We assume that Bp1 is the family of Beta distributions supported in D with parameters in 20 ≤ a ≤ 30 and
20 ≤ b ≤ 30 while Bp2 is the family of Beta distributions supported in D with parameters in 0.5 ≤ c ≤ 0.7
and 0.5 ≤ d ≤ 1. In this setting θ = [a, b, c, d]> where Θ = [20,30]× [20,30]× [0.5,0.7]× [0.5,1]. In this
case F p and Fp are not Beta distributions. The top of Figure 2 shows the bounding intervals Xi and Xi as
a function of the total number of boxes in the elements of Qi. The endpoints of Xi are shown as solid lines
while αi and βi are shown as dashed lines. While the upper endpoint of X is bounded by the red lines with
squares, the lower endpoint is bounded by the blue lines with circles. Note that the inner bounding interval Xi

is non-empty only after the dashed lines cross, i.e., at the points where βi > αi. Further notice that partitions
with more than 4000 boxes yield very tight bounding intervals. The plot in the middle shows the convergence
of the parameters corresponding to the worst-case distribution θwi while the plot at the bottom shows that for the
best-case distribution θbi . Note that partitions comprised of more than 1000 boxes render the very same extreme-
case distributions. This suggests the possibility of stopping the search for the extreme-case distributions before
stopping the expansion of the bounding sets. Figure 3 shows the p-box envelopes for each of the two uncertain
parameters as well as the extreme-case distributions.



Figure 2: Convergence of the bounding intervals of X , and of design variables.

3.2.2. Arbitrary Distribution P-Boxes

The developments of this section enable calculating the bounding intervals X i and Xi of X corresponding to
an arbitrary distribution p-box Bp for the partition Qi. Recall that a arbitrary distribution p-box contains all
possible distributions between the envelopes F p and Fp. Let Qi,j be the ordered list of distinct components
resulting from projecting the vertices of all hyper-rectangles comprising Qi onto the pj axis. While j can take
on any integer number between 1 and s, the number of elements of the list for a fixed value of j, denoted as

Figure 3: P-box envelopes, worst- and best-case distributions for a fixed distribution p-box.



mj , varies. We will consider these numbers as coordinates on the pj axis. In order to determine, for example,
the left endpoint of Xi, it suffices to find a distribution Fp ∈ Bp for which PFp [F sub

i ] is minimal.

The formulation below searches for the points

yi,jk
∆
= Fpj(y)(Q

i,j
k ), (18)

of the extreme-case distributions leading to Xi and Xi. Figure 1 displays circles at the pairs 〈Qk, yk〉 pairs
corresponding to the best-case (blue line) and worst-case (orange line) distributions.

The search for the values yi,j taken by the extreme distributions is formulated as a non-linear optimization
problem subject to the constraint set

Y = {y : yi,jk ≤ y
i,j
k+1, k = 1, . . .mj − 1, 1 ≤ j ≤ s;

F pj (Q
i,j
k ) ≤ yi,jk ≤ Fpj (Q

i,j
k ), k = 1, . . .mj , 1 ≤ j ≤ s}.

These constraints insure that the extreme-case distribution passing through these values is non-decreasing and
falls within the envelopes of the p-box Bp.

The left endpoint of Xi is given by

li = min
y

 ∑
R∈Qi,R⊆F sub

i

PFp(y) [R] : y ∈ Y

 , (19)

where Fp(y) is any distribution compliant with Equation (18). The value of y at which the minima occurs
prescribes a finite collection of points taken by the best-case distribution function corresponding to F sub

i . In a
similar fashion, the right endpoint of Xi is given by

ui = min
y

 ∑
R∈Qi,R⊆Ssub

i

PFp(y) [R] : y ∈ Y

 . (20)

The entries to the inner bounding interval X i in Equation (12) are given by

αi = max
y

 ∑
R∈Qi,R⊆Ssub

i

PFp(y) [R] : y ∈ Y

 , (21)

βi = max
y

 ∑
R∈Qi,R⊆F sub

i

PFp(y) [R] : y ∈ Y

 . (22)

The above expressions are analogous to those in Equations (9-14).

Some of the design variables in y may not be necessary. This can be observed in Figure 1, where the values
taken by the extreme-case CDFs at points other than those marked with circles do not affect the calculation
of probabilities, and hence, the resulting bounding intervals. A more efficient implementation of Equations
(19-22) is obtained by only choosing the components of y corresponding to the Qi,j values associated with the
hyper-rectangles comprising F sub

i , Ssub
i , Ssub

i and F sub
i respectively.

Note that there is an infinite number of distributions passing through the points 〈Qi,j
k ,y

i,j
k 〉. Therefore, there

will be an infinite number of distributions attaining the same bounding intervals. When the uncertain parameters
are independent, these probabilities are given by

PFp(y) [R] =
s∏

j=1

PFp(y) [δj ] =
s∏

j=1

(
yi,jl − y

i,j
k

)
, (23)



Figure 4: Convergence of the bounding intervals of X , and extreme-case distributions.

where δj = [Qi,j
k ,Q

i,j
l ] for l > k is the projection ofR onto the pj axis while yi,jk and yi,jl are the corresponding

values of the distribution. A few remarks on the methods that can be used to solve the optimization problems
above are presented next. Equations (19-22) have a multi-linear cost function of order s and linear inequal-
ity constraints. In principle, the global solution to these problems can be rigorously bounded using Bernstein
expansions. Unfortunately, the computational cost of applying this method to problems of moderate size is
exceedingly high. Instead, a nonlinear programming solver was used to search for the extreme distributions.
Such a technique however, may fail to converge to the global optima. The best known method to find rigor-
ous, or at least ε-approximate solutions to this class of optimization problems, is the spatial Branch-and-Bound
algorithm [6]. This approach determines lower bounds to the cost function on each region being explored by
solving convex relaxations of the cost function. Even though convex envelopes are explicitly known for low-
order terms, such a description is unknown for general multi-linear terms of higher order. Note however that
relaxation techniques will introduce irreducible conservatism into the bounding intervals.

Example 2: Here we consider the problem in Example 2 but use arbitrary distribution p-boxes with the same
envelopes. The top of Figure 4 shows X i and Xi as a function of the number of boxes in the elements of the
partition Qi. As before, the inner bounding set is empty for coarse partitions. As expected, the probability
range for the fixed-form distribution p-boxes in Figure 2 is smaller than that for the arbitrary distribution p-
boxes in Figure 4. The bottom plots show the convergence of the extreme-case distribution functions for p1

and p2. While the best-case distribution is shown as a black line, the worst-case is shown as a red line. As in
the previous example, the shape of the extreme-case distributions settle for a sufficiently fine partition of the
master domain. Figure 5 shows the envelopes of the p-box as well as the extreme-case distributions at the last
iteration step. The coordinates of the centroid of the safe domain are near the lines p1 = 0 and p2 = 0. Is at
these values where the best-case distribution rises the most, i.e., a large probability is placed at the core of the
safe domain, and the worst-case rises the least, i.e., a small probability is placed at the core of the safe domain.
This phenomenon justifies the perpendicular intersection of the extreme-case distributions of p1 at p1 = 0.

4. CONCLUSIONS

This paper presents a reliability analysis framework applicable to systems subject to polynomial requirement
functions and probability-box uncertainties. This dependency may occur naturally or artificially. Techniques



Figure 5: P-box envelopes, worst- and best-case distributions for a arbitrary distribution p-box.

for bounding the range of failure probabilities based on interval propagation and optimization are proposed.
The foundation of these techniques is the Bernstein expansion of polynomials. This article presents the math-
ematical framework of these approaches and illustrates their application to an easily reproducible example
problem. Since a single analysis, with a carefully chosen p-box, encompasses infinitely many analyses each
having its own distributions for all uncertain parameters, this technique substantially mitigates the need for
accurate probabilistic models of the uncertainty. When the analysis yields an inadmissibility large range of
failure probabilities, the analyst can either refine the p-box, say by doing more experiments or simulations, or
can redesign the system to accommodate for the existing level of knowledge.
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