

Human Spaceflight ISHM Technology Development

Mark Schwabacher OCT GCD Autonomous Systems Project Manager AES Habitation Systems ISHM Lead

NASA Spacecraft Fault Management Workshop April 10, 2012

Overview

- Two ISHM tools that are widely used in human spaceflight
 - TEAMS
 - IMS (aka AMISS)
- Two past and current applications of ISHM in human spaceflight
 - AMISS for ISS
 - Ares I-X Ground Diagnostic Prototype
- Current technology development in OCT and AES for 2 testbed domains
 - Habitats
 - Cryogenic fuel loading

Functional Fault Modeling in TEAMS

Goals

- Uncover design issues across subsystem boundaries
- Assess effectiveness of sensor suite to isolate faults to LRU
- Provide Diagnostics Model for operations
- Document failure effect propagation times
- Approach
 - Model basic system connectivity, interfaces, interactions, and failure modes
 - Use information from schematics, FMEA, IP&CL, ICD, etc.
 - Implement using COTS tool called TEAMS (Testability Engineering and Maintenance System) that was originally developed under ARC SBIR funding
 - Represent propagation of failure effects along physical paths
 - (fluid, thermal, electrical, mechanical)
 - Transform failure effects as they propagate to a sensor
 - Sensor data evaluation represented as nodes ('test points')
- Results
 - Applied to SLS, Ares I, LADEE, HDU, KSC GO

Habitat Demonstration Unit (HDU)

Functional Model in TEAMS

Inductive Monitoring System (IMS)

(aka Anomaly Monitoring Inductive Software System (AMISS))

- Data-driven one-class anomaly detection system
- Automatically derives system models from archived or simulated nominal operations data
 - Does not require off-nominal data
 - Does not require knowledge engineers or modelers to capture details of system operations
- Analyzes multiple parameter interactions
 - Automatically extracts system parameter relationships and interactions
 - Detects variations not readily apparent with common individual parameter monitoring practices
- Able to detect subtle anomalies and faults that are not listed in the FMEA
- Monitoring module can detect anomalies whose signatures are not known ahead of time
- On-line monitoring takes as input observations about the physical system (parameter values) & produces "distance from nominal" anomaly score
- Algorithm:
 - clusters the training data
 - uses distance to nearest cluster as anomaly measure
- Developed by Dave Iverson of ARC

IMS for ISS

- Has been running 24/7 at JSC MCC since 2008, monitoring live telemetered sensor data from the ISS
- Has been certified (Level C) for that application
- Monitors:
 - Control Moment Gyroscopes (CMGs)
 - Rate-Gyro Assemblies
 - External Thermal Control System (ETCS)

Ares I-X Ground Diagnostic Prototype

- Ares I-X: the first uninhabited test flight of the Ares I on 10/28/2009
- NASA ARC, KSC, MSFC, and JPL worked together to build a prototype ground diagnostic system
- Was deployed to Hangar AE at KSC, where it monitored live data from the vehicle and the ground support equipment while Ares I-X was in the VAB and while it was on the launch pad
- Combined three data-driven and model-based ISHM algorithms: TEAMS-RT, IMS (aka AMISS), and SHINE
- Focused on diagnosing the first-stage thrust vector control and the ground hydraulics
- Ensured a path to certification
- Kept up with live data from 280 MSIDs using only a PC
- Led by Mark Schwabacher at ARC
- Funded by Ares I, by ETDP, and by KSC Ground Ops

2 Testbed Domains

Habitats

Cryogenic fuel loading

3 Programs

- OCT Game Changing Development (GCD)
 TRL 4-6
- HEOMD Advanced Exploration Systems (AES)
 TRL 5-7
- HEOMD Ground Systems Development and Operations (GSDO) Program

– TRL 7-10

5 Projects

- OCT GCD Autonomous Systems (AS)
- AES Autonomous Mission Operations (AMO)
- AES Habitation Systems (HS)
- AES Integrated Ground Operations Demonstration Units (IGODU)
- GSDO Advanced Ground Systems Maintenance (AGSM) element

2 testbed domains, each supported by 3 projects

- Deep Space Habitats
 - GCD AS
 - AES HS
 - AES AMO
- Cryogenic Fuel Loading
 - GCD AS
 - AES IGODU
 - GSDO AGSM

Summary of Programs, Projects, and Testbeds

Gen-1 Habitat Demonstration Unit (HDU)

- Tested in Arizona desert in 2010
- Not sealed
- Astronauts lived in it for multiple days

- Tested in Arizona desert in 2011
- Added "X-Hab" inflatable loft and Hygiene Module

Gen-3 DSH

- Will be built inside 20' Chamber at JSC in FY13-16
- Will be sealed
- Astronauts will live in it for 2 weeks

Gen-4 DSH

• Proposed to be attached to ISS in 2018

Major ISHM technologies being developed for habitats by OCT GCD AS

- Failure Consequence Assessment System (FCAS)
- Interface to planner
- Prognostics for forward-osmosis water recovery system

Failure Consequence Assessment System (FCAS)

- When a real or induced failure occurs in the DSH, the failure will be detected and diagnosed using a TEAMS
 - The diagnosis will determine which components have failed.
- FCAS will determine which components have stopped functioning as a result of the components that have failed.
- FCAS will determine the loss of capability resulting from the non-functioning components based on the current environment.
- A procedure to respond to the loss of capability will be automatically selected and displayed.

Integration of ISHM with automated planner

- Will be used in cases where no predetermined procedure exists to recover from the loss of capability (determined by FCAS).
- The loss of capability will be communicated to an automated planning system, which will either automatically or semi-automatically replan the rest of the mission to:
 - repair the components that are broken, and/or
 - accomplish as many mission objectives as possible given the loss of capability (if some broken components can't be fixed).

Task

TRL

FY

- Reduce cost, increase safety and reliability of cryogenic loading operations at KSC
- Prepare for future in-space cryo loading

IMS for cryo

- STS-119 launch attempt #1 (3/11/09) was scrubbed due to LH2 leakage exceeding specification at the Ground Umbilical Carrier Plate (GUCP)
- Real time monitoring subsequently deployed in KSC LCC for STS-134 (Endeavour) fueling operations in Spring 2011

- IMS
- TEAMS modeling
- Knowledge-based Autonomous Test Engineer (KATE)
- Prognostics
- Physics-based models

Objectives of ISHM for Cryo

- Demonstrate autonomous cryogenic (LN2) loading operations at the Cryogenic Test bed Facility with recovery from selected failure modes
- Develop prognostics capability for selected complex failure modes
- Demonstrate tank health/diagnostics using physics models and simulation

Conclusions

- OCT and AES are developing ISHM technology in the following areas
 - Anomaly detection
 - Diagnostics
 - Prognostics
 - Failure Consequence Assessment
 - Interface to automated planning
 - Physics-based modeling
- These technologies are being tested using two testbed domains (habs and cryo), but are also applicable to many other systems (launch vehicles, robotic spacecraft, aircraft, etc.).